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Abstract: This study focuses on estimating O-D (origin-destination) trip demand from link traffic flows. Equality relationship among 
link traffic flow, path flow, and O-D trip matrices are used to establish a linear equation system. Solution characteristics are analyzed 
based on the relationship between the rank of the link/path incidence matrix and column variables. And under the solution framework 
of conditional inverse matrices, a column exchange method and a path flow proportion method have been developed. Network testing 
results verify that the proposed methods yield good results. 
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1. Introduction 

During the planning process of transportation, O-D 

(origin-destination) trip matrices are essential data. 

Their values as input enable route assignment 

procedures and promote understanding of the route 

selection behavior of road users in a road network. 

Further analysis and prediction regarding the traffic 

supply and demand on various road sections can be 

performed then, followed by planning and 

management tasks. Traditionally, trip O-D tables in a 

given vehicular network are obtained via highway 

users’ surveys such as home survey, roadside 

interview, or license plate recording, which is very 

costly and may confront with problems of sampling 

bias or data recording errors. The increasing use and 

emplacement of VDs (vehicle detectors) in recent 

years enables direct observation of traffic flow on 

various road sections in the network. With proper 
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methods, the traffic flow on different road sections 

will be able to reflect O-D transportation demands, 

enabling more active management of urban traffic 

planning. For this reason, the estimation of O-D trip 

demand from traffic flow has become a crucial 

research topic in recent years. 

In general, the traffic flow observed in specific road 

sections equals the total path flow passing through the 

road section between all O-D pairs. As a result, O-D 

trip demand, path flow, and link traffic flow can be 

formed as a system of linear equations. With a good 

path generation tool for O-D pairs as well as matrix 

and inverse matrix computation, an appropriate 

analytical method can be developed to estimate trip 

demand using link traffic flow. Unfortunately, the 

inversed matrix does not exist if the target matrix is 

singular or non-squared. In this study, the O-D matrix 

estimation problem is formulated as a system of linear 

equations and solved by using the CIM (conditional 

inverse matrix) theory and its extended methods, 

column exchange method and path flow proportion 

method. The adopted matrix inverse method provides 

a generalized matrix inverse procedure even if the 
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target matrix is either singular or non-squared. 

Compared to the traditional network O-D demand 

estimation methods such as least squares method, 

bi-level programming method and PFE (path flow 

estimation method), the developed model is able to 

solve the network science problem under different 

flow distributions, whether the link flow is collected 

under a UE (user equilibrium) condition or not.  

The remainder of this paper is organized as follows. 

In Section 2, we conduct a comprehensive 

investigation of related literature. Section 3 describes 

the models for the network O-D demand estimation 

problem and solution algorithms. Numerical analysis 

including experimental setup, solution methods and 

results are presented in Section 4. Finally, in Section 5, 

findings and conclusions of this research are 

summarized including suggestions for future research.  

2. Literature Review and Problem Analysis 

Since Robillard’s [1] introduction of traffic flow 

data in the estimation of O-D trip matrices, the topic 

has become increasingly important in the field. Later, 

Cascetta [2] proposed a GLS (generalized least 

squares) method that minimized the squared error of 

O-D trips and link traffic flow and incorporated 

weight concepts. Based on this approach, Cascetta and 

Nguyen [3], Bell [4] and Doblas and Benitez [5] 

developed estimation models for transportation 

demand based on both GLS and link traffic flow. 

Due to the fact that GLS-based estimation models 

for transportation demand do not consider the 

constraints of user equilibrium route choice behaviors, 

Yang [6], referred to the constrained GLS model 

presented by Bell [4], established a bi-level 

programming model that included these constraints. 

Maher et al. [7] and Lundgren and Peterson [8] 

worked on the development of similar models.  

Sherali et al. [9] proposed the linear PFE model, 

which also estimates O-D trip matrices from available 

traffic flow data under the constraints of user 

equilibrium. However, due to incomplete data, the 

estimated traffic volume may be inconsistent with the 

observed link traffic flow; within an acceptable range 

of error, the model permits violations to the 

equilibrium conditions. To solve this problem, they 

proposed a column generation method. Subsequently, 

Bell and Shield [10], Bell et al. [11] and Chen et al. 

[12] all adopted the PFE to estimate transportation 

demand. 

It can be noticed that previous approaches to 

estimate O-D transportation demand with link traffic 

flow can be divided into those that include user 

equilibrium constraints (PFE and bi-level 

programming models) and those that do not 

(GLS-based methods). With regard to the former 

group, if the equilibrium assignment of the inversed 

O-D transportation demand were to be performed 

anew, the flow patterns in the road network would 

have to conform to the user equilibrium results. 

However, the traffic flow in a network may not satisfy 

the condition of user equilibrium; if link traffic flow 

that does not conform to the user equilibrium principle 

is used to estimate O-D trip demand in bi-level 

programming models and the PFE, the resulting trip 

demand will display larger error. As for using GLS 

and link traffic flow to estimate O-D trip demand, 

additional information such as historical records on 

O-D trip demand and link traffic flow data obtained 

beforehand are crucial factors influencing the 

accuracy of the estimation. Nevertheless, this also 

implies that in the event of major changes in the O-D 

pairs of the study region or failure to obtain historical 

records on O-D trip demand, wider discrepancies may 

be shown between the O-D trip demand results 

estimated using GLS and the actual demand. 

Therefore, the estimated O-D trip demand is also 

worth discussing. Furthermore, even if the obtained 

historical records on O-D trip demand were extremely 

accurate, errors may still occur between the O-D trip 

matrices estimated using the model and the actual 

solution. 

