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1. Introduction

In this paper, we consider the multiplicity results of
nontrivial solutions of the following problem:

{ —ApUu =y PluP2u = hy[SuPP ®2u+ Afjulf2uinRN, y £ 0

ue DY(RN),
where ApU = diV(|VU|p_2VU), l<p<kkandN
are integers with N > p, 2 < k < N,
RN = Rk x RNk the point x ¢ RN can be
written as X = (y, z) e RX x RN,

—00 < u < figp = ((K=p)P)P,0 <s < p,
p*(s) = p(N=s)/(N—-p) is the
Hardy-Sobolev exponent,
1 <qg<p*=pN/(N-p)is the critical Sobolev
exponent, f € L*(RN), h is a bounded positive

critical

function on R¥and Ais a parameter that we will
specify later..

When k = N, p = Oand p = 2. The fact that the
number of positive solutions of equation (Pj ) is
affected by the nonlinearity terms which has been the
focus of a great deal of research in recent years. If the
functions f = h = 1, the
Ambrosetti-Brezis-Cerami  [1]

weight authors

have investigated
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(Payu). They found that there exists
o > 0 such that equation ('P],u)admits at least

equation

two positive solutions for 0 < u < pp,and has a
positive solution for g = pp but no positive
solution exists for M = Ho- For more general
results, were done by de Figueiredo-Grossez-Ubilla [2],
Wu [3], Cao etal. [4], Filippucci et al. [5], Xuan et al. [6],
Guo and Niu [7] and the references therein.

In the case of 1 < k < N, equations with cylindrical
potentials were also studied by many people [8-14].
For instance, in [15], Xuan studied the multiple weak
solutions for p-Laplace equation with singularity and
cylindrical symmetry in bounded domains. However,
they only considered the equation with sole critical
Hardy-Sobolev term.

Let D? (RN) be the space defined as the
completion of C¥(RN) with respect to the norm

1
Ivull, = (JIVuPdx) ™.
Clearly, the problem (P;,) is related to the

type
cylidrical weight which first proved in [10]

following Hardy-Sobolev inequality  with

[nlVUPdx = C [ Iy ulP"©dx, forallu € DY(RN)(1)

where C > 0, 1 <p <k, 2 <k <N, x = (y,2)€
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REx RN, 0 <5 <p, P7(S) = p(N-s)/(N-p),
P*(S) = pN/(N-p), 1 < q < p. In particular, fors = p
and 1 <p <k, we have Hardy type inequality:

[ nlVUPAX > Figp [y PlufPdx, forallu € DY(RN)(2)

the constant fkp = ((K—P)/P)” is sharp but not
achieved [10].

When U < Hyp, Hardy type inequality implies
that the norm

_ l/p
lull = 11ullp = (o (VU = aly[PlufPydx) 7,
is will defined in D? (RN) and ||. || is equivalent to
IV. |5 since the following inequalities hold:
" g ineq
_ 1/
(1 = (max(u, 0)/fip)) " IVUll,

< Jlull < (1 = (min(u, 0)/ftp)) P | Vull,

for all ue D (RN).

Since our approach is variational, we define the
functional J; on DFI) (RY) by

Ja) = (1/p)[ull® = (1/p*(s))P(u) — (A/q)Q(u),

With

P(W) = [ ly[*hjuP"®dx,Q(u) = [, flul®dx.

Let

_ : flull?
S = S(‘LL’N’p’O) — lnf —* p/p* (3)
ueD}(RNV\{0} (IRN‘““] dx)
and
~ . p
S _ S(,u,N,p,S) — Inf flull

« pp*e) (4
ueD)(RV\0} URNWWU“) (S)dx) )

where 0 <s <p. From [10], § is achieved.
Throughout this work, we consider the following
assumption:
(H) ‘yl‘iljlo h(y) = ‘y]f‘fwh(y) =ho >0, h(y) > hy,y € R¥.
In our work, we research the critical points as the
minimizers of the energy functional associated to the
problem (P,,) on the constraint defined by the
Nehari manifold, which are solutions of our problem.

Let A, be positive number

Ao = L(p,q)<§> P*(S)(p*—p)/p(p—p*(s))(S)_p*/q

where

_ p—p*(s) x
L(p,q) : [( @-p*©))Ifl., ”

M ERORE: (p*-p)/(p*()-P)
['”((p—m )}

and IfCOL, = sup [fOOL[Y)[,, = sup[h(y)].
xeRN yeRK

Now we can state our main results.

