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Abstract: In this paper, differential transform method is applied for longitudinal vibration analysis of beams with non-uniform cross
section. Natural frequencies and corresponding normalized mode shapes are calculated for different cases in cross section and boundary
conditions. Comparison of results with the previous solutions proves the accuracy and versatility of the presented paper.
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1. Introduction

The differential transform method (DTM) is a
numerical approach for solving linear, quasi-linear and
some nonlinear, ordinary and partial differential
equations. Many problems in engineering are described

by differential equations; Most of these equations

cannot be solved or are so difficult to solve analytically.

Unfortunately, because of complexities which appear
in solving differential equation of longitudinal
vibration of beams, analytical methods can be used
only for some special cases; Bapat [1] obtained the
closed-form solution for the longitudinal vibration of
beams whose cross section varies as a exponential
function. Closed form solutions for longitudinal
vibration of beams whose cross-section varies as
A(x)=A,[1+ax/L ]2 presented by Abrate [2]. Kumar
and Sujith [3] derived exact solutions for the
longitudinal vibration of non-uniform beams whose
A(x)=(a+bx)" and

cross-section varies  as
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A(x)=A4ysin’(a+bx). Li [4] combined the transfer
matrix method and closed form solution of one step
non-uniform rod to obtain a single frequency equation
for a multi-step non-uniform rod. In another papers, he
derived an exact solution for free longitudinal
vibrations of one-step non-uniform rods with classical
and non-classical boundary conditions [5] and an
analytical solution for determine the longitudinal
natural frequencies and mode shapes for a one step
non-uniform bar with several boundary conditions [6].
Li, et al. [7] found closed form solution for the
longitudinal vibration of non-uniform structures with
spring
cross-section varies as A (x)=a(l+px/L)" and

lumped masses and supports  whose

A (x ) =qe P/t Eigen frequencies for longitudinal
vibration of inhomogeneous rods with certain area
variations were obtained by Raj and Sujith for classical
boundary conditions [8].

The concept of differential transform method was
introduced first by Zhou [9], and it was applied to solve
linear and nonlinear initial value problems in electrical

circuit analysis. After that, DTM was applied to solve

several problems in engineering. Using DTM, Chen
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and Ho [10, 11] solved eigenvalue problem for the free
transverse vibration analysis of a rotating twisted
Timoshenko beam under axial load. DTM was hired by
Jang and Chen to solve a second order non-linear
differential equation that describes the under damped
and over damped motion of a system subject to external
excitations [12]. In another paper, they used this
method to solve the initial-value problems [13]. The
DTM was used to find the dimensionless natural
frequencies of the tapered cantilever Bernoulli-Euler
beam by Ozdemir and Kaya [14]. Free vibration
differential equations of motion of one end-fixed, the
other simply supported and axial loaded beams on
elastic soil was solved using DTM by Catal [15].
Arikoglu and Ozkol [16] used DTM to vibration
analysis of composite sandwich beams with
viscoelastic core. Ebaid [17] revealed that the DTM
with the aftertreatment technique is very effective for a
class of nonlinear oscillatory problems with fractional
nonlinearities without any need for Padé approximants
or Laplace transform.

In this paper, the application of the differential
transform method is extended to acquire approximate
solution for free longitudinal vibrations of non-uniform
beams with arbitrary cross section. Comparison of
results with the previous solutions proves the accuracy

and versatility of the presented paper.

2. Longitudinal Vibration of Beams

The governing differential equation for the

longitudinal vibration of a beam can be written as [18]:
. [EA( Um0 ’)} R (LU
where p and E are mass per unit volume and Young’s
modulus of the beam, respectively; 4(x) is the area of
section and f{x, ) is the intensity of axial force. For free
vibration analysis, f{x, f) should be considered as zero
and Eq. (1) can be simplified as:

0 ow(x,t) ow(x,1)
EA A(x)———=0
ax[ % } PA 5 @)
The longitudinal displacement w(x, f¢) can be

assumed as the product of the function u(x) which
depends only on the spatial coordinate x and a time
dependent harmonic function as w(x, 1) = u(x)e’”. Now,
Eq. (2) can be expanded as:

2
ddt)tc(;c)+E Md)(j) dt;ix)
By considering dimensionless spatial coordinates as:

X
c=T. 0

in the following

EA(x) +pA(x)au(x)=0. 3)

Eq. (3) can be

dimensionless form:

d*u()  dA(&) du({)
¢t d¢ dg

rewritten

A0) + 224w (£)=0, (5)

where
e pl2a?
K (6)
3. Differential Transform Method (DTM)

The differential transform method is a numerical
method which uses the form of polynomials as an
approximation of the exact solution. The differential
transform method provides an iterative approach to
obtain higher-order series. Basic definition and
operation of DTM are introduced as below.

