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1. Introduction  

In this paper, we consider the multiplicity results of 
nontrivial solutions of the following problem: 

 
where  1 < p < k, k and N 
are integers with N > p, 2 < k < N, 

the point x  can be 
written as x = (y, z)  

0 < s < p, 
is the critical 

Hardy-Sobolev exponent, 
is the critical Sobolev 

exponent,  h is a bounded positive 
function on and is a parameter that we will 
specify later.. 

When k = N, and p = 2. The fact that the 
number of positive solutions of equation is 
affected by the nonlinearity terms which has been the 
focus of a great deal of research in recent years. If the 
weight functions f ≡ h ≡ 1, the authors 
Ambrosetti-Brezis-Cerami [1] have investigated 
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equation They found that there exists 
 such that equation admits at least 

two positive solutions for and has a 
positive solution for  but no positive 
solution exists for For more general 
results, were done by de Figueiredo-Grossez-Ubilla [2], 
Wu [3], Cao etal. [4], Filippucci et al. [5], Xuan et al. [6], 
Guo and Niu [7] and the references therein.  

In the case of 1 < k < N, equations with cylindrical 
potentials were also studied by many people [8-14]. 
For instance, in [15], Xuan studied the multiple weak 
solutions for p-Laplace equation with singularity and 
cylindrical symmetry in bounded domains. However, 
they only considered the equation with sole critical 
Hardy-Sobolev term. 

Let  be the space defined as the 
completion of  with respect to the norm 

 
Clearly, the problem is related to the 

following Hardy-Sobolev type inequality with 
cylidrical weight which first proved in [10] 

(1) 

where C > 0, 1 < p < k, 2 < k < N, x = (y,z)א 

−Δpu − |y|−p |u|p−2u  h|y|−s|u|p
∗s−2u  f|u|q−2u inN, y ≠ 0

u ∈ D1
pRN,

Δpu  div|∇u|p−2∇u,

RN  Rk  RN−k, ∈ RN

∈ Rk  RN−k,
−    ̄k,p : k − p/pp ,

p∗s  pN − s/N − p

1  q ≤ p∗  pN/N − p
f ∈ LRN,
Rk 

  0
P,

P,.
0  0 P1,

0    0 ,
  0

  0 .

D1
pRN

Cc
RN

‖∇u‖p  
RN |∇u|pdx

1
p .

P,


RN |∇u|pdx ≥ C 

RN |y|−s|u|p
∗sdx, for all u ∈ D1

pRN

D 
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 0 < s < p,  = p(N-s)/(N-p), 
 = pN/(N-p), 1 < q < p. In particular, for s = p 

and 1 < p < k, we have Hardy type inequality: 

(2) 

the constant is sharp but not 
achieved [10].  

When  Hardy type inequality implies 
that the norm 

is will defined in is equivalent to 
 since the following inequalities hold: 

 
for all uא . 
Since our approach is variational, we define the 

functional  

 
With 

 

Let  

 (3) 

and 

(4) 

where 0 < s < p. From [10],  is achieved. 
Throughout this work, we consider the following 

assumption: 

 
In our work, we research the critical points as the 

minimizers of the energy functional associated to the 
problem  on the constraint defined by the 
Nehari manifold, which are solutions of our problem. 

Let  be positive number 

 

where 

 

and  

Now we can state our main results. 
Theorem 1: Let f א Assume that 1 < p < k, 

N > p, 2 < k < N, 0 < 0 
< s < p, 1 < q < p, (H) satisfied and verifying 

then the equation has at least 
one positive solution. 

Theorem 2: In addition to the assumptions of the 
Theorem 1, there exists a positive real  such that, if 

 then 
has at least two positive solutions. 

Theorem 3: In addition to the assumptions of the 
Theorem 2, there exists a positive real  such that, if 

satisfy 0 < , then has at 
least two positive solution and two opposite solutions. 

Theorem 4: Let f א  Assume that 1 < p 
< k, N > p, 0 < s < p,  (H) satisfied 
and  then the problem  has a 
nontrivial cylindrical weak solution uא  (u 
satisfying u(y, z) = u(|y|, z)). 

This paper is organized as follows. In Section 2, we 
give some preliminaries. Section 3 is devoted to the 
proofs of Theorems 1, 2, 3 and 4.  