General forms of the linear equations used in 
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previous approaches are expressed in Eqs. (1) and (2).  

h1q                (1) 

hx 2                (2) 

where, q denotes the O-D trip demand matrix; Λ1 is 

the O-D trip demand/path incidence matrix; h is the 

path flow vector; x represents the link traffic flow 

vector; Λ2 signifies the link/path incidence matrix. 

Bell and Shield [10], Bell et al. [11] and Chen et al. 

[12] all used forms of these equations. Gentili and 

Mirchandani [13] and Castillo et al. [14] further 

incorporated path indicators and partial path flows 

into the equations above to solve transportation 

demand, albeit with an extremely complex solution 

method. 

In fact, Eqs. (1) and (2) can be used to derive O-D 

trip demand from link traffic flow through the inverse 

matrix computations given within Eqs. (3) and (4). 

xh 1
2
                (3) 

x1
21
 q .             (4) 

However, it is not guaranteed that link/path 

incidence matrix Λ2 will be a square matrix. In the 

event of a non-square matrix, the inverse does not 

exist, and in this case this method is inappropriate. 

Graybill [15] showed that conditional inverse matrices 

can be used to process inverse matrix problems with 

non-square matrices. According to the theory of 

conditional inverse matrices, Eqs. (3) and (4) can be 

inversed by Eqs. (1) and (2). That is, regardless of 

whether or not the link traffic flow conformed to user 

equilibrium, through the theory of conditional inverse 

matrices, the corresponding O-D trip matrices all 

should be obtained from link flows. It is a potential 

method to obtain the O-D trip matrices. In this study, 

we will explore the O-D trip matrices estimation 

problems, based on conditional inverse matrices theory. 

3. Conditional Inverse Matrix and Solution 
Algorithm 

3.1 Conditional Inverse Matrix 

Graybill [15] showed that conditional inverse 

matrices can be used to process inverse matrix 

problems with non-square matrices. During the 

computation of conditional inverse matrices, the full 

column rank condition does not have to be satisfied. 

As a result, unnecessary link traffic flow data are not 

eliminated due to rank annihilation when calculating 

the inverse of the link/path incidence matrix Λ2. For 

relevant definitions and theorems for conditional 

inverse matrices, we refer to Graybill [15]. 

Definition 1: Let A be an m × n matrix; Ac is 

defined as the conditional inverse matrix of A if and 

only if Ac satisfies AAA C  . 

Definition 2: Let H be an n × n matrix and be 

defined as of (upper) Hermite form if and only if it 

satisfies the four following conditions: 

(1) H is an upper triangular matrix; 

(2) The main diagonal elements are either 0 or 1; 

(3) If a diagonal element is 0, then the elements of 

the entire row are 0; 

(4) If a diagonal element is 1, then all of the 

non-diagonal elements in the column in which the 1 

appears are 0. 

 Theorem 1: The generalized inverse matrix of 

matrix A equals the conditional inverse matrix of 

matrix A; however, the conditional inverse matrix of 

matrix A does not necessarily equal the generalized 

inverse matrix of matrix A.  

Note: The generalized inverse matrix Ag of matrix 

A should satisfy the four conditions below, we shall 

call Ag a generalized inverse of A, but the conditional 

inverse must only the Definition 1. 

(1) gAA  is symmetric; 

(2) AAg
 is symmetric; 

(3) AAAA g
; 

(4) ggg AAAA  . 

 Theorem 2: A conditional inverse matrix exists 

for each matrix, but it is not necessarily the only 

conditional inverse matrix. 

 Theorem 3: If A is an m × n matrix, then the 

conditional inverse matrix is an n × m matrix. 
 Theorem 4: If H is in Hermite form, then 

2HH  . 
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 Theorem 5: For all n × n matrices A, a 

nonsingular matrix B exists. Furthermore, HBA  , 

where H satisfies the Hermite form. 

 Theorem 6: Let A be an n × n matrix, B is a 

nonsingular matrix, and HBA  , where H satisfies 

the Hermite form. Then B is the conditional inverse 

matrix of A. 

 Theorem 7: For the conditional inverse matrix Ac 

of any given m × n matrix, matrices AA C  and 
CAA  are idempotent. 

 Theorem 8: Let A be any given m × n matrix. 

Then TCTC AAAA ）（ , where CT
）（ AA  is the 

conditional inverse matrix of any AAT . 

 Theorem 9: Let A be a known m × n matrix, Ac is 

the conditional inverse matrix of A. Suppose a 

solution exists for gu A , then for each n × l vector 

k, vector u has the solution kgu )(c AAIA c . 

 Theorem 10: A is an m × n matrix, for the rank of 

the conditional inverse matrix AC of any given A, the 

following are true: the rank of A equals the rank of 

AAC
 as well as the rank of CAA and is less than the 

rank of AC. 
To obtain the conditional inverse matrix B of m × n 

matrix A, we can extend Theorem 6 and add a 0 

matrix to matrix A to form a square matrix A0 before 

establishing the augmented matrix of A0 and identity 

matrix I,    I A
0

. Then, using the Gauss-Jordan 

elimination method for matrix computation, we can 

eliminate A0 on the left to form a matrix H0 

satisfying the conditions of Hermite form. In the 

augmented matrix    B H 00
 resulting from row 

computation, B0 is the conditional inverse matrix of 

A0. Moreover, the Hermite form H and the 

conditional inverse matrix B of A are encompassed 

within H0 and B0. Below, we describe the 

circumstances in which the number of rows is greater 

than the number of columns (m > n) in matrix A and 

also those in which the number of rows is less than 

the number of columns (m < n). 

