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Abstract: This paper describes an extremely fast polynomial time algorithm, the NOVCA （Near Optimal Vertex Cover Algorithm）  

that produces an optimal or near optimal vertex cover for any known undirected graph G (V, E). NOVCA is based on the idea of (1) 
including the vertex having maximum degree in the vertex cover and (2) rendering the degree of a vertex to zero by including all its 
adjacent vertices. The three versions of algorithm, NOVCA-I, NOVCA-II, and NOVCA-random, have been developed. The results 
identifying bounds on the size of the minimum vertex cover as well as polynomial complexity of algorithm are given with 
experimental verification. Future research efforts will be directed at tuning the algorithm and providing proof for better 
approximation ratio with NOVCA compared to any available vertex cover algorithms. 
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1. Introduction 

The VC （vertex cover） of a graph G(V, E) with 

vertex set V and edge set E is a subset of vertices C of 

V (C  V) such that every edge of G has at least one 

endpoint in C. In 1972, Richard [1] showed that 

identification of minimal VC in a graph is an 

NP-complete problem. 

Various algorithmic approaches have been used to 

tackle NP-complete problems. The vertex cover 

problem has been actively studied because of its 

important research and application implications. 

Polynomial-time approximation and heuristic 

algorithms for VC have been developed but none of 

them guarantee optimality. By using the definition of 

approximation ratio, VC has an approximation ratio of 

ρ (n) for any input of size n. The solution C produced 

by approximation algorithm is within the factor of ρ(n) 

of the solution c* of an optimal algorithm， i.e., C*/C 

≤ ρ (n). Also, the approximation algorithm has 

approximation ratio of 2 – ε, where 0 < ε < 1. A 
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2-approximation [2] algorithm has been trivially 

obtained and similar approximation algorithms have 

been developed [3, 4] with an approximation of (2 – 

(ln (ln n)/2ln n)), where n is the number of vertices. 

Halperin [5] achieved an approximation factor of (2 – 

(1 – o (1))(2ln (ln Δ)/ ln Δ)) with maximum degree at 

most Δ. Karakostas [6] attained an approximation 

factor of (2 – θ(1/(log n)1/2))), the best approximation 

yet, by using the semidefinite programming relaxation 

of VC. EA (evolutionary algorithms) that are 

randomized search heuristics have also been used for 

solving combinatorial optimization problems 

including VC [7, 8]. 

Vertex cover problems have been solved in O 

(1.2738k + kn) time [9] by using a bounded search 

technique where a function of a parameter restricts the 

search space. Abu-Khazm et al. [10] have identified 

crown structure to reduce the size of both n and k. It 

has been known that when relevant parameters are 

fixed, NP-complete problems can be solved in 

polynomial time. In both Ref. [10] and Ref. [11], n is 

the input size and k is the positive integer parameter. 

Though not guaranteed to find a minimum vertex 

D 
DAVID  PUBLISHING 



A Heuristic Approach to Fast NOVCA (near optimal vertex cover algorithm).  

 

84

cover, an approximation of 3/2 for almost every single 

graph was obtained in Ref. [11]. According to Ref. 

[12], it is NP-hard to get ε < 1.3606. 

The paper is organized as follows: the NOVCA 

algorithm is described in Section 2; Section 3 provides 

experimental results; Section 4 is the conclusion. 

2. Near Optimal Vertex Cover Algorithm  

NOVCA is motivated by the fact that vertex cover 

candidates are those that are adjacent to minimum 

degree vertex so that its degree will be forcibly 

rendered to zero without choosing it. This fact has 

been reinforced during tie when the vertex with 

neighbors having maximum degrees is preferred over 

other minimum vertices. Without any optimization 

effort, the complexity of NOVCA is O (E (V + log2V)); 

with V = n, the complexity becomes O (n2 (n + log2n)) 

which is polynomial. Network Bench Node Degree 

algorithm [13] has been applied to determine the 

degree of each node. Then, the sum of the degree of 

adjacent nodes for each node is calculated. Both these 

values are included as data structures in a node - 

deg[v]/adj_deg_sum[v] as showed in pseudo-code of 

NOVCA algorithm as follows.  