2. Preliminaries 

Definition 1: Let c א  E a Banach space and 
 

(i)  is a Palais-Smale sequence at level c ( in 
short ) in E for if 

 

where (1) tends to 0 as n goes at infinity. 
(ii) We say that satisfies the condition if 

any  sequence in E for  has a convergent 

Rk  RN−k , p∗s
p∗s


RN |∇u|pdx ≥ ̄k,p RN |y|−p |u|pdx, for all u ∈ D1

pRN 

̄k,p : k − p/pp

  ̄k,p ,

‖u‖  ‖u‖,p  
RN|∇u|p − |y|−p |u|p dx

1/p
,

D1
pRN and ‖. ‖

‖∇. ‖p ;

1 − max, 0/̄k,p 
1/p‖∇u‖p

≤ ‖u‖ ≤ 1 − min, 0/̄k,p 
1/p‖∇u‖p

D1
pRN

J onD1
pRN by

Ju : 1/p‖u‖p − 1/p∗sPu − /qQu,

Pu : 
RN |y|−sh|u|p

∗sdx,Qu : 
RN f|u|qdx.

S  S,N,p,0  : inf
u∈D1

p
RN\0

‖u‖p


RN |u |p

∗
dx

p/p∗

S̃  S,N,p,s : inf
u∈D1

p
RN\0

‖u‖p


RN |y |−s|u |p

∗sdx
p/p∗s

S̃

H lim
|y |0

hy  lim
|y |

hy  h0  0, hy ≥ h0 , y ∈ Rk.

P,

0

0 : Lp,q S̃ p ∗sp ∗−p /pp−p ∗sS−p ∗/q

Lp,q : p − p∗s
q − p∗s|f |



|h|
p∗s − q
p − q

p ∗−p /p ∗s−p 

|fx|  sup
x∈RN

|fx|, |hy|  sup
y∈Rk

|hy|.

LRN.
  ̄k,p : k − p/pp ,


0    0 , P,

1

 satisfy 0    2  min0 ,1 ,
P,

∗
   min2 ,∗  P,

LRN.
  0,q  p∗,

  0, P,
XlRN

R,
J ∈ C1E,R.

un n
PSc J

Jun   c  on1 and J
′

un   on1,

on

J PSc
PSc J
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subsequence. 
Lemma 1: Let X Banach space, and 

verifying the Palais -Smale 
condition. Suppose that and that: 

(i) there exist R > 0, r > 0 such that if ‖ ‖ = R, 
then  (u) ≥ r; 

(ii) there exist u₀ א X such that ‖u₀‖ > R and 
(u₀) ≤ 0; 

let  

where  
then c is critical value of such that c ≥ r. 

2.1 Nehari Manifold 

It is well known that is of class C¹ in 
and the solutions of  are the critical points of 

which is not bounded below on . 
Consider the following Nehari manifold 

 
Thus, u א N if and only if 

     (5) 

Note that N contains every nontrivial solution of the 
problem . Moreover, we have the following 
results. 

Lemma 2: is coercive and bounded from below 
on N. 

Proof If u ∈ N, then by Eq. (5) and the Sobolev 
inequality, we deduce that 

 (6) 

Thus,  is coercive and bounded from below on N. 
Define 

 
Then, for u א N 

(7) 

Now, we split N in three parts: 

 
We have the following results. 
Lemma 3: Suppose that u₀ is a local minimizer for 
 on N. Then, if u₀   N⁰, u₀ is a critical point of 
. 
Proof If u₀ is a local minimizer for  on N, then 

u₀ is a solution of the optimization problem 

 
Hence, there exists a Lagrange multipliers  א  R 

such that 

 
Thus, 

 

But , since u₀ ב N⁰. Hence  = 0. 

This completes the proof. 
Lemma 4: There exists a positive number  such 

that for all verifying  we have N⁰ = ׎. 
Proof Let us reason by contradiction. Suppose N⁰ ≠ 

 such that Then, by Eq. (7) and for u ׎
 N⁰, we have א

(8) 

Moreover, by the Holder inequality and the Sobolev 
embedding theorem, we obtain 

(9) 

and 

(10) 

From Eq. (9) and Eq. (10), we obtain , 
which contradicts an hypothesis. 