In the event that A is an m × n matrix and m > n, an 

m × (m − n) 0 matrix is added to A to form m × m 

square matrix A0, where  0  AA0  . Using 

Gauss-Jordan elimination, augmented  I 0 A  

becomes   









1
00 B

B
  

00

0H
BH , where H is the 

Hermite form of matrix A and is an n × n matrix. 

Furthermore, B is the conditional inverse matrix of A 

and an n × m matrix, and there exists a relationship 

between the matrices as expressed in Eq. (5). 

  



























00

0H

00

0BA
0A

B

B
ABH

1
000 (5) 

In the event that A is an m × n matrix and m < n, an 

(n − m) × n 0 matrix is added to A to form n × n 

square matrix A0, where 









0

A
A0 . Using 

Gauss-Jordan elimination, augmented 







I   

0

A
 

becomes    BBH 1 , where H is the Hermite form of 

matrix A and is an n × n matrix. Furthermore, B is 

the conditional inverse matrix of A and an n × m 

matrix, and there exists the relationship expressed in 

Eq. (6). 

  HBA
0

A
 BBABH 








 1000 .   (6) 

Regardless of whether or not matrix A is a square 

matrix, we can use the approach above to obtain the 

conditional inverse matrix AC. Thus, when solving 

linear equations, the conditional inverse matrix 

approach is considerably more flexible than 

conventional inverse matrix methods. 

3.2 Application of Conditional Inverse Matrix to Solve 

Origin-Destination Trip Matrix 

To solve the linear equation system expressed by 

Eqs. (1) and (2), we can obtain the following inverse 

matrix conversion relationship based on conditional 

inverse matrix calculations: 
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xh C
2                 (7) 

xh C
211  q .            (8) 

Based on the conditional inverse matrix 

relationships in Eqs. (7) and (8), we can use the 

conditional inverse matrix of the link traffic flow and 

link/path incidence matrix to derive the O-D trip 

matrix. The solution procedure are as follows. 

Step 1: Employ column generation to calculate the 

feasible paths between each O-D pair. 

Step 2: Establish the O-D pair/path incidence 

matrix Λ1 and the link/path incidence matrix Λ2. 

Step 3: Calculate the conditional inverse matrix of 

Λ2. 

Step 3.1: Input link traffic flow, the link/path 

incidence matrix, and the O-D-pair/path incidence 

matrix. 
Step 3.2: Based on Definition 2 and the four 

corresponding conditions, perform matrix 
computation and solve the Hermite form of  I|2  

and conditional inverse matrix  C| 2H , where C
2  

is the conditional inverse matrix of Λ2. 

Step 4: Substitute all the conditional inverse 

matrices obtained into Eq. (8) to derive the O-D trip 

matrix. 

Using the approach described above, an accurate 

O-D trip matrix can be estimated from link traffic 

flow regardless of whether or not the flow patterns in 

each link of the road network conform to user 

equilibrium conditions. Nevertheless, in the event of a 

significant number of O-D pairs, inaccurate or 

infeasible solutions may be derived. To address this 

issue, we further prove the conditional inverse matrix 

relationships in Eqs. (7) and (8) as follows. 
Proof: Let chx 2  and 02  

c
CC hx 22222   .        (9) 

Based on Definition 1, we can derive the following 

using Eq. (8): 

c
C hx 222   . 

Therefore, hc is a solution of xC
2 , and 

xx C
22 . 

Let hc be a solution of xC
2 ; thus, xh C

c 2 . 

By multiplying both sides of the equation by C
2 , 

we can obtain 

xxhc  C
222  . 

Therefore, Eq. (7) xhc
C
2  is true, and we can 

derive Eq. (8) xh C
c 211  q , proof completed. 

From Theorem 2 and the proof above, we can see 

that there may be more than one solution for the 

conditional inverse matrix. For this reason, hc is a 

solution of xC
2  rather than the only solution. 

According to our tests, the Hermite form of link/path 

incidence matrix Λ2 is an identity matrix, an accurate 

solution can be estimated; however, when the Hermite 

form of Λ2 is not an identity matrix, a solution cannot 

be accurately estimated, and issues of negative path 

solutions may arise. Gentili and Mirchandani [13] and 

Castillo et al. [14] also indicated that in the 

relationship among O-D pairs, paths, and links, the 

number of links is generally smaller than the number 

of paths, thereby creating the problem of multiple 

solutions. In order to accurately estimate O-D 

transportation demand from link traffic flow, we 

analyzed the characteristics of the link/path incidence 

matrix Λ2 as follows. 

When solving the linear equation bx A , the 

rank and number of variables in the equation 

influence the results, which may be only one solution, 

multiple solutions, or no solutions. During the 

solution process, Gauss-Jordan elimination is 

generally applied to simplify matrix A into a simpler 

matrix R, which is referred to as the row reduced 

echelon form of matrix A. If A is an m × n matrix, 

then the corresponding R is likewise an m × n matrix. 

Generally speaking, in the linear system bx A , 

only one solution exists when A is an m × n matrix 

and the rank of row of matrix A(r) equals n; in 

contrast, the system has multiple solutions when r < 

n. Therefore, the rank of row for m × n matrix A can 

be derived using R, the RREF (row reduced echelon 

form) of bx A . 

Furthermore, the RREF must satisfy three 
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conditions [16]: 

(1) All of the non-zero rows are above the all-zero 

rows. In other words, the all-zero rows are at the 

bottom of the matrix; 

(2) The first non-zero term in each row is the only 

non-zero term in the entire row; 

(3) The coefficient of the first non-zero term in 

each row is 1, and it is in a column further to the 

right than the coefficient of the first term in the row 

above it. 