Differential transform of the function u(() is defined

around point {= { , as:

UGh) = 1| d*u(¢)
K| ack e (7

In Eq. (7), u({) is the original function and U(k) is

transformed function. The function u({) may be

expressed in terms of the differential transform U(k) as:

u¢) =D (€ -¢) U @®)

k=0
Eq. (8) is known as the inverse differential transform
of U(k). Substituting Eq. (7) into Eq. (8) gives:

(€= dMu)

Eq. (9) indicates that the concept of differential

X=X

transform is derived from Taylor’s series expansion.
Actually, the function u({) is expressed by a finite
series and Eq. (8) should be written as:
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Table1 Mathematical operations performed by DTM.

Original function Transformed function

u(x)=ay(x)+ﬂz(x) U(k)zaY (k)+[)’Z(k)

u(x):”lyd_f:‘) U (k)=(k+1)¥ (k+1)

u(x):% U(k)=(k+1)(k +2)Y (k +2)
u(x)zy(x)z(x) U(k)zlkZOY(l)Z(k—l)
u(x)=x" U(k)zé'(k—m):{(l) l}ij’:

Table 2 Dimensionless frequencies for first three modes of
a cantilever conical beam.

DTM(N=21) Exact solution [7] Error (%)
Mo 2.5730 2.5704 0.0010
Ay 5.3648 5.3540 0.0020
Az 8.3000 8.3029 0.0003
N
u(¢) =Y (¢ =¢) Uk (10)
k=0

Eq. (10) denotes that:

u@)=) . (C=¢) UK

is negligibly small. In fact, the value of N should be
determined as:
ﬂ,(N) _/1,(1\’*1)

1 1

PICR)

1

< (11)

Notice that for all numerical cases presented in this
paper, convergence has been satisfied for ¢ = 0.01.
Table 1
operations in ¢, = 0 which performed by differential

depicts the fundamental mathematical

transform method.

4. Numerical Results

In this section some numerical examples are
presented for various cases in cross section and

boundary conditions.
4.1 Cantilever Conical Beam

Consider a cantilever tapered beam whose cross
section varies 4 (¢)=4,(1- 0.8{)2 . For this example,

Eq. (5) can be written as:
) du du 2 _
(064 —1.@+1)7f+(1.2%—1.®%+1 (064 1.6 +1u=0 (12)
and boundary conditions can be considered as:

u(0)=0 (13a)

du
— =0. (13b)
d¢ =0

Transformed form of Eq. (12) can be written as:

k
0.64 5 =2k —1 +1)(k —1 +2)U (k 1 +2)
1=0

k

=16 5 =Tk —1 +1)(k 1 +2)U (k ~1 +2)
1=0

+(k +1)(k +2)U (k +2)

k
+1.28 51 =1k —1+1)U (k —1+1) =16k +1U (k +1)
1=0

k k
+1° 0.6425(1—2)U(k —l)—l.625(1—1)U(k ~DFU®K)|=0(14)
1= 1=
and in similar manner, boundary conditions can be
written in the following transformed form:

U(0)=0 (15a)

M=

kU (k)=0 (15b)

k=0
Eq. (14) can be written as follows:

U(k+2)=
{1.6(k 12U (k +1)—[0.64k (k +1)+,12]U(k)

+ 22[1.6U (k —1)-0.64U (k —2)]}/(k )k +2). (16)
Using Eq. (16), further values of U(k) can be derived

as a function of U(1). Substituting this values into Eq.
(15b), characteristic equation can be obtained in term
of dimensionless frequency.

Table 2 shows values of the first three dimensionless
frequencies and corresponding values of the exact
solution [7]. Substituting values of U(k) into Eq. (8),
the corresponding modes will be obtained. These mode
shapes are presented in Appendix A. It is worth
mentioning that all mode shapes are normalized as
follows:

7 (&)= u; () /max|u; (&) (17)
According to Ref. [7], exact modes can be derived for
this example as:
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u; (cj) = {cos[/ti (1—0.84’)]
—sin[/ll-(1—O.8§)]/tan(/1i)}/(l—0.84’) (18)

For this case, the first three normalized mode shapes,

are presented in Appendix A, These modes are
depicted in Fig. 1.