Theorem 1: Let f € L*(R"). Assume that 1 < p <Kk,
N>p2<k<N0< i< figp = ((K=p)p)P,o0
<s <p, 1 <q<p, (H satisfied and A verifying
0 < A < Ay, then the equation (P, ,)has at least
one positive solution.

Theorem 2: In addition to the assumptions of the
Theorem 1, there exists a positive real Ay such that, if

Asatisfy 0 < A < Ay = min(Ag, Ay ), then
(P, ) has at least two positive solutions.

Theorem 3: In addition to the assumptions of the
Theorem 2, there exists a positivereal A, such that, if
Asatisfy 0 < A < min(A,,A,),then (Py)has at
least two positive solution and two opposite solutions.

Theorem 4: Letf € L*(RN). Assume that1 <p
<k, N>p,0<s<p, u<0,q=p* (H)satisfied
and A >0, then the problem (P.,) has a
nontrivial cylindrical weak solution ue X;(RN) (u
satisfying u(y, z) = u(ly|, z)).

This paper is organized as follows. In Section 2, we
give some preliminaries. Section 3 is devoted to the
proofs of Theorems 1, 2, 3 and 4.

2. Preliminaries

Definition 1: Let ¢ € R, E a Banach space and
J, € C'(E,R).

1) (Un )n is a Palais-Smale sequence at level ¢ (in
short (PS),)inE for J, if

3:(Un) = ¢+ 0q(1) and J,(un) = 0n(1),

where On (1) tends to 0 as n goes at infinity.
(ii) We say that J, satisfies the (PS)_ condition if
any (PS)C sequence in E for J, has a convergent
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subsequence.

Lemma 1: Let X Banach
J, € C'(X,R) verifying the
condition. Suppose that J;(0) = Oand that:

(i) there exist R > 0, r > O such that if || ||u|l || =R,
then J; (u)>r;

(ii) there exist ug € X such that || uo |l >R and J,
(uo) <0;

let C = inf maii](Jx(J/(t)))

yer t€[0,

space, and

Palais -Smale

r_J 7€ C([0,1];X) such that
y(0) =0ety(l) =up
where

then c is critical value of J, such thatc>r.

2.1 Nehari Manifold

It is well known that J2is of class C'in D (RN)
and the solutions of (Pj,,) are the critical points of
J, which is not bounded below on Drl) (RN .

Consider the following Nehari manifold
N = {u e H\{0} : (J,(u),u) = o},
Thus, u € N if and only if
[ull® =P) - 2Q) =0 (5

Note that N contains every nontrivial solution of the
problem (P,). Moreover, we have the following
results.

Lemma 2: J, is coercive and bounded from below
on N.

Proof If u € N, then by Eq. (5) and the Sobolev

inequality, we deduce that

Ja(u) = ((p*(s) = P)/pp* () [lull?
— A((p*(s) — a)/ap*(s))Q(u,v)
> ((p*(s) = p)/pp* () [ull?
= A((p*(s) — @)/ap* (s))If[. S Ju]®
Thus, J, iscoercive and bounded from below on N.
Define
p(u) = (J;(u),u).

Then, foru EN

(¢ (u).u) = plluf|® - p*(s)P(u) - AGQu)
= (E-ul”- @) -PW) (7
= A(p*(s) = q)Q) — (p*(s) — P [lul®

Now, we split N in three parts:

Nt ={ueN: (¢ (u)u) >0}
N = {u e N: (¢ (u),u) = 0}
N = {u e N: (¢ (u),u) < 0}

We have the following results.

Lemma 3: Suppose that u, is a local minimizer for
J, on N. Then, if ug € N°, uy is a critical point of
Ja.

Proof If uq is a local minimizer for J1 on N, then

U is a solution of the optimization problem
mn J, (U ) .
{u/ =0}

Hence, there exists a Lagrange multipliers 0 € R
such that

3,(Uo) = 09 (Uo) in (DP(RN))
Thus,
(33 (U0 Vo), (U, Vo)) = 0(p (Uo. Vo). (Uo.Vo)).

