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Abstract: The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice 
clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of 
EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG 
signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to 
EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health 
of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle 
electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using 
surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the 
decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential 
evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of 
Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification 
of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of 
surface EMG signals. 
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1. Introduction 

Talking, walking and writring are examples of some 

actions taken by the neuromotor system of the human 

body. The movement is orchestrated by the coordinated 

action of peripheral regions, spinal cord, brainstem and 

cerebral [1]. 

Detection and analysis of physiological signals from 

the Neuromotor System have been present in several 

studies, from basic science to clinical diagnostics [2, 3]. 

Electromyography is an analytical method for the study 

of physiology, biomechanics and Neuromotor System 

fundamentals of human body [4]. Understand the EMG 

(electromyographic) signal implies understanding the 
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functioning of muscles and how bioelectrical signals 

are generated [3, 5]. 

The EMG signal is derived from the sum of several 

MUAP (Motor Unit Action Potentials) from the muscle 

fibers, leading to muscle contraction [1]. In this way, the 

decomposition of the EMG signal results in the set of the 

various MUAPs that make up the EMG signal [6, 7]. 

MUAPs information, such as morphology, duration, 

rate of occurrence and trigger time, is very used to 

diagnose neuromuscular disorders [8, 9]. And also, the 

morphology of MUAPs contains information about 

health and anatomy of muscle fibers [10]. 

Thus, the analysis of MUAPs helps the professional 

to assess if there is any motor disorder and what is its 

origin: (1) motor neuron axon injury (neuropathy); (2) 

the injury or muscle fiber atrophy (myopathy) [11-14]. 

DAVID  PUBLISHING 

D 



Decomposition of Surface Electromyographic Signal Using Hidden Markov Model 

  

29

The MUAPs presenting a myopathic disorder generally 

have short duration and low amplitude. And the 

MUAPs which present high amplitudes have 

characteristic of neuropathic disorders. 

Nevertheless, understand normal or abnormal 

behavior control of Motor Units is essential in the 

decision of the need of a pharmacological or surgical 

intervention. And also, another important application 

of EMG signal decomposition is in the area of ageing 

and ergonomics, where it is interesting to understand 

when the motor control is changed as a result of aging, 

exercise, fatigue or excessive and prolonged power 

production [15]. 

However, the process of EMG signal decomposition 

is a complex task. The features of an EMG signal 

depend on the type of electrode used (intramuscular or 

surface), positioning relative to the muscle, the 

contraction level and the clinical status of the 

neuromuscular system of the patient [16]. 

In this context, some surveys have already been 

initiated to study the decomposition of EMG signals 

collected from surface electrodes, in order of the 

disadvantages described earlier. However, despite the 

interesting results already achieved, researches are 

recent and are still in the early stage of development 

[10]. So, there is a need for investigation of techniques 

for decomposition of EMG signals collected from 

surface electrodes, what would contribute to the 

proposal for a new path for the research in the area of 

surface electromyography. 

Taking as inspiration the graphical probabilistic 

models used in researches with surface 

electroencephalographic signals in recent decades 

[17-20], and considering the fruitful results presented 

by the authors of those researches, 

probabilistic-graphical models can be an interesting 

technique to use with surface EMG signals. The use of 

probabilistic-graphical models can be a new way to 

implement a system of surface EMG signal 

decomposition, able to make the classification of 

MUAPs and calculate the probability of Motor Units 

firing at a given time. With a tool that uses probabilistic 

models for classifying MUAPs, it will be possible to 

perform the estimation of the firing sequence of Motor 

Units that composes the EMG signal. A technique with 

this feature is very important as a help in evaluating the 

operating mechanism of the neuromuscular system and 

much needed for the biofeedback therapies focusing on 

muscular rehabilitation. 

Thus, the purpose of this work is to use the 

probabilistic graphical hidden markov model, in the 

process of decomposition of a surface EMG signal. 