J ∈ C1X,R
J0  0

‖u‖
J

J

c  inf
∈Γ

max
t∈0,1 

Jt

Γ 
 ∈ C0,1;X such that

0  0 et 1  u0

J

J D1
pRN

P,
J D1

pRN

N  u ∈ H\0 : J
′
u,u  0 ,

‖u‖p − Pu − Qu  0

P,

J

Ju  p∗s − p/pp∗s‖u‖p

− p∗s − q/qp∗sQu,v 

≥ p∗s − p/pp∗s‖u‖p

− p∗s − q/qp∗s|f |Sq/p∗‖u‖q

J

u  J
′
u,u .


′
u,u  p‖u‖p − p∗sPu − qQu

 p − q‖u‖p − p∗s − qPu

 p∗s − qQu − p∗s − p‖u‖p

N  u ∈ N : 
′
u,u  0

N0  u ∈ N : 
′
u,u  0

N−  u ∈ N : 
′
u,u  0

J ∉
J

J

min
u/ u 0

Ju.



J
′
u0   

′
u0  in D1

pRN
′

J
′
u0 ,v 0 , u0 ,v 0    

′
u0 ,v 0 , u0 ,v 0  .


′
u0 ,u0 ≠ 0 

0

0    0 ,

0    0 ,

‖u‖p  p∗s − q/p − qPu,v

 p∗s − q/p∗s − pQu,v

‖u‖ ≥ Sp ∗/qp∗−p p − p∗s/q − p∗s|f | 
−1/p∗−p 

‖u‖ ≤ h0p∗s − q/p − q1/p−p∗s S̃ −p∗s/pp−−p∗s

 ≥ 0
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Thus N = N⁺ ׫ N⁻. Define 

 
For the sequel, we need the following Lemma. 
Lemma 5:  
(i) For all such that  one has c ≤ c⁺ < 0. 
(ii) There exists such that for all 

one has 

 

Proof (i) Let u א N⁺. By Eq. (7), we have 

 
and so 

 
We conclude that c ≤ c⁺ < 0. 
(ii) Let u א N⁻. By Eq. (7), we get 

 

Moreover, by (H) and Sobolev embedding theorem, 
we have 

 
This implies 

(11) 

By Eq. (6), we get 

 
Thus, for all  such that 

, with  

 
we have  ≥ C₀. 

For each u א  , we write 

 
Lemma 5: Let real parameters such that 

. For each u ∈ , one has the 
following: 

(i) If Q(u) ≤ 0, then there exists a unique t⁻  > 
such that t⁻u א N⁻ and 

 
(ii) If Q(u) > 0, then there exist unique t⁺ and t⁻ such 

that 0 < t⁺ <  < t⁻, (t⁺u) א N⁺, (t⁻u) א N⁻, 

 
Proof With minor modifications, we refer to [16]. 
Proposition 1 [6] 
(i) For all such that , there exists a 

sequence in N⁺. 
(ii) For all such that 

, there exists a a 
 sequence in N⁻. 

3. Proof of Theorems 

3.1 Proof of Theorem 1 

Now, taking as a starting point the work of 
Tarantello [17], we establish the existence of a local 
minimum for on N⁺. 

Proposition 2 For all such that , the 
functional  has a minimizer u₀⁺   א N⁺ and it 
satisfies: 

(i) (u₀⁺) = c = c⁺, 
(ii) u₀⁺ is a nontrivial solution of . 
Proof If , then by Proposition1 (i), 

there exists a sequence in N⁺, thus, it 
bounded by Lemma 4. Then, there exists u₀⁺   א

 and we can extract a subsequence which 
will denoted by  such that 

  (12) 

c : inf
u∈N

Ju, c : inf
u∈N

Ju and c− : inf
u∈N−

Ju.

0    0 ,
1  0

0    2  min0 ,1 

c−  C0  C0 , p,q, S, S̃, p∗s, h0 , |f |


p∗s − p

pp∗s
p − q

p∗s − qh0

−p
p−p∗s

S̃
p∗s

p∗s−p 

−  p∗s − q
qp∗s |f |S

q/p∗ .

p − q/p∗s − q‖u‖p  Pu

Ju  −p − q/pq‖u‖p  p∗s − q/qp∗sPu

 −p − q/pq  p − q/qp∗s‖u‖p .

p − q/p∗s − q‖u‖p  Pu.

Pu ≤ S̃ −p ∗s/p |h |‖u‖p ∗s.

