
Computer Technology and Application 5 (2014) 83-90

A Heuristic Approach to Fast NOVCA (Near Optimal

Vertex Cover Algorithm)

Sanjaya Gajurel and Roger Bielefeld

ITS, Advanced Research ComputingCWRU, Cleveland 44106, USA

Abstract: This paper describes an extremely fast polynomial time algorithm, the NOVCA （Near Optimal Vertex Cover Algorithm）

that produces an optimal or near optimal vertex cover for any known undirected graph G (V, E). NOVCA is based on the idea of (1)
including the vertex having maximum degree in the vertex cover and (2) rendering the degree of a vertex to zero by including all its
adjacent vertices. The three versions of algorithm, NOVCA-I, NOVCA-II, and NOVCA-random, have been developed. The results
identifying bounds on the size of the minimum vertex cover as well as polynomial complexity of algorithm are given with
experimental verification. Future research efforts will be directed at tuning the algorithm and providing proof for better
approximation ratio with NOVCA compared to any available vertex cover algorithms.

Key words: Vertex cover problem, combinatorial problem, NP-complete problem, approximation algorithm, optimization,
algorithms.

1. Introduction

The VC （vertex cover） of a graph G(V, E) with

vertex set V and edge set E is a subset of vertices C of

V (C V) such that every edge of G has at least one

endpoint in C. In 1972, Richard [1] showed that

identification of minimal VC in a graph is an

NP-complete problem.

Various algorithmic approaches have been used to

tackle NP-complete problems. The vertex cover

problem has been actively studied because of its

important research and application implications.

Polynomial-time approximation and heuristic

algorithms for VC have been developed but none of

them guarantee optimality. By using the definition of

approximation ratio, VC has an approximation ratio of

ρ (n) for any input of size n. The solution C produced

by approximation algorithm is within the factor of ρ(n)

of the solution c* of an optimal algorithm， i.e., C*/C

≤ ρ (n). Also, the approximation algorithm has

approximation ratio of 2 – ε, where 0 < ε < 1. A

Corresponding author: Sanjaya Gajurel, Ph.D., research

fields: HPC, MANET, swarm algorithm, optimization. E-mail:
sxg125@case.edu.

2-approximation [2] algorithm has been trivially

obtained and similar approximation algorithms have

been developed [3, 4] with an approximation of (2 –

(ln (ln n)/2ln n)), where n is the number of vertices.

Halperin [5] achieved an approximation factor of (2 –

(1 – o (1))(2ln (ln Δ)/ ln Δ)) with maximum degree at

most Δ. Karakostas [6] attained an approximation

factor of (2 – θ(1/(log n)1/2))), the best approximation

yet, by using the semidefinite programming relaxation

of VC. EA (evolutionary algorithms) that are

randomized search heuristics have also been used for

solving combinatorial optimization problems

including VC [7, 8].

Vertex cover problems have been solved in O

(1.2738k + kn) time [9] by using a bounded search

technique where a function of a parameter restricts the

search space. Abu-Khazm et al. [10] have identified

crown structure to reduce the size of both n and k. It

has been known that when relevant parameters are

fixed, NP-complete problems can be solved in

polynomial time. In both Ref. [10] and Ref. [11], n is

the input size and k is the positive integer parameter.

Though not guaranteed to find a minimum vertex

D
DAVID PUBLISHING

A Heuristic Approach to Fast NOVCA (near optimal vertex cover algorithm).

84

cover, an approximation of 3/2 for almost every single

graph was obtained in Ref. [11]. According to Ref.

[12], it is NP-hard to get ε < 1.3606.

The paper is organized as follows: the NOVCA

algorithm is described in Section 2; Section 3 provides

experimental results; Section 4 is the conclusion.