Input: V is the set of vertices of G, E is the set of 

edges of G, deg[V] is an integer array indexed by V 

for a set of vertices V, sum_adj_deg[V] is an integer 

array indexed by V for a set of vertices V, 

Qsum_adj_deg is the set of vertices having min 

deg[V]. 

Output: VC is the set of vertices comprising a 

vertex cover. 

Functions: Degree(v) is the degree of the vertex v є 

V, Adj(v) gives the set of vertices that are adjacent to v 

є V, GetMinVertex() identifies the next adjacent 

vertices to include in the cover, Heap_MIN(deg) 

returns the value of min. deg[V], 

HEAP_MAX(Qsum_adj_deg) returns the vertex 

having max Qsum_adj_deg 

for each v є V {  

deg[v] = Degree(v) 

} 

for each v є V { 

sum_adj_deg[v] =Σ v’εAdj(v)deg[v’]  

} 

E’ = E 

VC = ф 

while (E’≠ ф){ 

vc = GetMinVertex(deg, sum_adj_deg)  

VC = VC + { Adj(vc) } 

for each v є Adj(Adj(vc)){ //for NOVCA-I 

//for each v є Adj(vc){ //for NOVCA-II  

E' = E – { (adj(vc), v) } 

deg[v] = deg[v] – 1 

} 

V = V – { Adj(vc) } //for NOVCA-I 

//V = V – { vc } //for NOVCA-II 

for each v є V{  

If (Adj(v) == ф) continue 

sum_adj_deg[v] = Σ v’εAdj(v)deg[v’] 

} 

} //end while 

/// Magic Function GetMinVertex() Declarations /// 

Vertex GetMinVertex(deg, sum_adj_deg){ 

Qsum_adj_deg= ф 

vmin_deg = HEAP_MIN(deg) //for NOVCA-I 

//vmax_deg= HEAP_MAX(deg)//for NOVCA-II 

for each v є V{ 

If (deg[v] == vmin_deg) //for NOVCA-I 

//If (deg[v] == vmax_deg) //for NOVCA-II 

Qsum_adj_deg = Qsum_adj_deg + {v} 

} 

returnHeap_MAX(Qsum_adj_deg)//for NOVCA-I 

//return Heap_MIN(Qsum_adj_deg) //for 

NOVCA-II 

} 

Initially, vertex cover set VC is empty. NOVCA-I 

[14] constructs the vertex cover by repeatedly adding, 

at each step, all vertices adjacent to the vertex of 

minimal degree. In the case of a tie, it chooses the one 

having the maximum sum of degrees of its neighbors. 

NOVCA-II [15], on the other hand, builds vertex 
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Table 1  DIMACS and BHOSLIB benchmarks.  

Instances |V| |C*| 

frb59-26-1 1,534 1,475 

frb59-26-2 1,534 1,475 

frb100-40 4,000 3,900 

broc200_1 200 179 

broc800_4 800 774 

C2000.9 2,000 1,922 

c-fat200-5 200 142 

c-fat500-10 500 374 

gen200_p0.9_44 200 156 

hamming10-2 1,024 512 

hamming10-4 1,024 984 

johnson16-2-4 120 112 

johnson32-2-4 496 480 

keller4 171 160 

keller5 776 749 

MANN_a27 378 252 

MANN_a81 3,321 2,221 

p_hat500-1 500 491 

p_hat1500-3 1,500 1,406 

san200_0.7_1 200 170 

san1000 1,000 985 

sanr200_0.7 200 183 

sanr400_0.7 400 379 

graph50-10 50 35 

graph50-10 50 35 

graph100-10 100 70 

graph200-05 200 150 

graph250-05 250 200 

graph500-05 500 290 

 

terms of execution time. We have compared NOVCA 

with COVER [17]. COVER is a stochastic local 

search algorithm for k-vertex cover. It constructs the 

initial candidate solution C greedily. When the several 

vertices satisfy the criterion for inclusion in C, 

COVER selects one of them randomly with uniform 

probabilities. The COVER algorithm terminates when 

either the vertex cover is found or max number of 

steps (MAX_ITERATIONS) has been reached. 