4.2 Clamped-clamped Conical Beam Whose Cross

Section Varies Exponentially

Consider a clamped-clamped beam whose cross
section varies as A(C) = Aoe™®. For this example, Eq. (5)

can be written as:

iﬁ—ﬂmzu:o (19)
g~ d¢
and boundary conditions can be imposed as:
u(0)=0 (20a)
u(1)=0. (20b)

Eq. (19) can be written in DTM form as

() (k+2Ulk+2) (kUL +2UR) =0

and in similar manner, DTM form of boundary

conditions can be written as follows:

U(0)=0 (22a)
> U(k)=0 (22b)
k=0

Eq. (21) can be written as:
Ulk+2) =] (k) U(k+1) - 2U(K) [[(k+1) (k42) - 23)

In similar manner, characteristic equation,
dimensionless frequencies and corresponding normal
modes can be derived. First lowest dimensionless
frequencies are presented in Table 3. According to
Ref. [7], exact modes can be derived for this example

as:

u; (§) =€ sin(ing) (24)
For this case, the first three normalized mode shapes
are presented in Appendix B for both DTM and exact

solution; This modes are illustrated in Fig. 2.

4.3 Cantilever Conical Beam with Sinusoidal Change

in Diameter

Now consider a cantilever beam which its diameter

changes as d (¢{)=d,cos(7£/3) and therefore cross
section of beam varies as 4 (¢)=4,cos’ (7 /3). In

this case, Eq. (5) can be written as

d* , d
m2(7z§/3)d—;—§sm(27z/3)d—zl+/12 oosz(izg’/3)u:0(25)
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Fig. 1 (a) 1st normalized mode of cantilever conical beam,
(b) 2nd normalized mode of cantilever conical beam, (c) 3rd
normalized mode of cantilever conical beam.



Approximate Solution for Longitudinal Vibration of Non-uniform Beams by Differential Transform 67
Method (DTM)

G exactzolution
DT

1st normalized mode shape
o
th

1 1 1 1
o a1 0.z oz 0.4 0.5 0.6 o7 [nk:} [uk=} 1

dimensionless length (£

(@

O exactsolution
DTM
i}
ju i
]
g
(]
[1h)
=
()
£
s
o
'
o=
=
=
()
=
=
oy
[}
12 1 1 1 1 1 1 1 1 1 ]
] 0.1 0z 03 04 05 06 07 08 09 1
dimensionless length (57
@ exact solution
r DTM
o0&t
2 os
o
ey
w04
ai)
2 o2
2 o
T o
jac)
T 02
=
S o4l
S -0
E
& 06
EE]S
ERS 1 1 1 1 1 1 L 1 1

.
0 01 02 03 04 05 0 07 08 08 1
dimensionless length (£7)

(c)
Fig. 2 (a) 1st normalized mode of clamped-clamped beam
whose area changes exponentially. (b) 2nd normalized mode
of clamped-clamped beam whose area changes exponentially.
(c) 3rd normalized mode of clamped-clamped beam whose
area changes exponentially.

To be able to utilize the mathematical operations
which presented in Table 1, the Taylor’s series expansion
of sinusoidal functions should be used in Eq. (25). Now

Table 3 Dimensionless frequencies for first three modes of
a clamped-clamped beam which area changes exponentially.

DTM(N = 25) Exact solution [7] Error (%)
Ao 3.1811 3.1811 0
A, 63030 6.3030 0
A 9.4122 9.4380 0.0027

Table 4 Cantilever conical beam with sinusoidal change in
diameter.

M 2 4 6 8
N 16 12 12 12
A 2.2415 1.9568 1.9999 1.9733
Ay 5.5971 4.8597 5.0052 4.9891
A3 6.8832 6.3052 6.4041 6.4189

the degree of the polynomial which use for
convergence (N), depends on the degree of Taylor’s
series expansion (M). In the other words, convergence
depends on both values of M and N.

Table 4 shows the value of first three lowest
dimensionless frequencies. Results show that in this
case convergence obtains for M = 8 and N = 12. In
other words if values of N and M increase, there is no
sensible change in first three frequencies.

It is considerable that for high value of M, say M =
20, 30, 40, ... convergence will be satisfied again for N
= 12; in other words after convergence, appropriate
value of N will not change with increasing in value of
M. After convergence the value of N is independent of
M, because by increasing the terms, there is no
considerable change in error of the Taylor’s series

expansion.