But <¢,(U0),U0> #+ 0, sinceuy € N°. Hence 60 =0.

This completes the proof.
Lemma 4: There exists a positive number Ao such
that for all verifying 0 < A < A,, wehave N°=0.
Proof Let us reason by contradiction. Suppose N° #
@ such that 0 < A < A, Then, by Eq. (7) and for u
€ N°, we have

[ull® = (p*(s) —q)/(p — DP(u,v) ®
= A((p*(s) — )/(p*(s) — p))Qu, V)

Moreover, by the Holder inequality and the Sobolev
embedding theorem, we obtain

lull = §)P P [(p - p*(£))/alq - p* @)1 (9)
and
lull < tho((@*(8) = a)/(p— )] P @ (8) PP (10)

From Eq. (9) and Eq. (10), we obtain A > A,

which contradicts an hypothesis.
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Thus N =N* U N~. Define

¢ = infJy(u), c" = inf Jy(u)andc™ = inf J;(u).
ueN ueN* ueN~

For the sequel, we need the following Lemma.
Lemma 5:

(i) Forall suchthat 0 < A < Ay, onehasc<c*<0.
(i) There exists A; > 0 such that for all

0 <A< A, =min(Ag,A;)one has
¢ > Co = Co(A, p.q, S.5, p*(s).ho. Ifl,,)
p*(s)

= (p*(s)_p)>|: (p_q) :|(Hj:(s)> )
( TRORMIRCROEDL ) Fem+

_ (P*(S)—Q) q/p*
l( q(p*(s)) )\f\w(s) '

Proof (i) Let u € N*. By Eq. (7), we have
[(p—a)/(p*(s) — a)]l[ull” > P(u)

and so

Ji) = (P -a)/p)[ull® + ((p*(s) — a)/a(p*(s)))P(u)
< =[((p - /pa) + ((p — /AP NIl
We conclude that ¢ < c¢* <0.
(i) Let u € N~. By Eq. (7), we get

[(p—a)/(p*(s) —a)]llull® < P(u).

Moreover, by (H) and Sobolev embedding theorem,

we have
&\ —P*s)/p *
P) < (5) | fJulP"®.
This implies

RLAOLICHOZ ) (P-9)
lull > ($) [(p*(s)—q)\h*\m

] X ,forallu e N(11)

By Eq. (6), we get
(0*(s)—p) [ (p-q) ]% o o
J*(“)z( P ) ) ® ()~ ho ONEEA

_ (p*(s) - Q) q/p*
A( a(p*(s)) )m”(s) '
Thus, for all A such that

0< A< A, = l’I]iIl(A(),Al),With

A -:<(P*(S)—p)> (p—q)(é)pT@ )
1 - pp*(s) (p*(s)_q)ho

« (p*(s)—Q)moo ) —q/p":|_1
[( wey )

we have J; > C,.

Foreachu € Drl) (RN, we write

_ _ lulP :| 1/(p*(s)-p)
tn = tmax (U) = [(p*(s)—q)P(u) > 0.
Lemma 5: Let real parameters such that

0 <A< Ay.Foreachu € 'D?('RN), one has the
following:
(1) If Q(u) < 0, then there exists a unique t~ > I
such that t™u € N~ and
J,(t"u) = sup(tu).

=0
(i) If Q(u) > 0, then there exist unique t* and t~ such
that 0 <t* < t <t7, (t'u) €N*, (tu) EN-,
J,(t*u) = inf J,(tu) and J,(t7u) = supJ,(tu).

O<t<tm 0

Proof With minor modifications, we refer to [16].

Proposition 1 [6]

(1) For all such that 0 < A < Ay, there exists a
(PS),+ sequence in N*.

(i1) For all such that
0<A<A; =mn(Ag,A;) , there exists a a
(PS),- sequenceinN".

3. Proof of Theorems
3.1 Proof of Theorem 1

Now, taking as a starting point the work of
Tarantello [17], we establish the existence of a local
minimum for J1on N*.

Proposition 2 For all such that 0 < A < Ay, the
functional J, has a minimizer u,* € N* and it
satisfies:

(i) I ety = e = ¢,

(i1) ue* is a nontrivial solution of (7)/1,/,1) .