‖u‖  S̃ p ∗s/pp ∗s−p  p−q 
p ∗s−q |h  |

−1
p−p∗s , for all u ∈ N−

Ju ≥
p∗s − p

pp∗s
p − q

p∗s − qh0

−p
p−p∗s

S̃
p∗s

p∗s−p 

−  p∗s − q
qp∗s |f |S

q/p ∗ .


0    2  min0 ,1 

1 : p∗s − p
pp∗s

p − q S̃
p∗s

p

p∗s − qh0

−p
p−p∗s


p∗s − q|f |

qp∗s
S−q/p∗

−1

J

D1
pRN

tm : tmaxu 
‖u‖p

p∗s−q Pu 

1/p ∗s−p 
 0.

0    0 D1
pRN

tm

Jt−u  sup
t≥0
tu.

tm

Jtu  inf
0≤t≤tm

Jtu and Jt−u  sup
t≥0

Jtu.

0    0
PSc

0    2  min0 ,1 
PSc−

J
0    0

J

J
P,

0    0
un n PSc

D1
pRN

un n
un  u0

 weakly inD1
pRN

un  u0
 weakly in Lp ∗sRN, |y|−s

un → u0
 strongly in LqRN

un → u0
 a.e inRN
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Thus, by Eq. (12), u₀⁺ is a weak nontrivial solution 
of . Now, we show that  converges to 
u₀⁺ strongly in . Suppose otherwise. By 
the lower semi-continuity of the norm, then 

 and we obtain 

 
We get a contradiction. Therefore,  

converge to u₀⁺ strongly in . Moreover, we 
have u₀⁺ א N⁺. If not, then by Lemma 5, there are two 
numbers t₀⁺ and t₀⁻, uniquely defined so that (t₀⁺u₀⁺) א 
N⁺ and (t⁻u₀⁺) א N⁻. In particular, we have t₀⁺ < t₀⁻ = 1. 
Since 

 
there exists t₀⁺ < t⁻ ≤ t₀⁻ such that  (t₀⁺u₀⁺) <  
(t⁻u₀⁺). By Lemma 5, we get 

 

which contradicts the fact that  (u₀⁺) = c⁺. Since
 (u₀⁺) =  (|u₀⁺|) and |u₀⁺|אN⁺, then by Lemma 2, 

we may assume that u₀⁺ is a nontrivial nonnegative 
solution of . By the Harnack inequality, we 
conclude that u₀⁺ > 0 and v₀⁺ > 0, see for example [18]. 

3.2 Proof of Theorem 2 

Next, we establish the existence of a local minimum 
for on N⁻. For this, we require the following Lemma. 

Lemma 6 For all such that 
, the functional has 

a minimizer u₀⁻ in N⁻ and it satisfies: 

 
 

Proof If , then by 
Proposition 1 (ii) there exists a , 
sequence in N⁻, thus it bounded by Lemma 1. Then, 
there exists u₀⁻   א and we can extract a 
subsequence which will denoted by  such that 

 
This implies 

 
Moreover, by (H) and Eq. (7) we obtain 

   (13) 

By Eq. (9) and Eq. (13) there exists a positive 
number 

 

such that 
             (14) 

This implies that 

 
Now, we prove that converges to u₀⁻ 

strongly in . Suppose otherwise. Then, ‖

‖. By Lemma 5 there is a 
unique t₀⁻ such that (t₀⁻u₀⁻) א N⁻. Since 

 

we have 

 
and this is a contradiction. Hence, 

 
Thus, 

 
Since  (u₀⁻) =  (|u₀⁻|) and u₀⁻   N⁻, then by א

Eq. (14) and Lemma 2, we may assume that u₀⁻ is a 
nontrivial nonnegative solution of . By the 
maximum principle, we conclude that u₀⁻ > 0 and v₀⁻ > 0. 

Now, we complete the proof of Theorem 2. By 
Proposition 2 and Lemma 6, we obtain that 
has two positive solutions u₀⁺   א N⁺ and u₀⁻   א N⁻.   
Since N⁺ ∩ N⁻   this implies that u₀⁺ and u₀⁻ are ,׎ =
distinct. 

