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Abstract: In this paper, differential transform method is applied for longitudinal vibration analysis of beams with non-uniform cross 
section. Natural frequencies and corresponding normalized mode shapes are calculated for different cases in cross section and boundary 
conditions. Comparison of results with the previous solutions proves the accuracy and versatility of the presented paper. 
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1. Introduction  

The differential transform method (DTM) is a 
numerical approach for solving linear, quasi-linear and 
some nonlinear, ordinary and partial differential 
equations. Many problems in engineering are described 
by differential equations; Most of these equations 
cannot be solved or are so difficult to solve analytically. 
Unfortunately, because of complexities which appear 
in solving differential equation of longitudinal 
vibration of beams, analytical methods can be used 
only for some special cases; Bapat [1] obtained the 
closed-form solution for the longitudinal vibration of 
beams whose cross section varies as a exponential 
function. Closed form solutions for longitudinal 
vibration of beams whose cross-section varies as 

( ) [ ]2
0 1A x A ax L= +  presented by Abrate [2]. Kumar 

and Sujith [3] derived exact solutions for the 
longitudinal vibration of non-uniform beams whose 
cross-section varies as ( ) ( )nA x a bx= +  and 
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( ) ( )2
0 sinA x A a bx= + . Li [4] combined the transfer 

matrix method and closed form solution of one step 
non-uniform rod to obtain a single frequency equation 
for a multi-step non-uniform rod. In another papers, he 
derived an exact solution for free longitudinal 
vibrations of one-step non-uniform rods with classical 
and non-classical boundary conditions [5] and an 
analytical solution for determine the longitudinal 
natural frequencies and mode shapes for a one step 
non-uniform bar with several boundary conditions [6]. 
Li, et al. [7] found closed form solution for the 
longitudinal vibration of non-uniform structures with 
lumped masses and spring supports whose 
cross-section varies as ( ) ( )1 nA x x Lα β= +  and 

( ) x LA x e βα −= . Eigen frequencies for longitudinal 
vibration of inhomogeneous rods with certain area 
variations were obtained by Raj and Sujith for classical 
boundary conditions [8]. 

The concept of differential transform method was 
introduced first by Zhou [9], and it was applied to solve 
linear and nonlinear initial value problems in electrical 
circuit analysis. After that, DTM was applied to solve 
several problems in engineering. Using DTM, Chen 
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and Ho [10, 11] solved eigenvalue problem for the free 
transverse vibration analysis of a rotating twisted 
Timoshenko beam under axial load. DTM was hired by 
Jang and Chen to solve a second order non-linear 
differential equation that describes the under damped 
and over damped motion of a system subject to external 
excitations [12]. In another paper, they used this 
method to solve the initial-value problems [13]. The 
DTM was used to find the dimensionless natural 
frequencies of the tapered cantilever Bernoulli-Euler 
beam by Ozdemir and Kaya [14]. Free vibration 
differential equations of motion of one end-fixed, the 
other simply supported and axial loaded beams on 
elastic soil was solved using DTM by Catal [15]. 
Arikoglu and Ozkol [16] used DTM to vibration 
analysis of composite sandwich beams with 
viscoelastic core. Ebaid [17] revealed that the DTM 
with the aftertreatment technique is very effective for a 
class of nonlinear oscillatory problems with fractional 
nonlinearities without any need for Padé approximants 
or Laplace transform. 

In this paper, the application of the differential 
transform method is extended to acquire approximate 
solution for free longitudinal vibrations of non-uniform 
beams with arbitrary cross section. Comparison of 
results with the previous solutions proves the accuracy 
and versatility of the presented paper. 