2. Materials and Methods 

To develop the proposed system, initially it was 

necessary to project a framework for the system to be 

able to perform the EMG processing (noise elimination 

and detection of MUAPs) and perform the 

decomposition of surface EMG signal. 

For the pre-processing step of EMG signal, that 

includes the application of filter for elimination of 

possible noise and MUAPs detection, the EMG 

decomposition system BR was used [8]. Thus, this 

system already provides the MUAPs present in EMG 

signal. Then, it was used the Hidden Markov Model for 

the MUAP clustering according to the morphological 

similarity between them. And so, whereas a Motor Unit 

generates a unique morphological pattern of MUAP, it is 

possible to determine how many Motor Units are active 

in EMG signal and also to present the morphological 

pattern of the MUAPs generated by them. 

Fig. 1 presents the diagram with the system structure 

of surface EMG signal decomposition that was 

developed, containing the whole process and the 

techniques that were used in the decomposition of the 

EMG signal, as well the responses that are presented by 

the system. 

2.1 MUAP Clustering 

After the MUAPs detection stage, the next step 

developed by the proposed system is the MUAP 

clustering. This stage has the following functions: 
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Fig. 1  Block diagram of the structure of proposed system. 
 

(1) Clustering of MUAPs that exhibit similar 

characteristics in its morphology; 

(2) Identify the amount of active Motor Units in 

EMG signal that is being analyzed; 

(3) Present the standard MUAP morphology that is 

generated by each active Motor Unit, 

To this end, the process of MUAP clustering is 

accomplished by executing the following sequence: 

(1) Feature extraction of MUAPs 

In this step, selected features of MUAPs were 

detected in EMG signal. The process of extracting 

features of MUAPs was inspired by the work of the 

researchers Kanar et al. [21, 22]. They developed an 

algorithm based on Hidden Markov Model for pattern 

recognition. The main difference between the classical 

algorithms for pattern recognition and Hidden Markov 

Models is the process of extracting features. In the case 

of Hidden Markov Models, a uni-dimensional data can 

be divided into a sequence of segments, and from this 

sequence is extracted a vector of characteristics. 

On the problem of recognition of dynamic behavior 

studied by the researchers [21], a dynamic signal was 

represented by a sequence y(k), k = 1, 2, ..., K, where K 

is the amount of points. The procedure of feature 

extraction is started with the division of the sequence 

y(k) in T segments with L of length. Each segment is 

represented by yt(l) (Eq. (1)). 

yt(l) = y[(t-1)L+1]             (1) 

where, l = 1, 2, ..., L and t = 1, 2, …, T. 

The next step is the extraction of characteristics of 

each segment. The dynamic patterns in general are 

characterized by successive segments increasing and 

decreasing. Thus, the information of angulation and 

curvature of each segment are components of the 
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vector of characteristics. These characteristics can be 

obtained through polynomial approximations on each 

segment. The angulation of the first-order polynomial 

provides information about the behavior, that is, 

increasing, decreasing or constant. And the 

second-order polynomial can be used to get the second 

derivative, which will provide information about the 

curvature of the segment. And the third information 

that will compose the vector of characteristics is the 

average of the segment. 

Thus, the vector of characteristics of each segment 

will consist of: 

Angle 

The first-order polynomial approximate to the 

sequence of points in a segment, can be expressed as 

Eq. (2): 

௧݂ሺݔሻ ൌ ݔ௧ଵ   ௧             (2)
where, t= 1, 2, ..., T and x is a continuous variable. 

Curvature 

The second order polynomial is defined according to 

Eq. (3): 
݃௧ሺݔሻ ൌ ଶݔ௧ଶߛ  ݔ௧ଵߛ   ௧          (3)ߛ

The equation can be used to compute the second 

derivative (Eq. (4)): 

 ௧ሺ௫ሻୀ

మ
మೣ

ሺభశሺ/ೣሻమሻయ/మ

 
    (4) 

For this feature, the curvature is calculated at the 

midpoint of the segment ሺ݇௧ሻ. Thus, the second feature 

will be ܿ௧ሺ݇௧ሻ. 