P,  un n
D1

pRN

‖u0
‖  lim inf

n
‖un‖

c ≤ Ju0
   p∗s − p/pp∗s‖u0

‖p

− p∗s − q/qp∗sQu0
 

 lim inf
n

Jun   c.

un n
D1

pRN

d
dt

Jtu0
  tt0

  0 and d 2

dt2 Jtu0
  tt0

  0,

J J

Jt0
u0

   Jt−u0
   Jt0

−u0
   Ju0

 ,

J
J J

P,

0    2  min0 ,1  J

i Ju0
−   c−  0,

ii u0
− is a nontrivial solution of P, in D1

pRN.
0    2  min0 ,1 

un n PSc−

D1
pRN

un n

un  u0
− weakly inD1

pRN

un  u0
− weakly in Lp ∗sRN, |y|−s

un → u0
− strongly in LqRN

un → u0
− a.e inRN

Pun  → Pu0
− , as n goes to .

Pun   p − q/p∗s − q‖un‖p

C1 : p − q/p∗s − qp ∗s/p ∗s−p  S̃ p ∗s/p∗s−p ,

Pun   C1

Pu0
−  ≥ C1 .
un n

D1
pRN

‖u0
−‖  lim inf

n
‖un‖

un ∈ N−, Jun  ≥ Jtun , for all t ≥ 0,

Jt0
−u0
−   lim

n
Jt0

−un  ≤ lim
n

Jun   c−,

un → u0
− strongly inD1

pRN.

Jun  converges to Ju0
−   c− as n tends to  .

J J

P,

P, 
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3.3 Proof of Theorem 3 

In this section, we consider the following Nehari 
submanifold of N 

 
Thus, u א if and only if 

 

Firstly, we need the following Lemmas 
Lemma 7 Under the hypothesis of theorem 3, there 

exist such that  is nonempty for any 
and  

Proof Fix (u₀) א  and let 

 

Clearly g(0) = 0 and g(t)→-∞ as n→+∞. Moreover, 
we have 

 
 

 
and 

 

 
then, there exists 

 
where 

 
and 

 
and there exists t₀ > 0 such that g(t₀) = 0. Thus, t₀u₀ א 

and is nonempty for any  
Lemma 8 There exist M,  positive reals such 

that 

 
and any  verifying 

 
Proof Let u א , then by Eq. (5) and Eq. (7), it 

allows us to write 

 
Thus, for any  verifying 

 

and choosing  
defined in Lemma 1, then we obtain that 

   (15) 

Lemma 9 Suppose N > p, 0 < s < p, 1 < q < 2. Then, 
there exist r and positive constants  such that 

(i) we have  
(ii) there exists when 

‖, such that  
Proof We can suppose that the minima of  are 

realized by u₀⁺ and u₀⁻. The geometric conditions of 
the mountain pass theorem are satisfied. Indeed, we 
have 

(i) By Eq. (7) and Eq. (15), we get 

 
Thus, there exist  , r > 0 such that 

 
(ii) Let t > 0, then we have for all  

 
Letting  for t large enough. Since 

 
we obtain .For t large enough we can 
ensure   

Let  and c defined by 

 
and 

 
 

N 
u ∈ D1

pRN\0 : J
′
u,u  0

and ‖u‖ ≥   0

N

‖u‖p − Pu − Qu  0 and ‖u‖ ≥   0

0 , 3  0 N

 ∈ 0,3   ∈ 0,0 .
D1

pRN\0

gt  J
′
tu0 , tu0

 t p‖u0‖p − tp ∗sPu0  − tQu0 

g1  ‖u0‖p − Pu0  − Qu0 

≥ ‖u0‖p − S̃ −p ∗s/p |h |‖u0‖p ∗s − ‖u0‖

If‖u0‖ ≥   0 for

0    0 : |h |p∗s − 1
−1

p∗s−p S̃
p∗s

pp∗s−p ,

|h | ∈ 0,0  with

0 : S̃ p ∗s/p /p∗s − 1p
∗s−1 /p ∗s

3 : |h |p∗s − 1 S̃ −p ∗s/p −1/p ∗s−p 
− Θ  

Θ : p∗s − 1p∗s−1 |h | 
p∗s/p S̃

−2∗2/2

 : |h |p∗s − 1 S̃ −p∗s/p −1/p∗s−p 

N N  ∈ 0,3 .
∗


′
u,u  −M  0, for u ∈ N ,


0    min2 ,∗ .
N


′
u,u  p − p∗s‖u‖p  p∗s − qQu

≤ p − p∗s‖u‖p  p∗s − q|f |Sq/p∗s‖u‖q

≤ max‖u‖p ,‖u‖q p − p∗s  p∗s − q|f |Sq/p∗s 



0    4 
p ∗s−p 

p ∗s−q |f |
Sq/p ∗s,

∗  min3 ,4  with3


′
u,u  0, for any u ∈ N


Ju ≥   0 for ‖u‖  r.