2. Longitudinal Vibration of Beams 

The governing differential equation for the 
longitudinal vibration of a beam can be written as [18]: 

2
( , ) ( , )( ) ( ) ( , )w x t w x tEA x A x f x t

x x t
ρ∂ ∂ ∂⎡ ⎤ − =⎢ ⎥∂ ∂ ∂⎣ ⎦ (1)

 

where ρ and E are mass per unit volume and Young’s 
modulus of the beam, respectively; A(x) is the area of 
section and f(x, t) is the intensity of axial force. For free 
vibration analysis, f(x, t) should be considered as zero 
and Eq. (1) can be simplified as: 

2
( , ) ( , )( ) ( ) 0w x t w x tEA x A x

x x t
ρ∂ ∂ ∂⎡ ⎤ − =⎢ ⎥∂ ∂ ∂⎣ ⎦     (2)

 

The longitudinal displacement w(x, t) can be 

assumed as the product of the function u(x) which 
depends only on the spatial coordinate x and a time 
dependent harmonic function as w(x, t) = u(x)eiωt. Now, 
Eq. (2) can be expanded as: 

( )
2

2
2
( ) ( ) ( )( ) ( ) 0.d u x dA x du xEA x E A x u x

dx dxdx
ρ ω+ + =  (3)

 

By considering dimensionless spatial coordinates as: 

,x
L

ζ =                 (4)
 

Eq. (3) can be rewritten in the following 
dimensionless form: 

( )
2

2
2

( ) ( ) ( )( ) ( ) 0,d u dA duA A u
d dd

ζ ζ ζζ λ ζ ζ
ζ ζζ

+ + =  (5)
 

where 
2 2

2 l
E

ρ ωλ =              (6) 

3. Differential Transform Method (DTM) 

The differential transform method is a numerical 
method which uses the form of polynomials as an 
approximation of the exact solution. The differential 
transform method provides an iterative approach to 
obtain higher-order series. Basic definition and 
operation of DTM are introduced as below. 

Differential transform of the function u(ζ) is defined 
around point ζ = ζ0 , as: 

0

1 ( )( )
!

k

k
d uU k

k d
ζ ζ

ζ
ζ

=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦       (7)

 

In Eq. (7), u(ζ) is the original function and U(k) is 
transformed function. The function u(ζ) may be 
expressed in terms of the differential transform U(k) as: 

0
0

( ) ( ) ( )k

k

u U kζ ζ ζ
∞

=

= −∑      (8)
 

Eq. (8) is known as the inverse differential transform 
of U(k). Substituting Eq. (7) into Eq. (8) gives:  

0

0

0

( ) ( )( )
!

k k

k
k x x

d uu
k d

ζ ζ ζζ
ζ

∞

= =

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑    (9)

 

Eq. (9) indicates that the concept of differential 
transform is derived from Taylor’s series expansion.  

Actually, the function u(ζ) is expressed by a finite 
series and Eq. (8) should be written as: 
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Table 1  Mathematical operations performed by DTM. 

Original function Transformed function 

( ) ( ) ( )u x y x z xα β= +  ( ) ( ) ( )U k Y k Z kα β= +  

( ) ( )dy x
u x

dx
=  ( ) ( ) ( )1 1U k k Y k= + +  

( ) ( )2

2

d y x
u x

dx
=  ( ) ( )( ) ( )1 2 2U k k k Y k= + + +  

( ) ( ) ( )u x y x z x=  ( ) ( ) ( )
0

k

l

U k Y l Z k l
=

= −∑  

( ) mu x x=  ( ) ( ) 1
0

k m
U k k m

k m
δ

=⎧
= − = ⎨ ≠⎩

 

 
Table 2  Dimensionless frequencies for first three modes of 
a cantilever conical beam. 

 DTM(N=21) Exact solution [7] Error (%) 
λ1 2.5730 2.5704 0.0010 
λ2 5.3648 5.3540 0.0020 
λ3 8.3000 8.3029 0.0003 

 

0
0

( ) ( ) ( )
N

k

k

u U kζ ζ ζ
=

= −∑         (10)
 

Eq. (10) denotes that: 

01
( ) ( ) ( )k

k N
u U kζ ζ ζ

∞

= +
= −∑  

is negligibly small. In fact, the value of N should be 
determined as: 

( ) ( )

( )

1

1

N N
i i

N
i

λ λ
ε

λ

−

−

−
≤         (11)

 

Notice that for all numerical cases presented in this 
paper, convergence has been satisfied for ε = 0.01. 
Table 1 depicts the fundamental mathematical 
operations in ζ0 = 0 which performed by differential 
transform method. 