Proof If 0 < A < Ay, then by Propositionl (i),
there exists a (Un ), (PS) +sequence in N*, thus, it
bounded by Lemma 4. Then, there exists u,* €

DFI) (RN) and we can extract a subsequence which
will denoted by (Up ), such that

Up — Uj weakly in Df (RN)
Up — U} weakly in (LP"® (RN, |y[*)) (12)
Un — U} strongly in L9(RN)

Un - Uy aein RN
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Thus, by Eq. (12), ue* is a weak nontrivial solution

of (77/1,“). Now, we show that (Un )n converges to

+

uo* strongly in 'DFI) (RN) . Suppose otherwise. By

the lower

Jug Il < lir{nl;lgﬂwn | and we obtain

¢ < daud) = ((p*(s) —p)pp*(S)Nlluf IIP
— ((p*(s) —a)/a(p*(s)))Qug)
< liminfd(u,) = c.

n—oo

semi-continuity of the mnorm, then

We get a contradiction. Therefore,

(Un),
converge to uy* strongly in D? (’RN) . Moreover, we
have up* € N*. If not, then by Lemma 5, there are two
numbers to* and t,”, uniquely defined so that (to™ue*) €
N*and (t"uo*) € N~. In particular, we have to* <to™ = 1.

Since
d + — d? +
EJl(tuo)Jt:tg = 0 and i J’l(tuo)jt:tg > 0,

there exists to* <t~ <t~ such that Ja (to™ue*) < Ji

(t'ue*). By Lemma 5, we get
Ja(toug) < Ja(tug) < Jaltoug) = Ja(up),

which contradicts the fact that J; (uo*) = c¢*. Since
J1 (e = J2 (jue*)) and |uy*|EN®, then by Lemma 2,
we may assume that uo* is a nontrivial nonnegative
solution of (P;,). By the Harnack inequality, we

conclude that ug* > 0 and vo* > 0, see for example [18].
3.2 Proof of Theorem 2

Next, we establish the existence of a local minimum
for on N™. For this, we require the following Lemma.

Lemma 6 For all such that
0 <A< A, =min(Ag,A;),the functional J2 has
a minimizer uy~ in N~ and it satisfies:

() 32(g) = ¢ > 0,

(i) ug is a nontrivial solution of (P;,) in DY (RN).

Proof If 0 < A < Ay, = min(Ag,A;), then by
Proposition 1 (i) there exists a (Un),, (PS),-
sequence in N7, thus it bounded by Lemma 1. Then,
there exists uy,~ € D? (RN) and we can extract a

subsequence which will denoted by (Un )n such that

Up — Uy weakly in DY (RN)
Un — Uy weakly in LP"®O (RN, |y|®)
Un — Uj strongly in L9(RN)

Un — Uy a.e n RN
This implies
P(un) - P(uy),as n goes to oo.
Moreover, by (H) and Eq. (7) we obtain

P(un) > (p—a)/(p*(S) —Dllua lI®  (13)

By Eq. (9) and Eq. (13) there exists a positive

number
Ci = [(p-q)/(p*(s) - )P O ©P (§)P OO

such that

P(un) > Cy (14)
This implies that

P(up) > Cy.

Now, we prove that (Un)n converges to ug~
strongly in DFI’ (RN). Suppose otherwise. Then, |
[ug I < lim infl[up |

n—eo . By Lemma 5 there is a
unique to~ such that (to"up”) € N™. Since

Un € N7, J:(up) > J,(tuy), forallt > 0,

we have

Ja(tyuy) < nli_rgo\],l(tgun) < nﬁ_r)%‘]i(““) =cC,

and this is a contradiction. Hence,

Up — Uy strongly in DY (RN).

Thus,

Ja(un) converges to J;(U;) = €~ asntends to + oo.

Since J; (uo) = J; (lug’|) and uy~ € N-, then by
Eq. (14) and Lemma 2, we may assume that uo™ is a
nontrivial nonnegative solution of (Pz.) . By the
maximum principle, we conclude that us™> 0 and vo~> 0.