Average 

The average of the points of the segment also provides 

important information regarding signal level (Eq. (5)): 

௧ߤ        ൌ
∑ ሺሻ


     (5) 

Thus, for each segment t, where t = 1, 2, ..., T, the 

authors will have a vector of characteristics ௧ܱ , 

according to Eq. (6): 

௧ܱ ൌ  ൭
௧ଵ

ܿ௧ሺ݇௧ሻ
௧ߤ

൱    (6) 

Then, in accordance with Kanar et al. [21], a 

dynamic signal can be segmented into L segments and 

each segment can be represented by a vector of 

characteristics O (Eq. (7)): 

ܱ ൌ  ሼଵ, ,ଶ ,ଷ … ,  ሽ   (7)்

MUAPs features extraction using the method of 

Kanar et al.  

Whereas a MUAP morphology is similar to a 

dynamic signal, that is, can be represented by a 

sequence of increasing segments, decreasing or 

constant, it is possible to apply the set of features 

proposed by Kanar et al. [21], in the process of 

extracting features of MUAPs. 

Thus, a Motor Unit Action Potential can be divided 

in L segments, and each segment will have a set of 

features Ot (Fig. 2). After the stage of feature extraction 

of MUAPs, the next step is to generate the Hidden 

Markov Model, as shown below. 

(2) Hidden Markov Model 

The next step is to generate a Hidden Markov Model 

that represents each MUAP detected in EMG signal. 

The aim of creating a template for each MUAP is 

explained by the need to build a Matrix of Similarity 

between MUAPs patterns that is necessary for the 

application of spectral clustering algorithm. 

According to Kanar et al. [21], each set of features 

extracted from a determined data can be considered as 

being the observation that is observed in a state S. So, if 

considering each segment and defining in the previous 

section as a state, there will be a total of T states (Si). 

And also, the transition of these states is always from 
 

 
Fig. 2  Example of a MUAP represented by left-right 
topology of a Hidden Markov Model with T states, and each 
state S represents a segment t. 
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left to right, considering the dynamics of the evolution 

of the EMG signal in time. Thus, the MUAP can be 

represented by a Hidden Markov Model of T states, 

with the left-right topology. 

Thus, each MUAP detected on EMG signal, will be 

extracted a set of features Ot, t = 1, 2, ..., T, where T is 

the amount of segments of the MUAP. After performed 

this step, it will be created a Hidden Markov Model, 

left-right topology, with T states. Thus, each MUAP 

will be represented by a H λ (Fig. 2). 

For this topology of Hidden Markov Model, the state 

transition matrix (A), will be represented by Eq. (8): 

ܣ ൌ

ۉ

ۈ
ۇ

0 1 0 0 0
0 0 1 0 0
ڭ ڰ 0 ڭ
0 ڮ 0 1 0
0 … 0 0 ی1

ۋ
ۊ

   (8) 

Each MUAP i that is presented in the EMG signal, 

was created a Hidden Markov Model λi, using the set of 

features Oi. Thus, the maximum likelihood produced 

by model λi is that generated by the set of observations 

Oi. It is important to highlight the fact that observations 

with close values will necessarily, generate likelihood 

with close values. And this case will happen when there 

are MUAPs with similar morphologies. And, MUAPs 

with similar morphologies will generate observations 

with nearby values. Consequently, the likelihoods will 

have close values. And also, considering that, these 

will be happened generally: 

A Motor Unit produces a single morphological 

pattern of MUAP; 

Different Motor Units generate distinct 

morphological patterns of MUAPs. 

Then it can be concluded that if generating a Matrix 

of distance/dissimilarity between all MUAPs i and 

using the likelihood generated by ሺ ܱ|ߣሻ , it is 

possible to find out what are the MUAPs that have 

similar morphologies, that is, what are the MUAPs that 

were generated by the same Motor Unit. In this way, 

how many distinct morphological patterns exist in the 

EMG signal will be found, and therefore, the amount of 

Motor Unit active in the EMG signal can be inferred. 