NOVCA-I and NOVCA-II, on the other hand, do not 

have any randomness element and terminate when 

there are no more vertices in V. So, they have only one 

run unlike average execution time calculated using 

random seeds in different runs in COVER. 

NOVCA-random has randomness only in selection of 

two algorithmic approaches. 

Though COVER is found to obtain better vertex 

cover in most of the instances of the benchmarks, 

NOVCA is very simple and it outperforms COVER in 

execution time. In case of the graph instance, 

MANN_a81, where both NOVCA and COVER return 

the same value 2,225, NOVCA is 20 times faster. 

Though NOVCA-I outperforms NOVCA-II in terms 

of approximation ratio in almost all instances except 

keller, p-hat, and sanr, NOVCA-II has better execution 
 

Table 2  Performance comparison between NOVCA-I and 
COVER on DIMACS and BHOSLIB benchmarks |V|: 
number of vertices; |C*|: optimal cover; NOVCA |C|: cover 
returned by NOVCA; COVER |C|avg: cover returned by 
COVER; NOVCA Time (s): execution time for NOVCA; 
COVER Timeavg: average execution time for COVER; no 
data available for the instance frb100-40 in COVER.  

NOVCA-I
|C| 

NOVCA-I
|C|/|C*| 

NOVCA-I 
Time (s) 

COVER 
|C|avg 

COVER 
Timeavg (sec)

1,485 1.007 80.258 1,477 1,8611.3 

1,484 1.006 79.297 1,478 1,8589.5 

3,917 1.004 2013.667 - - 

181 1.011 0.115 179 768.2 

782 1.010 10.832 775 4,051.2 

1,932 1.005 207.060 1,922 21,489.7 

142 1 0.092 142 1,549.1 

374 1 2.117 374 4,401.2 

163 1.045 0.092 156 1,543.6 

512 1 10.297 512 2,412.2 

988 1.004 21.505 986 3,457.6 

112 1 0.076 112 297.9 

480 1 2.273 480 2,351.9 

164 1.025 0.007 160 985.7 

761 1.016 9.125 749 2,364.9 

253 1.004 0.493 252 756.3 

2,225 1.002 773.963 2,225 15,672.1 

492 1.002 2.683 491 1,810.2 

1,414 1.006 74.991 1,406 1,298.9 

183 1.077 0.117 170 713.7 

991 1.006 22.901 989 4,972.8 

185 1.011 0.857 183 788.2 

382 1.008 1.030 380 2112.5 

35 1 0.006 35 124.5 

70 1 0.034 70 205.3 

150 1 0.114 150 854.1 

200 1 0.300 200 988.5 

290 1 1.604 290 22,555.2 

1,485 1.007 80.258 1,477 18,611.3 
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Table 3  Performance comparison between NOVCA-II 
and COVER on DIMACS and BHOSLIB benchmarks |V|: 
number of vertices; |C*|: optimal cover; NOVCA |C|: cover 
returned by NOVCA; COVER |C|avg: cover returned by 
COVER; NOVCA Time (s): execution time for NOVCA; 
COVER Timeavg: average execution time for COVER; no 
data available for the instance frb100-40 in COVER. 

NOVCA-II 
|C| 

NOVCA-II 
|C|/|C*| 

NOVCA-II 
Time (s) 

COVER 
|C|avg 

COVER 
Timeavg (s)