 ∈ N

‖‖  r, with r  ‖u‖ J ≤ 0.
J

Ju ≥ p∗s − p/pp∗s‖u‖p

− p∗s − p/qp∗s‖u‖pq ,


Ju ≥   0 when r  ‖u‖ small.
 ∈ N

Jt : t p /p‖‖p − t p∗s P − tq /qQ.
  t

P  0,
J ≤ 0

‖‖  r.
Γ

Γ :  : 0,1  N :0  u0
− and 1  u0



c : inf
∈

max
t∈0,1 

Jt.
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Proof of Theorem 3: 
If  then, by the Lemma 4 

and Proposition 1 (ii),  verifying the Palais 
-Smale condition in . Moreover, from the Lemmas 
3, 8 and 9, there exists  such that 

 
Thus is the third solution of our system such that 
 ≠ u₀⁺ and  ≠ u₀⁻. Since  is odd with 

respect u, we obtain that  is also a solution of 
. 

3.4 Proof of Theorem 4 

In the part, we consider the case 
and obtain the existence 

of the solution with cylidrical symmetry for . 
First, we list some notations. 

Define 

 

 

Now, we set E(u) as the energy functional of 
equation  that is 

 
With 

 

The functional E(u) is belong to . 
Following, we can define a group of rescaling 
operators: 

 
By direct computation, we have 

 

and if u א   and , one get 
 and . We know that 

the mapping  and 

 are isometric. 
As the method we used here is the 
concentration-compactness principle, and some 
propositions in [8], we list them first: 

Lemma 10 (the concentration-compactness 
principle of Solimini ) If  is 
bounded, then up to a subsequence,  converge 
strongly to 0 in or there exists 

and such that 
 in , u≠0. 

Proposition 3 [8] Let , assuming 
 and are such that 

, then 

 

 

Proposition 4 If  then for all  and 
g א O(k), we have , where 
O(k) is the orthogonal group of . 

The proof is similar to the proof of Proposition 10 
in [8], we omit it. 

By a similar analysis in Proposition 3, we get that for 
the functional , there exist a bounded 
sequence  and c > 0 such that 

 
where c is the mountain pass level of defined 
by 

 
Now we begin to prove Theorem 4. Since the 

sequence  is bounded, it satisfies one of the 
cases in Lemma 10, now we show that the first case 
doesn't occur. 

Lemma 11 The case 
doesn't hold. 

Proof If not, then 

(16) 

0    min2 ,∗ 
J

N

uc

Juc   c and uc ∈ N .
uc

uc uc P,
−uc 

P,

  0,q  p∗ and   0
P,

X : XRN; |y|−pdx  :

u ∈ D1
pRN : 

RN
|y|−phupdx  

Xl : XlRN; |y|−pdx :

u ∈ X : uy, z  u|y|, z

P, 

Eu : 1/p 
RN

|∇u|pdx − /p 
RN

|y|−p |u|pdx

− 1/p∗sPu − /p∗ Qu,

Pu : 
RN |y|−sh|u|p

∗sdx, Qu : 
RN f|u|p

∗dx.

C1X,RN

T,xu : −
N−p

p u−1 .x.

T,xu : T 1
 ,−xu,T1,x1 T2,x2 u : T12,x1x2 u

Lp ∗RN D1
pRN

T,xu ∈ Lp∗RN D1
pRN

u ∈ Lp ∗RN  Lp ∗RN

u ∈ D1
pRN  T,xu ∈ D1

pRN

uk  ⊂ D1
pRN

uk 
Lp ∗RN

k  ⊂ 0, x k  ⊂ RN

Tk ,xk uk  u Lp ∗RN
1    

k  ⊂ 0, x k  ⊂ RN

k → ,x k → x
T k ,xk uk → T,xu in LRN

if uk → u in LRN.

u ∈ Xl  ∈ X
E ′ug. , .   E ′u

Rk

E ∣Xl

x k  ⊂ Xl

Euk   c and E ′uk  ∣Xl  0 in Xl
′ (dual of Xl).