2. Near Optimal Vertex Cover Algorithm

NOVCA is motivated by the fact that vertex cover

candidates are those that are adjacent to minimum

degree vertex so that its degree will be forcibly

rendered to zero without choosing it. This fact has

been reinforced during tie when the vertex with

neighbors having maximum degrees is preferred over

other minimum vertices. Without any optimization

effort, the complexity of NOVCA is O (E (V + log2V));

with V = n, the complexity becomes O (n2 (n + log2n))

which is polynomial. Network Bench Node Degree

algorithm [13] has been applied to determine the

degree of each node. Then, the sum of the degree of

adjacent nodes for each node is calculated. Both these

values are included as data structures in a node -

deg[v]/adj_deg_sum[v] as showed in pseudo-code of

NOVCA algorithm as follows.

Input: V is the set of vertices of G, E is the set of

edges of G, deg[V] is an integer array indexed by V

for a set of vertices V, sum_adj_deg[V] is an integer

array indexed by V for a set of vertices V,

Qsum_adj_deg is the set of vertices having min

deg[V].

Output: VC is the set of vertices comprising a

vertex cover.

Functions: Degree(v) is the degree of the vertex v є

V, Adj(v) gives the set of vertices that are adjacent to v

є V, GetMinVertex() identifies the next adjacent

vertices to include in the cover, Heap_MIN(deg)

returns the value of min. deg[V],

HEAP_MAX(Qsum_adj_deg) returns the vertex

having max Qsum_adj_deg

for each v є V {

deg[v] = Degree(v)

}

for each v є V {

sum_adj_deg[v] =Σ v’εAdj(v)deg[v’]

}

E’ = E

VC = ф

while (E’≠ ф){

vc = GetMinVertex(deg, sum_adj_deg)

VC = VC + { Adj(vc) }

for each v є Adj(Adj(vc)){ //for NOVCA-I

//for each v є Adj(vc){ //for NOVCA-II

E' = E – { (adj(vc), v) }

deg[v] = deg[v] – 1

}

V = V – { Adj(vc) } //for NOVCA-I

//V = V – { vc } //for NOVCA-II

for each v є V{

If (Adj(v) == ф) continue

sum_adj_deg[v] = Σ v’εAdj(v)deg[v’]

}

} //end while

/// Magic Function GetMinVertex() Declarations ///

Vertex GetMinVertex(deg, sum_adj_deg){

Qsum_adj_deg= ф

vmin_deg = HEAP_MIN(deg) //for NOVCA-I

//vmax_deg= HEAP_MAX(deg)//for NOVCA-II

for each v є V{

If (deg[v] == vmin_deg) //for NOVCA-I

//If (deg[v] == vmax_deg) //for NOVCA-II

Qsum_adj_deg = Qsum_adj_deg + {v}

}

returnHeap_MAX(Qsum_adj_deg)//for NOVCA-I

//return Heap_MIN(Qsum_adj_deg) //for

NOVCA-II

}

Initially, vertex cover set VC is empty. NOVCA-I

[14] constructs the vertex cover by repeatedly adding,

at each step, all vertices adjacent to the vertex of

minimal degree. In the case of a tie, it chooses the one

having the maximum sum of degrees of its neighbors.

NOVCA-II [15], on the other hand, builds vertex

cover by in

degree and i

having the m

The magic

selecting the

The implem

degree vertic

The versi

and NOVC

NOVCA-I

probability o

RUN as NO

most of the i

3. Experim

Experime

have been

performance

nodes with

Red Hat En

compiler. W

graph to de

two reasons

 Optima

the number o

 require

each vertex

The she

complete gr

is then fed to

with g++ c

particular gr

#PBS -l w

#PBS -l n

#PBS -N g

#PBS -j o

cd $PBS_

/usr/local/

cd $TMPD

sh graph_

cpgen_gra

A Heu

ncluding vert

in the case o

minimum sum

function Ge

e best candid

mentation forc

ces to zero w

ion, NOVCA

CA-II based

and NOVC

of 85% and 1

OVCA has sh

instances.

ment Work

ents to corrob

conducted

e computing

3.0 GHz In

nterprise Linu

We have selec

etermine time

:

al vertex cove

of vertices;

s exhaustive

to all other ve

ll script “

raph of size n

o executable

compiler) to

raph.

walltime=01:0

odes=1:ppn=

graph1000

e

_O_WORKDI

l/bin/pbsdcp -

DIR

_gen.sh 1000

aph graph10

uristic Approa

tices in desc

f a draw; it s

m of degrees

etMinVertex

date vertex in

ibly renders t

without choosi

A-random, se

on the rand

CA-II are ch

15% respecti

howed better

ks and Resu

borate the th

on the CW

g) resource

ntel Xeon pro

ux 4 and usi

cted complet

e complexity

er is known,

search; there

ertices.