Thus, in possession of the models λi and the set of 

observations Oi, it is possible to construct a 

dissimilarity matrix required to perform spectral 

clustering algorithm. 

(3) Spectral clustering 

After the construction of the Hidden Markov Model 

for each one of MUAPs present in EMG signal and 

with the models λi and the set of observations Oi, the 

generation of the Dissimilarity Matrix is as follows: 

the cell (i, j) in the Distance Matrix corresponds to 

ሺ ܱ|ߣሻ, that is, corresponds to the likelihoods of  

the observations sequences ܱ, generated by the ߣ. 

Thus, the Distance Matrix will be generated as    

Eq. (9): 

൮

ܲሺ ଵܱ|ߣଵሻ ܲሺ ଵܱ|ߣଶሻ ڮ ܲሺ ଵܱ|ߣேሻ
ܲሺܱଶ|ߣଵሻ ܲሺܱଶ|ߣଶሻ … ܲሺܱଶ|ߣேሻ

ڭ … ڰ ڭ
ܲሺܱே|ߣଵሻ ܲሺܱே|ߣଶሻ ڮ ܲሺܱே|ߣேሻ

൲ (9) 

With the distance matrix, the spectral clustering 

algorithm will be executed. As a result, the following 

amounts will be obtained: 

The amount of existing groups: 

The spectral clustering algorithm will provide the 

amount of existing groups between N likelihoods 

provided in the matrix of distances. As a consequence, 

the following amounts will be inferred: 

The amount of morphological patterns of MUAPs; 

The amount of active Motor Units in EMG signal. 

The classification of each set of observations in a 

given group: 

After estimating the amount of groups, the spectral 

clustering algorithm sorts each likelihood, through the 

information was provided by the matrix of distance, in 

one of the groups estimated. So, considering that each 

group represents, in the work, an active Motor Unit, the 

author will have as a result: 

How many MUAPs were generated by each Motor 

Unit; 

What are the MUAPs generated by each Motor Unit; 

What is the standard MUAP morphology generated 

by each Motor Unit. 
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3. Results 

To validate the methodology and the results of the 

system, two data types are used: real and synthetic 

EMG signals. 

(1) Synthetic EMG signals 

For the validation process of the proposed system, it 

was used a synthetic EMG Signal Generator, 

developed by Ref. [8]. In this simulator, to generate the 

EMG signal, the inter-pulses characteristics of MUAPs 

resulting from investigations of the first dorsal 

interosseous muscle are considered. 

This simulator of EMG signals allows the user to 

simulate the hardware and generate synthetic EMG 

signals according to the configuration of the following 

parameters: (1) number of active Motor Units; (2) the 

EMG signal simulation time in milliseconds; (3) 

sampling frequency; (4) signal-to-noise ratio. 

The advantage of using this simulator is due to the 

fact that it is possible to evaluate the output of the 

developed system, by using EMG signals with known 

characteristics (the number of active Motor Units and 

its firing sequence). 

(2) Real EMG signals 

The database of real EMG signals that was used for 

the validation of the proposed project was provided by 

Ref. [8]. The data were collected from 15 volunteers 

who have run six different types of muscular contraction. 

In total, 900 s is stored in this database EMG signal. 

Signals were obtained through experimental data, 

sampled at 10 kHz and collected using reference 

electrodes (TECA NCS2000, Oxford Instrument 

Medical, Ag/AgCl), array of surface electrodes 

(MedTech Systems Ltd., Ag/AgCl) and invasive 

electrodes (TECA X53153, Oxford Instruments 

Medical) and needle electrode, which were placed in 

first dorsal interosseous muscle of volunteers. 