E ∣Xl

c  inf
∈Γ

max
t∈0,1 

Et,Γ :

 ∈ 0,1,Xl  : 0  0,E1  0

uk 

uk   0 in Lp ∗RN


RN

|y|−s|uk |p
∗sdx ≤ 

RN
|y|−s|uk |p |uk |p

∗s−pdx

≤ 
RN

|y|−
sN

N−ps |uk |
pN

N−ps dx
N−ps

N 
RN

|uk |p
∗dx

p∗s−p
p∗

≤ C 
RN

|∇uk |pdx 
RN

|uk |p
∗dx

p∗s−p
p∗
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Hence, when , we have 

 
Now, in fact that  and 

 
one get 

 
Then, we obtain 

 
It contradict the fact that . 

Therefore, Lemma 11 is proved. 
As conclusion, by Lemma 10 and Lemma 11, one 

has that there exists and 
such that 

    (17) 
Setting  

where 
 

and 
 

Defining , we get 
Lemma 12 The sequence  is bounded in  

and it satisfies 

 
and 

      (18) 
Proof Since  is bounded in  and the 

operators are isometries of , we get  
is bounded in  easily. By Eq. (17) we obtain the 
formula (18). 

Now, we say that 

 
In fact, one has 

 
and for all , we have 

 
So one get  
Proposition 4 [8] Let  such that 

, R > 0 fixed, then for any t א 
N╲{0,1} there exists  such that for any 

 one can find  
satisfying the condition 

 
Lemma 13 Up to a subsequence , there exists 

 and v ≠ 0 such that 

 
Proof: since  is bounded in , we can 

assume that , if v = 0, we will show 
contradiction. Indeed, from Eq. (17) we know that 

 

To get contradiction, we first prove that 

          (19) 

If not, then up to a subsequence, . 
Therefore, Lemma 12 implies 

 
it contradicts our assumption . 
Since u ≠ 0, there exist  and  

 
 

uk   0 in Lp ∗RN


RN |y|−s|uk |p

∗sdx  0.

  0

E ′uk uk  
RN

|∇uk |pdx −  
RN

|y|−p |uk |pdx

− 
RN

|y|−sh|uk |p
∗sdx − 

RN
f|uk |p

∗dx  0,


RN |∇uk |pdx  0 and 

RN |y|−p |uk |pdx  0.

Euk   1/p 
RN

|∇uk |pdx − /p 
RN

|y|−p |uk |pdx

1/p∗s 
RN

|y|−sh|uk |p
∗sdx − 1/p∗  

RN
f|uk |p

∗dx  0.

Euk   c  0

uk  ⊂ 0,
x k  ⊂ RN

T k ,xk uk  u in Lp∗RN,u ≠ 0
x k  yk, zk   ȳk  z̄k

ȳk  yk, 0, z̄k  0, zk 

yk ∈ Rd , zk ∈ RN−d .
v k : Tk ,z̄k uk

v k  Xl

Ev k   c,E ′v k   0 in Xl
′

v k. k ,ȳ k   u in Lp ∗RN
uk  Xl

Tk ,z̄k Xl v k 
Xl

Euk   Ev k  and ‖E ′v k ‖Xl
′  ‖E ′uk ‖Xl

′ .

Ev k  :  1/p 
RN

|∇v k |pdx − /p 
RN

|y|−p |v k |pdx

− 1/p∗s 
RN

|y|−sh|v k |p
∗sdx − 1/p∗  

RN
f|v k |p

∗dx

 1/p 
RN

|∇uk |p dx − /p 
RN

|y|−p |uk |p dx

− 1/p∗s 
RN

|y|−sh|uk |p
∗sdx − 1/p∗  

RN
f|uk |p

∗dx

 Euk ,

 ∈ Xl
′

〈E ′v k ,

 
RN

|∇T k ,z̄k uk |p−2∇T k ,z̄k uk.∇dx −  
RN

|y|−p |T k ,z̄k uk |p−2T k ,z̄k uk.dx

− 
RN

|y|−sh|T k ,z̄k uk |p
∗s−2T k ,z̄k uk.dx − 

RN
f|Tk ,z̄k uk. |p

∗−2T k ,z̄k uk.dx

 k

N−p
p 

RN
|∇uk |p−2∇uk.∇kx − k z̄k dx

− k

N−p
p 

RN
|y|−p |uk |p−2uk.kx − k z̄k dx

− k

N−p
p 

RN
|y|−sh|uk |p

∗s−2uk.kx − k z̄k dx

− k

N−p
p 

RN
f|uk. |p

∗−2uk.kx − k z̄k dx

 E ′uk ,Tk
−1,−k z̄k

 .