4. Numerical Results 

In this section some numerical examples are 
presented for various cases in cross section and 
boundary conditions.  

4.1 Cantilever Conical Beam 

Consider a cantilever tapered beam whose cross 
section varies ( ) ( )2

0 1 0.8A Aζ ζ= − . For this example, 

Eq. (5) can be written as: 
2

2 2 2
2(0.64 1.6 1) (1.28 1.6) (0.64 1.6 1) 0d u du u

dd
ζ ζ ζ λ ζ ζ

ζζ
− + + − + − + =   (12)

 

and boundary conditions can be considered as: 
( )0 0u =               (13a) 

0

0.du
d ζζ =

=

             
(13b) 

Transformed form of Eq. (12) can be written as: 

( )( ) ( )

0

0

0

2

0 0

0.64 ( 2)( 1)( 2) ( 2)

1.6 ( 1)( 1)( 2) ( 2)

1 2 2

1.28 ( 1)( 1) ( 1) 1.6( 1) ( 1)

0.64 ( 2) ( ) 1.6 ( 1) ( ) ( ) 0

k

l
k

l

k

l
k k

l l

l k l k l U k l

l k l k l U k l

k k U k

l k l U k l k U k

l U k l l U k l U k

δ

δ

δ

λ δ δ

=

=

=

= =

− − + − + − +

− − − + − + − +

+ + + +

+ − − + − + − + +

⎡ ⎤
+ − − − − − + =⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑

∑

∑ ∑ (14)

 

and in similar manner, boundary conditions can be 
written in the following transformed form: 

( )0 0U =              (15a) 

( )
0

0
N

k

kU k
=

=∑
         

(15b) 

Eq. (14) can be written as follows: 

( )2U k + =  

{ 2 21.6( 1) ( 1) 0.64 ( 1) ( )k U k k k U kλ⎡ ⎤+ + − + +⎣ ⎦  
[ ]}2 1.6 ( 1) 0.64 ( 2) ( 1)( 2).U k U k k kλ+ − − − + +  (16)

 

Using Eq. (16), further values of U(k) can be derived 
as a function of U(1). Substituting this values into Eq. 
(15b), characteristic equation can be obtained in term 
of dimensionless frequency. 

Table 2 shows values of the first three dimensionless 
frequencies and corresponding values of the exact 
solution [7]. Substituting values of U(k) into Eq. (8), 
the corresponding modes will be obtained. These mode 
shapes are presented in Appendix A. It is worth 
mentioning that all mode shapes are normalized as 
follows: 

( ) ( ) ( )maxi i iu u uζ ζ ζ=
      

(17) 

According to Ref. [7], exact modes can be derived for 
this example as: 
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( ) ( ){cos 1 0.8i iu ζ λ ζ⎡ ⎤= −⎣ ⎦  
( ) ( )} ( )sin 1 0.8 tan 1 0.8i iλ ζ λ ζ⎡ ⎤− − −⎣ ⎦  

(18) 

For this case, the first three normalized mode shapes, 
are presented in Appendix A, These modes are 
depicted in Fig. 1. 

4.2 Clamped-clamped Conical Beam Whose Cross 
Section Varies Exponentially 

Consider a clamped-clamped beam whose cross 
section varies as A(ζ) = A0e-ζ. For this example, Eq. (5) 
can be written as: 

2
2

2 0d u du u
dd

λ
ζζ

− + =
         

(19) 

and boundary conditions can be imposed as: 
( )0 0u =             (20a) 
( )1 0.u =             (20b) 

Eq. (19) can be written in DTM form as 

( )( ) ( ) ( ) ( ) ( )21 2 2 1 1 0k k U k k U k U kλ+ + + − + + + =
  

(21) 

and in similar manner, DTM form of boundary 
conditions can be written as follows: 

( )0 0U =              (22a) 

( )
0

0
N

k

U k
=

=∑
           

(22b) 

Eq. (21) can be written as: 

( ) ( ) ( ) ( ) ( )( )22 1 1 1 2U k k U k U k k kλ⎡ ⎤+ = + + − + +⎣ ⎦   
(23)

 

In similar manner, characteristic equation, 
dimensionless frequencies and corresponding normal 
modes can be derived. First lowest dimensionless 
frequencies are presented in Table 3. According to 
Ref. [7], exact modes can be derived for this example 
as: 

( ) ( )0.5 siniu e iζζ πζ=         (24) 
For this case, the first three normalized mode shapes 

are presented in Appendix B for both DTM and exact 
solution; This modes are illustrated in Fig. 2. 