Consideration of Definition 3 of the conditional 

inverse matrices and the three conditions for the 

RREF reveal that Hermite form H possesses the 

characteristics of RREF R. As a result, there are two 

possible scenarios in this model: 

(1) If the Hermite form obtained from Λ2 after the 

use of Gauss-Jordan elimination is identity matrix I, 

then the rank of row r for Λ2 equals the number of 

column variables n. Moreover, solution h of 

xh 2  is the only solution, and the solution q of 

xc21q  is the only solution, too; 

(2) If the Hermite form obtained from Λ2 after the 

use of Gauss-Jordan elimination is not identity matrix 

I, then the rank of row r for Λ2 is less than the number 

of column variables n. There are thus multiple 

solutions for solution h of xh 2 , therefore 

xc21q  possesses multiple solutions. 

The inferences above indicate that only when rank r 

equals the path number n in Eq. (2) is there a unique 

path solution and thus an accurate reflection of O-D 

demand. The accuracy of applying conditional inverse 

matrices to estimate O-D demand depends on whether 

there is a unique path solution. If there is more than 

one path solution, infeasible solutions with negative 

path flows may be produced. To ensure that the path 

solution in this approach is feasible and unique, we 

propose a column exchange method and a path flow 

proportion method under the solution framework of 

the conditional inverse matrix method. In doing so, we 

aim to rectify the shortcomings of the conditional 

inverse matrix method.  

3.3 Column Exchange Method  

Generating the paths between O-D pairs can be 

achieved using an approach of column generation 

method. Usually, the number of feasible paths 

generated increases with the number of O-D pairs. 

This causes the number of path variables to be larger 

than the link variables. Moreover, in the link/path 

incidence matrix Λ2, the column (path) variables will 

be larger than the rank of row (link) variables, thereby 

allowing multiple solutions for xh 2  (Eq. (2)). 

In other words, a number of solutions will exist for 

O-D demand. In the event that additional network data 

cannot be obtained, at the least, the obtained solutions 

must be feasible. That is, the path flow solutions and 

the O-D trip demands obtained must be feasible 

solutions. Under the structure of conditional inverse 

matrices, we develop a column exchange method to 

obtain this answer to estimate a feasible O-D trips 

matrix. 

Generally, in linear programming multiple solutions 

will occur when solving simultaneous equations if 

there are more variables than equations. In this case, 

the variables equal to the number of equations are set 

as the basic variables, and those that remain are 

referred to as non-basic variables. The non-basic 

variables are set as 0, and the solutions to the 

equations actually consist of the basic variables. 

Similarly, when the number of row rank is less than 

the column number in the link/path incidence matrix 

Λ2, the structure of the column variables Λ2 can be 

divided into basic variables and non-basic variables. If 

the condition that all the basic variables are positive 

values can be satisfied, then it is referred to as a 

feasible solution; if there are negative values among 

the basic variables, then the solution is infeasible. In 

the event of infeasible basic variables, they are 

exchanged with the non-basic variables until a feasible 

solution is produced. This is the principle of the 

column exchange method. 

So how do we determine that the path numbers 

generated are basic variables? This can be established 
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by observing the Hermite form. If the diagonal 

element is 1, then a value exists for the path number 

corresponding to the column in the Hermite form 

matrix, which is also the basic variable column. 

Furthermore, the rank of the matrix r equals the 

number of basic variables. In contrast, if the diagonal 

element is 0, then the path number corresponding to 

the column in the Hermite form matrix equals 0, and 

the column is the non-basic variable column. 

Observation of the Hermite form matrix also shows 

that during the process of Gauss-Jordan elimination, 

the majority of the diagonal elements at the rear of the 

matrix are eliminated, thereby becoming 0 and 

forming the non-basic variable column. When there 

are too many variables, multiple solutions will occur. 

To obtain different combinations of path solutions, we 

can exchange the basic variables with the non-basic 

variables and re-execute Gauss-Jordan elimination 

with the basic variables to be exchanged at the rear of 

the matrix. 

The process of applying the column exchange 

method to an approach utilizing conditional inverse 

matrices is as follows. 

Step 1: Generate feasible paths using column 

generation and construct O-D-pair/path incidence 

matrix Λ1 and link/path incidence matrix Λ2. 
Step 2: Apply Gauss-Jordan elimination to the 

augmented matrix,  I|0  2  or 







I

0
  2

, of 

link/path incidence matrix Λ2 to create  c
2A|H  and 

obtain the Hermite form H and conditional inverse 

matrix C
2  of Λ2. 

Step 3: Multiple c
2  by link traffic flow x to 

obtain path flow h. 

Step 4: Determine whether negative flows exist in 

the path flow solutions: If a negative flow exists, 

execute Step 5. Otherwise, execute Step 6. 

Step 5: Identify the basic variable columns and 

non-basic variable columns using H. Move the basic 

variable columns with negative path solutions to the 

rear of Λ2 to execute the column exchange. 

Recalculate Λ1 and Λ2, and then return to Step 2. 

Step 6: Multiply Λ1 by path flow h, which now 

consists of positive path flows, and derive O-D trip 

demand q. 

Unlike mathematical programming, non-negative 

conditions can not be imposed in the constraints in the 

conditional inverse matrix approach. Consequently, 

negative values may appear in the solutions yielded. 

Nevertheless, this can be rectified through column 

exchange. This involves moving the infeasible basic 

variable columns obtained in the conditional inverse 

matrix method to the rear of matrix Λ2 before 

re-solving the problem. The purpose of this is to 

change the basic variables that were originally 

negative into non-basic variables (from negative 

values to 0) in the next round, thereby remedying the 

problem of negative flow in the overall path 

combination. Iterating the process will then produce a 

feasible solution. 