‖E ′v k ‖Xl
′  ‖E ′uk ‖Xl

′ .
m  ⊂ Rk

lim
m

|m |  
mt ∈ N

m  mt g1 , . . . ,gt ∈ Ok

i ≠ j  BRgim  ∩ BRgjm   ∅.
v k 

v ∈ Xl
v k  v in Xl.

v k  Xl

v k  v in Xl

T1,k ȳk  v in Lp ∗RN.

lim
m

kȳk  

lim
m

kȳk  ȳ0

v k  T1,0v k  TT1,− k ȳk T1,− k ȳk v k  T1,−ȳ0 u ≠ 0,
v k  v  0

  0 D ⊆ RN
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with |D| ≠ 0 such that either  
almost everywhere in D. Given R > 0 such that 

, by weak convergence we get 
(20) 

On the other hand, 

(21) 

where C only depends on R and N. The relations of 
Eq. (20) and Eq. (21) imply that 

 
Up to a subsequence, we can assume that for some 

, 

      (22) 
Then, from Proposition 4, we have that for any t א 

N╲{0,1} and  

 

This implies that , which 
contradicts the fact that  is bounded in 

 
Proof of Theorem 4 From Lemmas 11 and 13, we 

get  and 
, which implies that v is a 

nontrivial cylindrical weak solution to the problem 
. 

4. Conclusions 

In our work, we have searched the critical points as 
the minimizers of the energy functional associated to 
the problem on the constraint defined by the 
Nehari manifold, which are solutions of our problem. 

In the sections 3, we have proved the existence of at 
least four positive solutions by using a Nehari and 
sub-Nehari manifold and mountain pass theorem. In 
Section 3.4, we have considered the case 

 and we have obtained 
the existence of the solution with cylidrical symmetry 
for on the space 

 
by using the concentration-compactness principle. 

References 
[1] Ambrosetti, A., Brezis, H., and Cerami, G. 1994. 

“Combined effects of concave and convex nonlinearities 
in some elliptic problems.” J. Funct. Anal. 122: 519-543. 

[2] de Figueiredo, D. G., Gossez, J. P., and Ubilla, P. 2003. 
“Local Superlinearity and Sublinearity for Indefinite 
Semilinear Elliptic Problems.” J. Funct. Anal. 199: 
452-467. 

[3] Wu, T. F. “Multiplicity Results for a Semilinear Elliptic 
Equation Involving Sign-Changing Weight Function.” 
Rocky Mountain Journal of Mathematics, in press. 

[4] Cao, D. M., Peng, S. J., and Yan, S. S. 2012. “Infinitely 
Many Solutions for p-Laplacian Equation Involving 
Critical Sobolev Growth.” J Funct Anal. 262:  
2861-2902. 

[5] Filippucci, R., Pucci, P., and Robert, F. 2009. “On a 
p-Laplace Equation with Multiple Critical Nonlinearities.” 
J Math Pure Appl. 91: 156-177. 

[6] Xuan, B. J., and Wang, J. 2010. “Existence of a Nontrivial 
Weak Solution to Quasilinear Elliptic Equations with 
Singular Weights and Multiple Critical Exponents.” 
Nonlinear Analysis 72: 3649-3658. 

[7] Li, Y. Y., Guo, Q. Q., and Niu, P. C. 2011. “Global 
Compactness Results for Quasilinear Elliptic Problems 
with Combined Critical Sobolev-Hardy Terms.” 
Nonlinear Analysis. 74: 1445-1464. 

[8] Badiale, M., Bergio, V., and Rolando, S. 2007. “A 
Nonlinear Elliptic Equation with Singular Potential and 
Applications to Nonlinear Field Equations.” J Eur Math 
Soc. 9: 355-381. 

[9] Badiale, M., Guida, M., and Rolando, S. 2007. “Elliptic 
Equations with Decaying Cylindrical Potentials and 
Power-Type Nonlinearities.” Adv Diff Equ. 12: 1321-1362. 

[10] Badiale, M., and Tarantello, G. 2002. “A Sobolev-Hardy 
Inequality with Applications to a Nonlinear Elliptic 
Equation Arising in Astrophysics.” Arch Ration Mech 

u   or u  −

|BR ∩ D|  0

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