5. Conclusions

Analytical methods are so limit to solve differential
equations which appear in analysis of longitudinal
vibration of non-uniform beams; therefore, the exact
solutions have been presented for some special cases
such as conical beam. Using DTM, corresponding
differential
cross-sections. The comparison between the results for

equation can be solved for all
the cases which have the exact solution shows that

DTM is a strong method to solve differential equations.
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In cases which non-polynomial terms appear in

differential equation, appropriate value of N that

satisfied the convergence, depends on the value of M

but after convergence, the value of N is independent of

M, because by increasing the terms, there is no

considerable change in error of the Taylor’s series

expansion.
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(A.1)

—(7.7886e—4)'® —(6.2308¢ —4)¢ "7 — (4.9846¢ - 4)¢ ' —(3.9877e—4) " —(3.1902¢ — 4) ¢

—(2.5521e—4)¢?!

i0,(&) = —1.3452¢ —1.0762¢ % +5.5918L° +4.4735¢% —5.70724° —4.5658£° +2.7108¢ 7 +2.1686¢°
—0.8088¢7 —0.647¢1° +0.1479¢M +0.1183¢1% —0.0281¢ ™ = 0.0225¢ 1 —0.0012¢1° — (9.3423¢ — 4) !¢
—0.0025¢"7 —0.0020¢™ —0.0015¢" —0.0012¢ % - (9.499¢ — 4)¢ !

(A.2)

i0,(£) =1.8452¢ +1.4761£2 —20.0046£° —16.0037¢* +60.1701£° +48.1361£° —81.1835¢

—64.9468¢8 +62.5641¢° +50.0513¢1° —31.6802¢ 1 —25.3442¢12 +11.3967¢13 +9.1174¢

(A3)

—3.096¢"° —2.4768£1° +0.65¢17 +0.52¢" —0.114¢"° —0.0912¢%° +0.014¢ %!
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Exact solution:

u () =

0.1223 .
108z {cos[2.5704(1-0.8¢) |+1.5561sin[ 2.5704(1-0.8¢) ]}

_ . -0.1762 .
5(¢) = m{cos[5.3»540(1—0.8§)] +0.7471sin[ 5.3540(1-0.8¢ ) ]}

u3(¢) =

0.3746 i
1_(ng {cos[8.3029(1—0.8§)] +0.4817sin| 8.3029(1 —0.8::)]}

Appendix B

Normalized modes of a clamped-clamped beam which area changes exponentially.
DTM:
(&) =2.416£ +1.2087 —3.6722¢° —1.9368L* +1.4707¢° +0.8984¢° —0.226¢7 —0.1906£*
+0.0106¢° +0.0225¢1° +0.0011¢" +0.0016¢12 — (1.9522e —4) " +(7.6975¢ - 5)C™ +(1.4562¢ — 5)¢ 12
—(2.3293e—6)¢"% —(6.8602¢—7)¢" +(3.3734e—8)¢ ™ +(2.175¢—8)¢ " +(9.8326e—10)¢ >
—(1.9319¢—10)¢* = (4.0814e—11)¢* —(2.65¢—11)¢ > —(6.1009e—12)¢** +(8.5626¢ —13)¢ >

it,(£) =—4.3053¢ —2.1527¢% +27.7897¢° +14.0743¢* —52.3873¢° —27.3695£° + 45.644¢7

+25.12240% —22.3942¢° —13.3291¢1° + 6.8763¢ 1! +4.5847¢12 —1.3985¢"3 —1.1007¢M

+0.1912¢" +0.1942¢" - 0.0165¢"7 —0.0261¢ " + (5.4205¢ — 004)¢ " +0.0028¢%°

+(8.0197e—5)¢* —(2.3348e —4) 2 — (1.647e—5)¢ 5 +(1.6094e — 5)¢** +(1.7345¢ - 6)¢ >
i1,(£) = 6.1827¢ +3.0913¢ % —90.2567¢° — 45386 +390.7135¢° +199.1432£° —795.6744¢
—414.4956£8 +932.9524¢° +501.2956£1° —705.7909¢ 1 —395.2524,12 +370.4023¢ "
+218.849. —141.6664¢"° —89.6365¢'° +40.8676¢ 17 +28.221¢1% —9.1008,"
—7.03420% +1.584641 +1.4209¢ %% —0.2157¢% —0.237¢% +0.0224¢ %

Exact solution:
it; () = 0.769¢*¢ sin (7¢)
i1, (£) = —0.6852¢" sin (27)
i3(¢) = 0.6583¢" sin (37¢)
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