“graph_gen.sh

n entered as i

“vc” (C++ pr

o get vertex

00:00

=1

IR

-s vc graph_g

00

ach to Fast N

cending orde

selects the ve

of its neighb

breaks a tie

n a vertex co

the degree of

ing them.

elects NOVC

dom value,

hosen with

ively during e

r performanc

ults

heoretical res

WRU HPC (h

using com

ocessors runn

ing the gcc 3

e graph as a

y of NOVCA

n – 1, where

e is an edge f

h” generate

input. This gr

rogram comp

 cover for

gen.sh $TMPD

OVCA (near

er of

ertex

bors.

e in

over.

f low

CA-I

i.e.,

the

each

ce in

sults

high

mpute

ning

3.4.6

test

A for

n is

from

s a

raph

piled

that

DIR

ti

/u

c

W

diff

poly

MA

Fig

N

1.36

and

sho

and

Not

inst

perf

algo

opti

Fig.
of co

Fig.

optimal verte

ime ./vc grap

/usr/local/bin/

cd $PBS_O_W

We have re

ferent sizes

ynomial com

ATLAB’s po

s. 1and 2.

NOVCA has

606 for all av

d Table 3 [1

wed here. Fo

d random gra

ticeably, the

tance is rem

form very

orithms. For

imal solution

. 1 Computat
omplete graph

. 2 MATLAB

ex cover algo

ph1000

/pbsdcp -g '*

WORKDIR

ecorded the

of the gr

mplexity of NO

olyfit(x,y,n) c

s approxima

vailable bench

16]; all insta

or some insta

aphs NOVCA

execution ti

arkable. NOV

well compa

the instance

ns, it outperf

tional time of
hs.

B plot using po

orithm).

' $PBS_O_W

computatio

raphs to el

OVCA algor

command as

ation ratio s

h mark (Tabl

ances, howe

ances like c-

A provides op

ime of NOV

VCA has be

ared to oth

es where it p

forms other a

f NOVCA for

lyfit with n = 2

85

WORKDIR

on time for

lucidate the

ithm through

s showed in

smaller than

le 1, Table 2)

ver, are not

fat, Johnson,

ptimal cover.

VCA for any

een found to

her available

provides near

algorithms in

different sizes

2.

5

r

e

h

n

n

)

t

,

.

y

o

e

r

s

A Heuristic Approach to Fast NOVCA (near optimal vertex cover algorithm).

86

Table 1 DIMACS and BHOSLIB benchmarks.

Instances |V| |C*|

frb59-26-1 1,534 1,475

frb59-26-2 1,534 1,475

frb100-40 4,000 3,900

broc200_1 200 179

broc800_4 800 774

C2000.9 2,000 1,922

c-fat200-5 200 142

c-fat500-10 500 374

gen200_p0.9_44 200 156

hamming10-2 1,024 512

hamming10-4 1,024 984

johnson16-2-4 120 112

johnson32-2-4 496 480

keller4 171 160

keller5 776 749

MANN_a27 378 252

MANN_a81 3,321 2,221

p_hat500-1 500 491

p_hat1500-3 1,500 1,406

san200_0.7_1 200 170

san1000 1,000 985

sanr200_0.7 200 183

sanr400_0.7 400 379

graph50-10 50 35

graph50-10 50 35

graph100-10 100 70

graph200-05 200 150

graph250-05 250 200

graph500-05 500 290

terms of execution time. We have compared NOVCA

with COVER [17]. COVER is a stochastic local

search algorithm for k-vertex cover. It constructs the

initial candidate solution C greedily. When the several

vertices satisfy the criterion for inclusion in C,

COVER selects one of them randomly with uniform

probabilities. The COVER algorithm terminates when

either the vertex cover is found or max number of

steps (MAX_ITERATIONS) has been reached.