4.3 Cantilever Conical Beam with Sinusoidal Change 
in Diameter 

Now consider a cantilever beam which its diameter 

changes as ( ) ( )0 cos 3d dζ πζ=  and therefore cross 
section of beam varies as ( ) ( )2

0 cos 3A Aζ πζ= . In 
this case, Eq. (5) can be written as 

( ) ( ) ( )
2

2 2 2
2cos 3 sin 2 3 cos 3 0

3
d u du u

dd
ππζ πζ λ πζ

ζζ
− + = (25)

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1  (a) 1st normalized mode of cantilever conical beam, 
(b) 2nd normalized mode of cantilever conical beam, (c) 3rd 
normalized mode of cantilever conical beam. 
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(a) 

 
(b) 

 
(c) 

Fig. 2  (a) 1st normalized mode of clamped-clamped beam 
whose area changes exponentially. (b) 2nd normalized mode 
of clamped-clamped beam whose area changes exponentially. 
(c) 3rd normalized mode of clamped-clamped beam whose 
area changes exponentially. 
 

To be able to utilize the mathematical operations 
which presented in Table 1, the Taylor’s series expansion 
of sinusoidal functions should be used in Eq. (25). Now  

Table 3  Dimensionless frequencies for first three modes of 
a clamped-clamped beam which area changes exponentially. 

 DTM(N = 25) Exact solution [7] Error (%) 
λ1 3.1811 3.1811 0 
λ2 6.3030 6.3030 0 
λ3 9.4122 9.4380 0.0027 

 
Table 4  Cantilever conical beam with sinusoidal change in 
diameter. 

M 2 4 6 8 
N 16 12 12 12 
λ1 2.2415 1.9568 1.9999 1.9733 
λ2 5.5971 4.8597 5.0052 4.9891 
λ3 6.8832 6.3052 6.4041 6.4189 

 

the degree of the polynomial which use for 
convergence (N), depends on the degree of Taylor’s 
series expansion (M). In the other words, convergence 
depends on both values of M and N. 

Table 4 shows the value of first three lowest 
dimensionless frequencies. Results show that in this 
case convergence obtains for M = 8 and N = 12. In 
other words if values of N and M increase, there is no 
sensible change in first three frequencies. 

It is considerable that for high value of M, say M = 
20, 30, 40, … convergence will be satisfied again for N 
= 12; in other words after convergence, appropriate 
value of N will not change with increasing in value of 
M. After convergence the value of N is independent of 
M, because by increasing the terms, there is no 
considerable change in error of the Taylor’s series 
expansion. 

5. Conclusions 

Analytical methods are so limit to solve differential 
equations which appear in analysis of longitudinal 
vibration of non-uniform beams; therefore, the exact 
solutions have been presented for some special cases 
such as conical beam. Using DTM, corresponding 
differential equation can be solved for all 
cross-sections. The comparison between the results for 
the cases which have the exact solution shows that 
DTM is a strong method to solve differential equations. 
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In cases which non-polynomial terms appear in 
differential equation, appropriate value of N that 
satisfied the convergence, depends on the value of M 
but after convergence, the value of N is independent of 
M, because by increasing the terms, there is no 
considerable change in error of the Taylor’s series 
expansion. 
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Appendix A 

Normalized modes of a cantilever conical beam. 