Now, we complete the proof of Theorem 2. By
Proposition 2 and Lemma 6, we obtain that (P,)
has two positive solutions uy,* € N* and uo™ € N~
Since N* N N~ = @, this implies that ue* and ue™ are
distinct.
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3.3 Proof of Theorem 3

In this section, we consider the following Nehari
submanifold of N

N, - ue DY (R0} : (J;(u),u) =0

and ||u]l > 0> 0
Thus,u € N/, , if and only if

lull® = P(u) - AQ(u) = Oand [lull = ¢ > 0

Firstly, we need the following Lemmas

Lemma 7 Under the hypothesis of theorem 3, there
exist o, A3 > Osuch that N, o is nonempty for any
A€ (0,A3)and ¢ € (0,00).

Proof Fix (uo) € D} (RN)\{0} and let

g(t) = (3 (tup), tuo )
= 7| [|P = t*"©OP(uy) — tAQUy)

Clearly g(0) = 0 and g(t)—-c as n—-+o. Moreover,
we have
g9(1) = llug [I” = P(uo) — AQ(uo)
= [luo 17 = (8) ™ Pl luo 179 ] = Ao |

If|ug || = ¢ > 0 for

-1 - p*(s)
0<p<po=(h"] (p*(s)—1))vO» <S> PP |
and
|h7L € (0,(10) with

;
ao = (8)"PH(p*(s) - 1)) OPO

then, there exists
=1/p*(s)-p)

As = [0 @ - 1)(E) "] —Ox®
where

0 = () - DX ((h],)" P (3)) "
and

® = [ (h*],. (") - 1) (E) "
and there exists to > 0 such that g(ty) = 0. Thus, teue €
,/\/Q and ./\/;, is nonempty forany A € (0,A3).

Lemma 8 There exist M, A« positive reals such
that

}—1/(p*(3)—p)

(¢ (u),u) < -M < 0,foru e A,
and any 2 verifying
0 <A< mn(Ay,Ay).
Proof Let u € N, , then by Eq. (5) and Eq. (7), it
allows us to write

(9" (W),u) = @=p*ENIUl® +A(p*(s) - DQ)

S (P-p GNP+ Ap*(s) - Q)] S¥ O ul|9

< max(ul®, lu| P - p*(s)) + A(p*(s) — Q[F*|,,S¥P ']

Thus, for any A verifying
_ (P (s)-p) a/p*(s)
< — N sV
0 <4 <A [ P eI, JS ’

and choosing A, = min(Asz,A4) with As
defined in Lemma 1, then we obtain that

(qb'(u),u) < 0, foranyu € N, (15)

Lemma 9 Suppose N >p, 0 <s <p, 1 <q <2. Then,
there exist r and positive constants 7] such that

(i) wehave J;(u) >n > 0 for |u|| =r.

(i) there oceN,  when
lo|l > r,withr = ||u|| II,suchthat J;(c) < 0.

Proof We can suppose that the minima of J, are

exists

realized by up® and u,~. The geometric conditions of
the mountain pass theorem are satisfied. Indeed, we
have

(1) By Eq. (7) and Eq. (15), we get

Ja(u) = [(p*(s) = p)/pp*(s)]Iu]l

= [(p*(s) — p)ap™()]IulI**,
Thus, there exist 1 , r> 0 such that
J,(u) > n > 0whenr = ||ul| small

(ii) Let t > 0, then we have forall ¢ € N, 0

3;:(t¢) = P4 11° - E° ©)IP(¢) — A(t9/q)QH).

Letting o =t¢ for t large enough. Since
P() > 0,
we obtain J; (o) < 0.For t large enough we can
ensure ||o| > T.

Let I and ¢ defined by

I = {7 :[0,1] — N, :¥(0) = uy and y(1) = ug}
and

¢ = inf max (Jx(y(t))).
te[0,1]

yell &Y,



Five Nontrivial Solutions of p-Laplacian Problems Involving Critical 169
Exponents and Singular Cylindrical Potential

Proof of Theorem 3:

If 0 <A< mn(A,,A,) then, by the Lemma 4
and Proposition 1 (ii)), J, verifying the Palais
-Smale condition in A 0- Moreover, from the Lemmas
3, 8 and 9, there exists Uc such that

Ja(uc) =canduc € N,.

Thus Uc is the third solution of our system such that

Uc #ue"and Uc # ug™. Since (Pay) is odd with

respect u, we obtain that (—Uc) is also a solution of

(Pl,u) .
3.4 Proof of Theorem 4

In the part, we consider the case

1 <0,q=p*and A > 0 and obtain the existence
of the solution with cylidrical symmetry for (Pay).
First, we list some notations.