NOVCA-I and NOVCA-II, on the other hand, do not

have any randomness element and terminate when

there are no more vertices in V. So, they have only one

run unlike average execution time calculated using

random seeds in different runs in COVER.

NOVCA-random has randomness only in selection of

two algorithmic approaches.

Though COVER is found to obtain better vertex

cover in most of the instances of the benchmarks,

NOVCA is very simple and it outperforms COVER in

execution time. In case of the graph instance,

MANN_a81, where both NOVCA and COVER return

the same value 2,225, NOVCA is 20 times faster.

Though NOVCA-I outperforms NOVCA-II in terms

of approximation ratio in almost all instances except

keller, p-hat, and sanr, NOVCA-II has better execution

Table 2 Performance comparison between NOVCA-I and
COVER on DIMACS and BHOSLIB benchmarks |V|:
number of vertices; |C*|: optimal cover; NOVCA |C|: cover
returned by NOVCA; COVER |C|avg: cover returned by
COVER; NOVCA Time (s): execution time for NOVCA;
COVER Timeavg: average execution time for COVER; no
data available for the instance frb100-40 in COVER.

NOVCA-I
|C|

NOVCA-I
|C|/|C*|

NOVCA-I
Time (s)

COVER
|C|avg

COVER
Timeavg (sec)

1,485 1.007 80.258 1,477 1,8611.3

1,484 1.006 79.297 1,478 1,8589.5

3,917 1.004 2013.667 - -

181 1.011 0.115 179 768.2

782 1.010 10.832 775 4,051.2

1,932 1.005 207.060 1,922 21,489.7

142 1 0.092 142 1,549.1

374 1 2.117 374 4,401.2

163 1.045 0.092 156 1,543.6

512 1 10.297 512 2,412.2

988 1.004 21.505 986 3,457.6

112 1 0.076 112 297.9

480 1 2.273 480 2,351.9

164 1.025 0.007 160 985.7

761 1.016 9.125 749 2,364.9

253 1.004 0.493 252 756.3

2,225 1.002 773.963 2,225 15,672.1

492 1.002 2.683 491 1,810.2

1,414 1.006 74.991 1,406 1,298.9

183 1.077 0.117 170 713.7

991 1.006 22.901 989 4,972.8

185 1.011 0.857 183 788.2

382 1.008 1.030 380 2112.5

35 1 0.006 35 124.5

70 1 0.034 70 205.3

150 1 0.114 150 854.1

200 1 0.300 200 988.5

290 1 1.604 290 22,555.2

1,485 1.007 80.258 1,477 18,611.3

A Heuristic Approach to Fast NOVCA (near optimal vertex cover algorithm).

87

Table 3 Performance comparison between NOVCA-II
and COVER on DIMACS and BHOSLIB benchmarks |V|:
number of vertices; |C*|: optimal cover; NOVCA |C|: cover
returned by NOVCA; COVER |C|avg: cover returned by
COVER; NOVCA Time (s): execution time for NOVCA;
COVER Timeavg: average execution time for COVER; no
data available for the instance frb100-40 in COVER.

NOVCA-II
|C|

NOVCA-II
|C|/|C*|

NOVCA-II
Time (s)

COVER
|C|avg

COVER
Timeavg (s)