3.4 Path Flow Proportion Method 

Despite being able to derive feasible path solutions, 

the column exchange approach still cannot guarantee 

to obtain a unique solution. In previous studies, to 

obtain a unique solution, many researchers were 

forced to include more road network data in their 

models to narrow the region of feasible solutions. The 

studies conducted by Gentili and Mirchandani [13] 

and Castillo et al. [14] both required path indices and 

partial path flow data to solve O-D transportation 

demand. However, the development of automated 

license plate scanning systems aided by intersection 

turning surveys and path usage sampling surveys have 

enabled researchers to obtain the proportions of path 

usage between O-D pairs. As a result, considering the 

data regarding path usage proportions between O-D 

pairs is theoretically reasonable. 

Under the basic assumption that the path usage 

proportions between O-D pairs are known, we 

developed a path flow proportion method to increase 

the accuracy of O-D pair solutions. Path proportion 
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refers to the proportion of a given path flow between 

an O-D pair out of the total demand between said O-D 

pair and can be expressed using the path/O-D pair 

proportion matrix P. Table 1 presents path/O-D pair 

proportion matrix P, where in the rows, it is shown 

that Paths 1 and 2 account for proportions of 0.7 and 

0.3 in O-D Pair 1, and that Paths 3 and 4 account for 

proportions of 0.4 and 0.6 in O-D Pair 2. In the 

columns, it is shown that when Λ2 is multiplied by P, 

Paths 1 and 2 are replaced by O-D Pair 1, and Paths 3 

and 4 are replaced by O-D Pair 2. 

Multiplying Λ2 by the known path/O-D pair 

proportion matrix P will produce the link/O-D pair 

proportion incidence matrix Λ3. The proportional 

relationship between O-D demand and link traffic 

flow is presented in Eqs. (10) and (11). 

32  P             (10) 

xq3              (11) 

The purpose of including link proportions in the 

solution process is to directly replace the path 

variables between an O-D pair with the O-D pair 

variable using the known proportions and replace the 

link/path incidence matrix Λ2 with the link/O-D pair 

proportion incidence matrix Λ3. Such an approach will 

significantly reduce the number of variables in the 

matrices, enabling the rank to equal the number of 

variables and thus producing a unique solution. By 

solving Eq. (11) with the conditional inverse matrix 

method, we can obtain the desired O-D demand. 

xC3q               (12) 

The steps to the solution method integrating the 

conditional inverse matrix and path flow proportion 

methods to obtain O-D demand are as follows.  

Step 1: Use known paths to construct the link/path 

incidence matrix Λ2. 

Step 2: Multiply Λ2 by the path proportion matrix P 

to obtain the link/O-D pair incidence matrix Λ3. 

Step 3: Apply Gauss-Jordan elimination to the 

augmented matrix of link/O-D pair incidence matrix 

Λ3,  I|0  3 , to obtain the Hermite form H and 

conditional inverse matrix C
3  of Λ3. 

Step 4: Multiply C
3  by link traffic flow x to 

derive O-D demand q. 

4. Numerical Example 

This study proposes two approaches to modify 

methods using conditional inverse matrices to 

estimate O-D demand from link traffic flow: The first 

utilizes column exchange and the second path flow 

proportion. Using the road network used by Yang [6] 

as a numerical example test (Fig. 1), in this section we 

demonstrate the procedures of the proposed methods 

and their effectiveness. The network comprises four 

O-D pairs with demands as set in Table 2, path flows 

as shown in Table 3 and link traffic flows as presented 

in Table 4. 

4.1 Column Exchange Method 

In conditions where the path proportion data are 

unknown, suppose that the link traffic flows in the 

network have already been obtained via VDs but that 

path information between O-D pairs has not been 

derived from users. As a result, column generation 

must first be employed to create feasible paths before 
 

 
Fig. 1  Test Network 1 [6]. 
 

Table 1  Path/O-D pair proportion matrix. 

No. 
O-D Pair 1  O-D Pair 2 

Path 1 Path 2  Path 3 Path 4 

Path 1 0.7 0  0 0 

Path 2 0.3 0  0 0 

Path 3 0 0  0.4 0 

Path 4 0 0  0.6 0 
 

1 3

2 4

7 8 

5 

9

6 
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Table 2  The O-D demands of Test Network 1. 

No. O-D pair Demand 

1 1→3 200 

2 1→4 150 

3 2→3 140 

4 2→4 185 
 

Table 3  Set path flows of Test Network 1. 

No. Path Flow No. Path Flow

1 1→5→3 200 9 2→7→8→5→3 87 

2 1→7→8→9→3 0 10 2→6→8→5→3 40 

3 1→7→8→5→3 0 11 2→7→8→9→3 0 

4 1→5→8→9→3 0 12 2→6→8→9→3 13 

5 1→7→8→9→4 100 13 2→6→4 126 

6 1→5→8→6→4 30 14 2→6→8→9→4 59 

7 1→7→8→6→4 20 15 2→7→8→9→4 0 

8 1→5→8→9→4 0 16 2→7→8→6→4 0 
 

Table 4  Set link traffic flows of Test Network 1. 

No. Link Flow No. Link Flow 

1 1-5 230 8 6-8 112 

2 1-7 120 9 7-8 207 

3 2-6 238 10 8-5 127 

4 2-7 87 11 8-6 50 

5 5-3 327 12 8-9 172 

6 5-8 30 13 9-3 13 

7 6-4 176 14 9-4 159 
 
 

the approach combining conditional inverse matrices 

with column exchange can be applied to yield a 

feasible solution for the O-D trip matrix. 