Define
X = X(RN;ly|Pdx) =

{u e DI(RV) :IRN|y|‘phupdx < +oo}
X) = Xi(RN;ly|Pdx) =
{ue X :uly,z) = ulyl.2)}

Now, we set E(u) as the energy functional of
equation (Pj) thatis
E(u) = (Up) [ IVulPdx— Guip) [ IyIlulPdx

— (1/p*(s))P(u) — (A/p")Q(u),
With

P(u) = IRN|y|*Sh|u|p*(5)dx,Q(u) = IRN flu|P"dx.

The functional E(u) is belong to C!'(X,RN).
Following, we can define a group of rescaling
operators:

N-p
TyxU = n‘<T>u(n‘1.+X).

By direct computation, we have

Thxu = T%,—nxuaTm,XlTﬂz,qu = T U

and if u € LP(RN) and D?(RN) , one get
Tyxu € LP"(RN) and D?(RN). We know that

the mapping U € LP"(RN) » LP"(RN) and

ue D?(RN) = ThxU € D? (RN) are isometric.
As the

concentration-compactness

method we used here is the
principle, and some
propositions in [8], we list them first:

Lemma 10 (the concentration-compactness
principle of Solimini ) If (Ux) D? (RN) s
bounded, then up to a subsequence, (Uy) converge
strongly to 0 in  LP'(RN) or there exists
(mk) < (0,40) and (Xx) = RN such that
ThoxUk = U in Lp*(RN),uqéO.

Proposition 3 [8] Let 1 < ¥ < oo, assuming
(nk) < (0,+40) and (Xy) < RNare such that
Nk — N, Xx = X, then
ToxUk = Tyxuin L7(RN)

if ug - uin L7(RN).

Proposition 4 If U € X, then for all y € X and
g € O(k), we have E'(U)w(g.,.) = E'(U)y, where
O(K) is the orthogonal group of RkK.

The proof is similar to the proof of Proposition 10
in [8], we omit it.

By a similar analysis in Proposition 3, we get that for
the functional E |x, , there exist a bounded
sequence (Xx) < X, and ¢ > 0 such that

E(uy) — cand E'(ux) |x, — 0inX; (dualofX;).
where ¢ is the mountain pass level of E |x, defined
by

¢ = inf max E(6(1)),T =

ser t€[0.1]

{0 € ([0,1],X) : 6(0) = 0,E(5(1)) < O}

Now we begin to prove Theorem 4. Since the
sequence (U, ) is bounded, it satisfies one of the
cases in Lemma 10, now we show that the first case
doesn't occur.

Lemma 11 The case (Ug) — 0inLP (RN)
doesn't hold.

Proof If not, then

[y @ < [y uPlug O Pox

P

S\ . e
S(J.RNM N"’“\Uk|N""5dx) " (J.,RN\UHD dX) ’ (16)

p¥(s)-p

< C(jRN\VUdeX) (j'RN\uk\P*dx) ”
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Hence, when (Uy) — 0inLP (RN), we have

[Vl @dx — o,
Now, in fact that u < 0 and
E'@uy = [ VuPde—p [y PP
= [y

one get

P*G)dx —.f flug [P dx — 0,
RN

[ nlVUk[Pdx — 0and [ ly[Plug[Pdx — 0.

Then, we obtain
Eu) = (1p) [ VukPdx = Gup) [y PluiPx
R R
Wp ) [y hiuP @ax = (1p*) [ flug"dx — 0.
RN RN

It contradict the fact that
Therefore, Lemma 11 is proved.

E(Uk)—>C>0.

As conclusion, by Lemma 10 and Lemma 11, one
has  that exists  (Uy) < (0,400) and
(Xx) < RN such that
ToexUe =~ uinLP (RM),u+0 (17
Setting Xk = (Yk:Zk) = Yk + Z
where

there

Yk = (Yk,0), Zx = (0,2¢)
and
Yk € R4,z € RN,

Defining V¢ = Ty, 7 Uk, we get

Lemma 12 The sequence (Vi) is bounded in X
and it satisfies

E(vk) — C,E'(v¢) — 0in X,
and
Vi +geg ) ~ uin LP7(RV) (18)

Proof Since (Ux) is bounded in X; and the
operators T, 7, are isometries of X, we get (Vi)
is bounded in X, easily. By Eq. (17) we obtain the
formula (18).