1,494 1.014 34.770 1,477 18,611.3

1,496 1.014 35.686 1,478 18,589.5

3,944 1.011 885.860 - -

182 1.017 1.316 179 768.2

786 1.016 6.162 775 4,051.2

1,942 1.010 88.604 1,922 21,489.7

142 1 1.238 142 1,549.1

374 1 1.514 374 4,401.2

170 1.090 1.514 156 1,543.6

512 1 5.584 512 2,412.2

992 1.008 10.350 986 3,457.6

112 1 1.248 112 297.9

480 1 2.245 480 2,351.9

162 1.013 1.500 160 985.7

761 1.016 5.115 749 2,364.9

261 1.036 1.641 252 756.3

2,241 1.009 297.236 2,225 15,672.1

492 1.002 2.595 491 1,810.2

1,412 1.004 34.535 1,406 1298.9

185 1.088 1.535 170 713.7

992 1.007 11.657 989 4,972.8

184 1.005 1.351 183 788.2

384 1.013 1.947 380 2,112.5

35 1 1.667 35 124.5

70 1 1.552 70 205.3

150 1 1.523 150 854.1

200 1 1.653 200 988.5

290 1 2.366 290 22,555.2

1,494 1.014 34.770 1,477 18,611.3

time than NOVCA-I. NOVCA-random always returns

better cover than both NOVCA-I and NOVCA-II. For

the challenge instances of frb100-40 [16], NOVCA-I

is off by just 17 vertices (NOVCA returns 3,917

vertices whereas the optimal vertex cover is 3,900),

but the execution time is just remarkable, only

2,013.667 s. The challenge is stated as “Based on

theoretical analysis and experimental results of

smaller instances, I conjecture that in the next 20 years

or more (from 2005), these two benchmarks cannot be

Table 4 Performance of NOVCA-random on DIMACS
and BHOSLIB benchmarks |V|: number of vertices; |C*|:
optimal cover; NOVCA |C|: cover returned by NOVCA-I
and NOVCA-II (one RUN); |C|min: minimum number of
vertices returned by NOVCA-random out of 1,000 RUNS.

NOVCA-I
|C|

NOVCA-II
|C|

NOVCA-random
|C|avg

1,485 1,494 1,479

1,484 1,496 1,479

3,917 3,944 3,904

181 182 180

782 786 780

1,932 1,942 1,932

142 142 142

374 374 374

163 170 162

512 512 512

988 992 984

112 112 112

480 480 480

164 162 162

761 761 754

253 261 253

2,225 2,241 2,221

492 492 491

1,414 1,412 1,408

183 185 183

991 992 990

185 184 183

382 384 380

35 35 35

70 70 70

150 150 150

200 200 200

290 290 290

1,485 1,494 1,479

solved on a PC (or alike) in a reasonable time (e.g., 1

day) [16].” The graphs for number of vertices returned

and the execution times, as showed in Figs. 3 and 4

respectively, portray that NOVCA, though

comparable to COVER in terms of number of vertices

returned, is significantly faster than COVER.

Table 4 compares all the versions of NOVCA

which are then represented in bar diagrams in Fig. 5 to

visualize the better performance of NOVCA-random

compared to the earlier versions, NOVCA-I and

NOVCA-II, based on the minimum number of

vertices obtained from 1,000 runs. For the instance

A Heuristic Approach to Fast NOVCA (near optimal vertex cover algorithm).

88

frb100-40, the minimum vertex cover returned by

NOVCA-random (|C|min = 3,904) is considerably

smaller than the covers returned by NOVCA-I (|C| =

3,917) and NOVCA-II (|C| = 3,944). We have also

carried out comparisons of NOVCA against two other

heuristic MVC (minimum vertex cover) algorithms,

PLS [18] and EWCC [19], with similar results (not

explicitly tabulated here).

Fig. 3 Number of vertices returned by NOVCA-I, NOVCA-II, and COVER; no results from COVER for the instance
frb100-40.

Fig. 4 Execution time for NOVCA-I, NOVCA-II, and COVER; no results from COVER for the instance frb100-40.

A Heuristic Approach to Fast NOVCA (near optimal vertex cover algorithm).

89

Fig. 5 Number of vertices returned by NOVCA-I, NOVCA-II, and NOVCA-random.

4. Conclusions and Future Work

All the versions of NOVCA algorithms, NOVCA-I,

NOVCA-II, and NOVCA-random, provide optimal or

near optimal vertex cover for known benchmark

graphs. The experimental results depict that NOVCA

is extremely fast compared to other available

state-of-the-art MVC algorithms including COVER,

PLS, and EWCC.