1,494 1.014 34.770 1,477 18,611.3 

1,496 1.014 35.686 1,478 18,589.5 

3,944 1.011 885.860 - - 

182 1.017 1.316 179 768.2 

786 1.016 6.162 775 4,051.2 

1,942 1.010 88.604 1,922 21,489.7 

142 1 1.238 142 1,549.1 

374 1 1.514 374 4,401.2 

170 1.090 1.514 156 1,543.6 

512 1 5.584 512 2,412.2 

992 1.008 10.350 986 3,457.6 

112 1 1.248 112 297.9 

480 1 2.245 480 2,351.9 

162 1.013 1.500 160 985.7 

761 1.016 5.115 749 2,364.9 

261 1.036 1.641 252 756.3 

2,241 1.009 297.236 2,225 15,672.1 

492 1.002 2.595 491 1,810.2 

1,412 1.004 34.535 1,406 1298.9 

185 1.088 1.535 170 713.7 

992 1.007 11.657 989 4,972.8 

184 1.005 1.351 183 788.2 

384 1.013 1.947 380 2,112.5 

35 1 1.667 35 124.5 

70 1 1.552 70 205.3 

150 1 1.523 150 854.1 

200 1 1.653 200 988.5 

290 1 2.366 290 22,555.2 

1,494 1.014 34.770 1,477 18,611.3 
 

time than NOVCA-I. NOVCA-random always returns 

better cover than both NOVCA-I and NOVCA-II. For 

the challenge instances of frb100-40 [16], NOVCA-I 

is off by just 17 vertices (NOVCA returns 3,917 

vertices whereas the optimal vertex cover is 3,900), 

but the execution time is just remarkable, only 

2,013.667 s. The challenge is stated as “Based on 

theoretical analysis and experimental results of 

smaller instances, I conjecture that in the next 20 years 

or more (from 2005), these two benchmarks cannot be  
 

Table 4  Performance of NOVCA-random on DIMACS 
and BHOSLIB benchmarks |V|: number of vertices; |C*|: 
optimal cover; NOVCA |C|: cover returned by NOVCA-I 
and NOVCA-II (one RUN); |C|min: minimum number of 
vertices returned by NOVCA-random out of 1,000 RUNS. 

NOVCA-I 
|C| 

NOVCA-II 
|C| 

NOVCA-random 
|C|avg 

1,485 1,494 1,479 

1,484 1,496 1,479 

3,917 3,944 3,904 

181 182 180 

782 786 780 

1,932 1,942 1,932 

142 142 142 

374 374 374 

163 170 162 

512 512 512 

988 992 984 

112 112 112 

480 480 480 

164 162 162 

761 761 754 

253 261 253 

2,225 2,241 2,221 

492 492 491 

1,414 1,412 1,408 

183 185 183 

991 992 990 

185 184 183 

382 384 380 

35 35 35 

70 70 70 

150 150 150 

200 200 200 

290 290 290 

1,485 1,494 1,479 
 

solved on a PC (or alike) in a reasonable time (e.g., 1 

day) [16].” The graphs for number of vertices returned 

and the execution times, as showed in Figs. 3 and 4 

respectively, portray that NOVCA, though 

comparable to COVER in terms of number of vertices 

returned, is significantly faster than COVER. 

Table 4 compares all the versions of NOVCA 

which are then represented in bar diagrams in Fig. 5 to 

visualize the better performance of NOVCA-random 

compared to the earlier versions, NOVCA-I and 

NOVCA-II, based on the minimum number of 

vertices obtained from 1,000 runs. For the instance 
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frb100-40, the minimum vertex cover returned by 

NOVCA-random (|C|min = 3,904) is considerably 

smaller than the covers returned by NOVCA-I (|C| = 

3,917) and NOVCA-II (|C| = 3,944). We have also 

carried out comparisons of NOVCA against two other 

heuristic MVC (minimum vertex cover) algorithms, 

PLS [18] and EWCC [19], with similar results (not 

explicitly tabulated here).    
 

 
Fig. 3  Number of vertices returned by NOVCA-I, NOVCA-II, and COVER; no results from COVER for the instance 
frb100-40. 
 

 
Fig. 4  Execution time for NOVCA-I, NOVCA-II, and COVER; no results from COVER for the instance frb100-40. 
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Fig. 5  Number of vertices returned by NOVCA-I, NOVCA-II, and NOVCA-random.  
 

4. Conclusions and Future Work 

All the versions of NOVCA algorithms, NOVCA-I, 

NOVCA-II, and NOVCA-random, provide optimal or 

near optimal vertex cover for known benchmark 

graphs. The experimental results depict that NOVCA 

is extremely fast compared to other available 

state-of-the-art MVC algorithms including COVER, 

PLS, and EWCC. 

Future research will be focused in two areas: 

deriving a mathematical statement regarding the 

closeness of the approximation ratio to 1, and 

investigating approaches to parallelizing the NOVCA 

algorithm. 
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