Step 1: Using column generation, we generated 

feasible paths and constructed O-D-pair/path 

incidence matrix Λ1 and link/path incidence matrix Λ2, 

as shown in Tables 5 and 6. Using MATLAB, we 

calculated the rank of Λ2, which was 9 and equal to 

the number of paths with flow. 
Step 2: According to the method described in 

Section 3.2, we applied Gauss-Jordan elimination   

to the augmented matrix of link/path incidence matrix 

Λ2,  I|0  2  or 







I

0
  2

, which became  C
2A|H , 

and derived the Hermite form H and conditional 

inverse matrix C
2  of Λ2 as shown in Eqs. (13) and 

(14).  

Step 3: We multiplied C
2  by link traffic flow x to 

obtain path flow h. 

Step 4: We determined whether negative flows 

existed in the path flow solutions, which they did (the 

1st iteration in Table 7), and then executed Step 5.    

Step 5: We identified the basic variable columns 

and non-basic variable columns using H. Then, we 

moved the basic variable columns with negative  

path  solutions  to the  rear of Λ2
 

 to execute column 

exchange. We recalculated Λ1 and Λ2, as shown in 

Tables 8 and 9. The gray columns indicate the 

negative path flows that have been moved to the rear 

of the matrix. 

Step 6: After iterating the process three times, 

consistently positive path flows were derived, as shown  
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in Table 7.  We then  multiplied Λ1  by the  consistently 

positive path flows h and derived O-D demand q, as 

presented in Table 10. 

The results in Table 7 display negative path flows in 

the 1st and 2nd iterations, which indicate infeasible 

path solutions. However, during the process of column 

exchange, the number of negative path flows   

reduced; by the 3rd iteration, all of the path flows 

derived were positive and feasible solutions,    

thereby reaching convergence. At this point, the 

estimated demand values were identical to the preset 

values (shown in Table 10). 
 

Table 5  O-D pair/path incidence matrix Λ1 of Test Network 1. 

O-D pair No. 
Path No. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1-3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1-4 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

2-3 3 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

2-4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
 

Table 6  Link/path incidence matrix Λ2 of Test Network 1. 

O-D pair No. 
Path No. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1-5 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 

1-7 2 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 

2-6 3 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 

2-7 4 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 

5-3 5 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 

5-8 6 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 

6-4 7 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 

6-8 8 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 

7-8 9 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 

8-5 10 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 

8-6 11 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 

8-9 12 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 

9-3 13 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 

9-4 14 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 

c 

2  
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Table 7  Iteration of path flows estimated by column 
exchange method. 

Path No. Preset flow 1st iteration 2nd iteration 3rd iteration

1 200 200 200 200 

2 0 33 -59 0 

3 0 -72 0 0 

4 0 -20 0 0 

5 100 159 159 100 

6 30 50 30 30 

7 20 0 20 20 

8 0 0 0 0 

9 74 87 15 74 

10 53 112 112 53 

11 13 0 72 13 

12 0 0 0 0 

13 126 126 126 126 

14 59 0 0 59 

15 0 0 0 0 

16 0 0 0 0 

4.2 Path Flow Proportion Method 

In conditions where the path proportion data are 

known, suppose that the link traffic flows in the 

network are known and that path proportion data 

have been obtained via automated license plate 

scanning systems, intersection turning surveys, 

and inspection visits. We can then apply the 

approach combining conditional inverse matrices 

and the path flow proportion method to estimate 

O-D demand. 

Step 1: We used known path information to 

construct the link/path incidence matrix Λ2. The path 

proportion matrix P is presented in Table 11. 

Step 2: By multiplying Λ2 by the path proportion 

matrix P, we obtained the link/O-D pair proportion 

incidence matrix Λ3, as shown in Table 12. Using 

MATLAB, we calculated the rank of Λ3, which was 4 

and equaled to the number of O-D pairs. 
Step 3: We applied Gauss-Jordan elimination, 

turning the augmented matrix of link/O-D pair 
incidence matrix Λ3,  I|0  2 , into  c| H  and 

obtained the Hermite form H and conditional inverse 
matrix C

3  of Λ3.  
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Table 8  O-D pair/path incidence matrix Λ1 after column exchange. 

O-D pair No. 
Path No. 

1 2 5 6 7 8 9 10 11 12 13 14 15 16 3 4 

1-3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1-4 2 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

2-3 3 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 

2-4 4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 

Table 9  Link/path incidence matrix Λ2 after column exchange. 

Link No. 
Path No. 

1 2 5 6 7 8 9 10 11 12 13 14 15 16 3 4 

1-5 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 

1-7 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 

2-6 3 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 

2-7 4 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 

5-3 5 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 

5-8 6 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 

6-4 7 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 

6-8 8 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 
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(Table 9 continued) 

Link No. 
Path No. 

1 2 5 6 7 8 9 10 11 12 13 14 15 16 3 4 

7-8 9 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 

8-5 10 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 

8-6 11 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 

8-9 12 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 

9-3 13 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 

9-4 14 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 
 

Table 10  O-D demand estimates from column exchange 
method.  

O-D pair 
No. 

Preset demand 
Demand estimated by 
column exchange method

Error

1 200 200 0.00%

2 150 150 0.00%

3 140 140 0.00%

4 185 185 0.00%

Step 4: We multiplied C
3  by link traffic flow x to 

derive O-D demand q, as shown in Table 13. 

The results in Table 13 show that because the   

rank of the link/O-D pair proportion incidence  

matrix Λ3, which was derived by multiplying      

Λ2 by the path proportion matrix P, equals the number 

of O-D pairs and because the Hermite form H of Λ3 is 

an identity matrix, the estimated O-D trip demand is a 

unique solution which is identical to the preset values. 