Future research will be focused in two areas:

deriving a mathematical statement regarding the

closeness of the approximation ratio to 1, and

investigating approaches to parallelizing the NOVCA

algorithm.

Acknowledgments

This work made use of the High Performance

Computing Resource in the Core Facility for

Advanced Research Computing at Case Western

Reserve University.

References

[1] Karp, R., 1972. “Reducibility among Combinatorial
Problems.” In Proceedings of a Symposium on the
Complexity of Computer Computations, 85-103.

[2] Cormen, T., Leiserson, C., and Rivest, R. 2001.
Introduction to Algorithms. United States :The MIT

Press.
[3] Bar-Yehuda, R., and Even, S. 1985. “A Local-Ratio

Theorem for Approximating the Weighted Vertex Cover
Problem.” Annals of Discrete Mathematics 25: 27-45.

[4] Monien, B., and Speckenmeyer, E. 1985. “Ramsey
Numbers and an Approximation Algorithm for the Vertex
Cover Problem.” ActaInformatica 22: 115-23.

[5] Halperin, E. 2000. 2002. “Improved Approximation
Algorithms for the Vertex Cover Problem in Graphs and
Hypergraphs.” SIAM J. on Computing 31 (5): 1608-23.

[6] Karakostas, G. 2005. “A Better Approximation Ratio for
the Vertex Cover Problem.” In Proceedings of the ICALP,
1043-50.

[7] Rudolph, G. 1998. “Finite Markov Chain Results in
Evolutionary Computation.” A tour d'horizon,
Fundamenta Informaticae 35 (1-4): 67-89.

[8] Oliveto, P., He, J., and Yao, X. 2007. “Evolutionary
Algorithms and the Vertex Cover Problem.” In
Proceedings of the IEEE Congress.

[9] Chen, J., Kanj, I., and Xia, G. 2005. Simplicity Is Beauty:
Improved Upper Bounds for Vertex Cover. Technical
report, Texas A&M University.

[10] Abu-Khazm, F., Fellows, M., Langston, M., and Suters,
W. 2007. Crown Structures for Vertex Cover
Kernelization. Vol. 41. Egypt:Theory Comput. Systems,
411-30.

[11] Asgeirsson, E., and Stein, C. 2007. “Vertex Cover
Approximation on Random Graphs.” LNCS 4525: 285-96.

[12] Dinur, I., and Safra, S. 2001. The importance of being
biased. Technical Report TR01-104, ECCC.

[13] Network Bench Node Degree, 2006.
“http://nwb.slis.indiana.edu/”

A Heuristic Approach to Fast NOVCA (near optimal vertex cover algorithm).

90

[14] Gajurel, S., and Bielefeld, R. 2012. “A Simple NOVCA:
Near Optimal Vertex Cover Algorithm.” Procedia
Computer Science 9: 747-53.

[15] Gajurel, S., and Bielefeld, R. 2012. “A Fast near Optimal
Vertex Cover Algorithm (NOVCA).” IJEA 3 (1): 9-18.

[16] Xu, K. 2012. “Vertex Cover Benchmark Instances
(DIMACS & BHOSLIB).” IJEA (international journal of
Eexperimental algorithms) 3 (1): 1-18. Accessed October
25, 2012.
http://www.cs.hbg.psu.edu/benchmarks/vertex_cover.htm
l.

[17] Richter, S., Helmert, M., and Gretton, C. 2007. “A
Stochastic Local Search Approach to Vertex Cover.” In
Proceedings of the 30th German Conference of Artificial
Intelligence (KI), 412-26.

[18] Cai, S., Su, K., and Sattar, A. 2011. “Local Search with
Edge Weighting and Configuration Checking Heuristics
for Minimum Vertex Cover.” Artifical Intelligence 175:
1672-96.

[19] Pullan, W. 2006. “Phased Local Search for the Maximum
Clique Problem.” Journal of Combinatorial Optimization
12: 303-23.