Now, we say that

E(u) = E(vi) and [E'(vi) [l = [E'(U)

In fact, one has

EW) = () [ [WiPdx— wp) [ Iy PviPox
R R
— ) [ WP Odx = (1p7) [ v dx
R R
= () [ VuilPax = up) [y PluclPdx
_(1/n* “Shiue P ©dx — (1/p* P
Wp ) [ 1 *hiu” O~ 1) [ fu " x
= E(uy),
!
and for all ¥ € X|, we have
EVY)
= VTt VTt V= [ Pt Tzt ek
_ J.RN\y\’Sh\TnkiKUk\"“‘S)’ZTW.D”% wax — J.RN T ezl v P 2 T ez Uk wdx
Np
=" J.RN\VUklp’ZVUkVW(UkX = MZ)dx
Np
—um [P Uy (nox - miziodk
Lo * -
-’ J.RN\YVS“\UHD 2 Uy (mex = i )dx
L] .
=7 [ Al Uy (nox = mziox
= (E'W) Ty V)
/ /
So one get ||E (Vk)”X; = ||E (Uk)”X;-

Proposition 4 [8] Let (¢m) < R¥ such that
m]i_fgof(Pm’ =+, R > 0 fixed, then for any t €
N\{0,1} there exists M¢ € N such that for any
M > M¢  one Ji,-.-,9t € O(k)
satisfying the condition
i # ] = Br(gigm) NBr(Gjgm) = 0.

Lemma 13 Up to a subsequence (Vy ), there exists
V € X, and v # 0 such that

Vi = vin X,.

Proof: since (Vi) is bounded in X|, we can

can find

assume that vy — vV in X, if v = 0, we will show
contradiction. Indeed, from Eq. (17) we know that

Tige = VinLP (RV).
To get contradiction, we first prove that
Am 7y Yy = +oo (19)

If not, then up to a subsequence, mlian Yk = Yo -
Therefore, Lemma 12 implies

Vie = TroVk = T(T1 g Tromgi)Vk = Ti5,U # 0,

it contradicts our assumption Vg =V = 0.

Since u # 0, there exist @ > 0 and D < RN
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with |D| # 0 such that either U > w oru < —@
almost everywhere in D. Given R > 0 such that
IBr N D| > 0, by weak convergence we get
[n TLagVixearndX — [ Uxsenodx = @[Br ND| > q20)
On the other hand,

URN Tl,’]kykvk%BRﬁDdX‘ < IB T 1 Vildx
R

= [ (o mgio)ioe
21

Vic(x)dx

J‘Bre(nm)

. 1/p*
< C<J. V()P dx)
Br(7kYK)

where C only depends on R and N. The relations of
Eq. (20) and Eq. (21) imply that

lim inf jBR(nkyk)|vk(x)|p*dx > 0.

k—»
Up to a subsequence, we can assume that for some
e>0,

p*
Hklf-[BR(nk)_/k)|Vk(X)| dX > & (22)

Then, from Proposition 4, we have that for any t €
N\{0,1} and M > My

t
VOO dx > .[
J.RN| | le Br(nk(9tyx.0))

=i2tl’,f

This implies that [IVillLo*mny — |
contradicts the fact that (Vi)

Vi) [P dx

V()P dx > te
Br(nk¥)

which
is bounded in

LP'(RN)
Proof of Theorem 4 From Lemmas 11 and 13, we
get E'(vi) — 0inX, and

Vi =V # 0in X;(RN), which implies that v is a

nontrivial cylindrical weak solution to the problem

(Pau).
4. Conclusions

In our work, we have searched the critical points as
the minimizers of the energy functional associated to
the problem (P2, )on the constraint defined by the
Nehari manifold, which are solutions of our problem.

In the sections 3, we have proved the existence of at
least four positive solutions by using a Nehari and
sub-Nehari manifold and mountain pass theorem. In

Section 3.4, we have considered the case

u<0,g=p*and A > 0 and we have obtained
the existence of the solution with cylidrical symmetry
for (Px,u ) on the space

X = X(RN;ly| Pdx) =

{u e DY (RN) : IRN|y|‘phupdx < +oo}
by using the concentration-compactness principle.
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