4.3 Method Comparison 

With preliminary testing, we established that the 

proposed methods can successfully and accurately 

estimate transportation demand from link traffic flow 

in different networks. To further understand the 

characteristics of these solution methods and 

differences among them, we tested and compared the 

three proposed methods which are conditional inverse 

matrix method, column exchange method and path 

flow proportion method on different networks and 

parameter conditions. 

Three road networks were used in this section: Test 

Network 1, used by Yang [6] (Fig. 1), Test Network 2, 

which is the Nguyen-Dupuis network adopted by 

Castillo et al. [14] (Fig. 2), and Test Network 3, which  

Table 11  Path proportion matrix P. 

Path No. 
O-D pair No. 

1  2 3  4 
1 2 3 4  1 2 3 4 1 2 3 4  1 2 3 4

1 1.00 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 
2 0.00 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 
3 0.00 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 
4 0.00 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 
5 0 0 0 0  0.67 0 0 0 0 0 0 0  0 0 0 0 
6 0 0 0 0  0.20 0 0 0 0 0 0 0  0 0 0 0 
7 0 0 0 0  0.13 0 0 0 0 0 0 0  0 0 0 0 
8 0 0 0 0  0.00 0 0 0 0 0 0 0  0 0 0 0 
9 0 0 0 0  0 0 0 0 0.62 0 0 0  0 0 0 0 
10 0 0 0 0  0 0 0 0 0.29 0 0 0  0 0 0 0 
11 0 0 0 0  0 0 0 0 0.00 0 0 0  0 0 0 0 
12 0 0 0 0  0 0 0 0 0.09 0 0 0  0 0 0 0 
13 0 0 0 0  0 0 0 0 0 0 0 0  0.68 0 0 0 
14 0 0 0 0  0 0 0 0 0 0 0 0  0.32 0 0 0 
15 0 0 0 0  0 0 0 0 0 0 0 0  0.00 0 0 0 
16 0 0 0 0  0 0 0 0 0 0 0 0  0.00 0 0 0 
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Table 12  Link/path proportion incidence matrix Λ3. 

Link No. 
O-D pair 

1 2 3 4 

1-5 1 1 0.2 0 0 

1-7 2 0 0.8 0 0 

2-6 3 0 0 0.38 1 

2-7 4 0 0 0.62 0 

5-3 5 1 0 0.91 0 

5-8 6 0 0.2 0 0 

6-4 7 0 0.33 0 0.68 

6-8 8 0 0 0.38 0.32 

7-8 9 0 0.8 0.62 0 

8-5 10 0 0 0.91 0 

8-6 11 0 0.33 0 0 

8-9 12 0 0.67 0.09 0.32 

9-3 13 0 0 0.09 0 

9-4 14 0 0.67 0 0.32 
 

Table 13  O-D trip demand estimated by path flow 
proportion method. 

O-D pair No. Preset demand Estimated demand Error 

1 200 200 0.00% 

2 150 150 0.00% 

3 140 140 0.00% 

4 185 185 0.00% 
 

was proposed by Yang and Zhou [17] (Fig. 3). Test 

Network 2  comprises of 13  nodes and  38 links, 

whereas Test Network 3 has 24 nodes and 76 links.      

As in the previous studies parameter settings differed 

in O-D pair numbers, path variables, numbers of paths 

with flow, and link/path incidence matrices, we 

re-applied the three algorithms to the three test 

networks and compared the results, which are displayed 

in Table 14. In this table, the estimated path solutions 

either are feasible solutions, which may or may not be 

equal to the preset values, or involve negative path 

flow values and therefore are infeasible.  

The results indicate the following: 

(1) If the conditional inverse matrix method is 

used directly, accurate O-D transportation demands 

can be derived when the variable equals the rank. 

However, in the event that the variable is larger than 

the rank, it is not guaranteed that the conditional 

inverse matrix method can yield an accurate  

solution; 

(2) During the testing process for the column 

exchange method, discrepancies appeared between the 

estimated O-D demand and the preset value when the 

number of paths with flows was larger than the rank 

of the link/path incidence matrix Λ2. Nevertheless, the 

estimated path flows were feasible solutions with 

positive flows. We speculate that this is because only 

the flows of basic variable paths are reflected when 

using the approach combining conditional inverse 

matrices and column exchange method, whereas the 

remaining non-basic variable flows are 0. As a result, 

when the number of paths actually used by users is 

greater than the ranks of link, it is not guaranteed that 

an accurate combination of path flows will be 

estimated, and therefore, the O-D demand derived 

from said path combinations may also differ from the 

actual trip demand; 

(3) In the path flow proportion method, regardless 

of whether or not the number of paths with flow was 

greater than the rank of the link/path incidence 

matrix Λ3, the known path proportions enabled    

us to convert the equation in which the variable was  

 

 
Fig. 2  Test Network 2 [6]. 
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Fig. 3  Test Network 3 [17]. 
 

Table 14  Comparison of results for three test networks. 