DTM: 
2 3 4 5 6 7 8

1
9 10 11 12 13 14 15

16 17 18

( ) 0.9547 0.7638 0.4424 0.3539 0.0656 0.0524 0.0130 0.0104

0.0033 0.0026 0.0024 0.0019 0.0015 0.0012 (9.7358 4)

(7.7886 4) (6.2308 4) (4.9846 4) (3.9

u

e

e e e

ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ

= + − − + + − −

− − − − − − − −

− − − − − − − 19 20

21

877 4) (3.1902 4)

(2.5521 4)

e e

e

ζ ζ

ζ

− − −

− −

 (A.1)

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 1

2

9 20

( ) 1.3452 1.0762 5.5918 4.4735 5.7072 4.5658 2.7108 2.1686

0.8088 0.647 0.1479 0.1183 0.0281 0.0225 0.0012 (9.3423 4)

0.0025 0.0020 0.0015 0.0012

u

e

ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ

= − − + + − − + +

− − + + − − − − −

− − − − 21(9.499 4)e ζ− −

 
(A.2)

 

2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20

3 ( ) 1.8452 1.4761 20.0046 16.0037 60.1701 48.1361 81.1835

64.9468 62.5641 50.0513 31.6802 25.3442 11.3967 9.1174

3.096 2.4768 0.65 0.52 0.114 0.0912

u ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

= + − − + + −

− + + − − + +

− − + + − − 210.014ζ+

 
(A.3)
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Exact solution: 

( ) ( ){ }1
0.1223( ) cos 2.5704 1 0.8 1.5561sin 2.5704 1 0.8

1 0.8
u ζ ζ ζ

ζ
⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦−

 (A.4)

( ) ( ){ }2
0.1762( ) cos 5.3540 1 0.8 0.7471sin 5.3540 1 0.8

1 0.8
u ζ ζ ζ

ζ
− ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦−

 (A.5)

( ) ( ){ }3
0.3746( ) cos 8.3029 1 0.8 0.4817sin 8.3029 1 0.8

1 0.8
u ζ ζ ζ

ζ
⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦−

 (A.6)

Appendix B 

Normalized modes of a clamped-clamped beam which area changes exponentially. 

DTM: 

2 3 4 5 6 7 8
1

9 10 11 12 13 14 15

16 17

( ) 2.416 1.208 3.6722 1.9368 1.4707 0.8984 0.226 0.1906

0.0106 0.0225 0.0011 0.0016 (1.9522 4) (7.6975 5) (1.4562 5)

(2.3293 6) (6.8602 7) (3.3734 8)

u

e e e

e e e

ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ

= + − − + + − −

+ + + + − − + − + −

− − − − + − 18 19 20

21 22 23 24 25

(2.175 8) (9.8326 10)

(1.9319 10) (4.0814 11) (2.65 11) (6.1009 12) (8.5626 13)

e e

e e e e e

ζ ζ

ζ ζ ζ ζ ζ

+ − + −

− − − − − − − − + −

 (B.1)
 

2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19

2 ( ) 4.3053 2.1527 27.7897 14.0743 52.3873 27.3695 45.644

25.1224 22.3942 13.3291 6.8763 4.5847 1.3985 1.1007

0.1912 0.1942 0.0165 0.0261 (5.4205 004)

u

e

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

= − − + + − − +

+ − − + + − −

+ + − − + − 20

21 22 23 24 25

0.0028

(8.0197 5) (2.3348 4) (1.647 5) (1.6094 5) (1.7345 6)e e e e e

ζ

ζ ζ ζ ζ ζ

+

+ − − − − − + − + −

 (B.2)
 

2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18

3 ( ) 6.1827 3.0913 90.2567 45.386 390.7135 199.1432 795.6744

414.4956 932.9524 501.2956 705.7909 395.2524 370.4023

218.849 141.6664 89.6365 40.8676 28.221

u ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ

= + − − + + −

− + + − − +

+ − − + + − 19

20 21 22 23 24 25

9.1008

7.0342 1.5846 1.4209 0.2157 0.237 0.0224

ζ

ζ ζ ζ ζ ζ ζ− + + − − +

 (B.3)
 

Exact solution: 

( )0.
1

5( ) 0.769 sinu e ζζ πζ=  (B.4)

( )0.
2

5( ) 0.6852 sin 2u e ζζ πζ= −  (B.5)

( )0.
3

5( ) 0.6583 sin 3u e ζζ πζ=  (B.6)

 

 

 

 
 
 
 
 
 