Test 
network 

No. of 
O-D pairs 

Path 
variable n

No. of paths 
with flow N 

Rank of 
Λ2, r 

Variable and 
rank relationship

Algorithm 
Estimated path 
solution 

Comparison 
between 
estimated value 
and preset value

1 4 

9 9 9 N = N = r 
Conditional inverse 
matrix 

Preset solution No error present

15 9 9 n > N = r 

Conditional inverse 
matrix 

Infeasible 
solution 

Error present 

Column exchange Preset solution No error present
Path flow proportion Preset solution No error present

2 

12 

26 26 26 n = N = r 
Conditional inverse 
matrix 

Preset solution No error present

48 26 26 n > N = r 

Conditional inverse 
matrix 

Infeasible 
solution 

Error present 

Column exchange Preset solution No error present
Path flow proportion Preset solution No error present

48 48 26 n = N > r 

Conditional inverse 
matrix 

Infeasible 
solution 

Error present 

Column exchange Feasible solution Error present 
Path flow proportion Preset solution No error present

18 79 79 28 n = N > r 

Conditional inverse 
matrix 

Infeasible 
solution 

Error present 

Column exchange Feasible solution Error present 
Path flow proportion Preset solution No error present
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(Table 14 continued) 

Test 
network 

No. of 
O-D pairs 

Path 
variable n

No. of paths 
with flow N 

Rank of 
Λ2, r 

Variable and 
rank relationship

Algorithm 
Estimated path 
solution 

Comparison 
between 
estimated value 
and preset value

3 

16 

48 48 48 n = N = r 
Conditional inverse 
matrix 

Preset solution No error present

82 48 50 n > r > N 

Conditional inverse 
matrix 

Infeasible 
solution 

Error present 

Column exchange Preset solution No error present
Path flow proportion Preset solution No error present

82 82 50 n = N > r 

Conditional inverse 
matrix 

Infeasible 
solution 

Error present 

Column exchange Feasible solution Error present 
Path flow proportion Preset solution No error present

30 154 154 58 n = N >r 

Conditional inverse 
matrix 

Infeasible 
solution 

Error present 

Column exchange Feasible solution Error present 
Path flow proportion Preset solution No error present

 

originally greater than the rank, xh2 , into an 

equation in which the variable equals the rank, 

xq3 . For this reason, the estimated O-D demand 

was the only solution and equaled the preset value. It 

is evident that when the path proportion data of a 

road network can be obtained, O-D trip demand can 

be estimated more accurately and closer to actual 

values. 

5. Discussion and Conclusions 

In this study, we applied conditional inverse 

matrices approach to solve the linear equations formed 

by path flow and link traffic flow. Using a column 

exchange method, we obtained non-negative and thus 

feasible path flow solutions to estimate corresponding 

O-D trip demand. We also confirmed that the addition 

of path proportion data effectively narrows the range 

of feasible solutions when using conditional inverse 

matrices. With three test networks, we verified the 

applicability of the proposed methods combining 

conditional inverse matrices with column exchange 

method and path flow proportion method. In particular, 

we formulate the following conclusions. 

(1) Under circumstances where there are no errors 

in the observed link traffic flows, a linear equation 

relationship exists among the O-D demand, path flow, 

and link traffic flow in the network. Thus, when 

estimating O-D demand from link traffic flow, 

conditional inverse matrices can be used in the 

solution process; 

(2) The results of this study indicate that when the 

rank of the link/path incidence matrix equals the path 

variable, only a unique conditional inverse matrix 

exists. In contrast, when the rank is less than the path 

variable, multiple solutions will occur; 

(3) Even if multiple solutions are generated, using 

the column exchange method will guarantee feasible 

solutions. While the O-D trip matrix derived may not 

be accurate, feasible solutions for the matrix can be 

estimated from link traffic flow without inputting 

additional information; 

(4) During the testing process, we saw that in the 

application of the column exchange method, the 

estimated O-D demand will equal the preset value as 

long as the rank of the link/path incidence matrix Λ2 

equals the path number. When the path number is 

greater than the rank, errors will occur in the 

estimated O-D trip demand. Nevertheless, the path 

flow values derived are consistently positive; 

therefore, the O-D demand obtained will still be a 

feasible solution suitable for practical application; 

(5) When there are multiple solutions, additional 

path proportion data will enable the path flow 

proportion method to obtain correct O-D trip demand 

in the event that the number of O-D pairs is less than 

the number of links, which is generally the case in 
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road networks; 

(6) Despite the fact that multiple solutions exist 

when the path number is larger than the rank, known 

path proportions can convert the equation xh 2  

in which the variable was originally greater than the 

rank into the equation xq3  in which the variable 

equals the rank using the link/O-D pair proportion 

incidence matrix Λ3, which was derived by 

multiplying the link/path incidence matrix Λ2 by the 

path proportion matrix. Solving the equation 

xq3  will then yield the correct O-D trip demand 

solution. 

We have shown that the path flow proportion 

method is an effective approach for solving networks 

in which multiple solutions exist. Furthermore, our 

results demonstrate that it is extremely accurate with 

the requisite data, i.e., path flow proportion between 

each O-D pair. The aim of this study was to illustrate 

that a unique solution for the O-D estimation 

problem can be theoretically derived, and desirable 

network O-D trip demand estimates obtained without 

any further assumptions. In our method, path 

variables can be replaced by O-D pair variables, 

thereby significantly reducing the number of 

columns in the link proportion/O-D incidence matrix 

Λ3. If the number of links is larger than the number 

of O-D pairs in a given network, then rank (Λ3) = r = 

column n. For the linear system xq3 , a unique 

solution can be obtained by the conditional inverse 

xC
3q . To obtain the requisite data in the case of 

multiple solutions, there are two approaches which 

could be used. In an urban network where most road 

users are frequent network users, the path flow 

proportions between each O-D pair could be 

estimated by a sampling survey. Users’ route choice 

probabilities can also be obtained using advanced 

sensor technologies (e.g., AVI (automatic vehicle 

identification) or license plate recognition 

technologies). Since path flow proportions are the 

most important element in the estimation of O-D 

matrices from link traffic flows, the effect of 

sampling error rates could be significant. Future 

studies may consider this as well as the construction 

of a sampling survey mechanism. 
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