The advantage of using this database in the process 

of validation of the proposed system is due to the use of 

the array of electrodes. This array is composed of two 

electrodes, differential double, and each one of them 

has a catchment area of 1 mm in diameter and 3 mm 

distant from the other electrode (centre to centre). In 

this way, it has 2 surface electrodes close enough to 

capture the same EMG signal and two EMG channels 

storing these signals. Thus, the EMG signal picked up 

by these two electrodes will be very similar due to the 

proximity of the electrodes. This context is conducive 

to the process of validation of the proposed system, 

because it is possible to evaluate the system response in 

the two channels and check the consistency between 

the results provided. 

3.1 Synthetic EMG Signals 

The validation process using synthetic EMG signals 

is presented in the following two tests with EMG 

signals with different number of active Motor Units. 

3.1.1 Test 1 

For this validation test, it was raised a synthetic 

EMG signal with the following characteristics: (1) 

simulation time: 1,000 ms; (2) sampling frequency: 

10,000 Hz; (3) number of Motor Units: 3; (4) 

signal-to-noise ratio: 20 dB. 

Fig. 3 presents the MUAPs detected by the software 

EMG decomposition system. The dashed lines and 

continuous indicate, respectively, the beginning and 

end of each MUAP. 

After the step of MUAPs detection, the next step is 

accomplished by the proposed system: MUAPs 

clustering. 

The step of MUAPs clustering, using Hidden 

Markov Model and Spectral Clustering, resulted in 

three morphologically distinct groups of MUAPs (Fig. 

4). This means that the system has detected 3 active 

Motor Units in the EMG signal analyzed. 

After the clustering stage, it is necessary to evaluate 

the quality of the clusters detected. It is necessary to 

evaluate the morphological cohesion between MUAPs 

belonging to a same group. 

For the evaluation of quality of MUAPs groups, the 

algorithm to DE (differential evolution) has been used 

[23]. This algorithm is designed to assess the quality of 

the MUAPs groups held by Hidden Markov Model and 
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Fig. 3  MUAPs detected in synthetic EMG signal, delimited by the dashed lines and vertical solid. 
 

 
Fig. 4  MUAPs groups detected in step of clustering: (a) 
group of MUAPs with standard waveform of type 1; (b) 
group of MUAPs with standard waveform of type 2; (c) 
group of MUAPs with standard waveform of type 3. 
 

Spectral Clustering. In other words, the DE will check 

if all MUAPs of a specific group really have the same 

morphological pattern. 

(1) MUAPs of Group 1 

Fig. 5 presents the result of evaluating the quality of 

MUAPs of Group 1, using the DE algorithm. After  

 
Fig. 5  Quality evaluation of MUAPs of Group 1 using 
differential evolution algorithm. 
 

running the DE, 100% of MUAPs converged to a 

single morphological pattern, indicating that the 

MUAPs of Group 1 is cohesive. 

(2) MUAPs of Group 2 

Fig. 6 presents the result of evaluating the quality of 

MUAPs of Group 2, using the DE algorithm. After 

running the DE, 100% of MUAPs converged to a 

single morphological pattern, indicating that the 

MUAPs of Group 2 is also cohesive. 

(3) MUAPs of Group 3 

Fig. 7 presents the result of evaluating the quality of 

MUAPs of Group 3, using the DE algorithm. After 
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Fig. 6  Quality evaluation of MUAPs of Group 2 using 
differential evolution algorithm. 
 

 
Fig. 7  Quality evaluation of MUAPs of Group 2 using 
differential evolution algorithm. 
 

running the DE, 100% of MUAPs converged to a 

single morphological pattern, indicating that the 

MUAPs of Group 3 is also cohesive. 

After the clustering stage, the authors have the 

amount of Motor Units active in the EMG signal and 

they also know the MUAPs that were generated by a 

particular Motor Unit. That way, it is possible to return 

to the EMG signal and determine the firing sequence of 

Motor Units (Fig. 8). 

Analyzing the correlation between firing sequence 

of Motor Units of the synthetic EMG signal with that 

generated through the proposed system, it was 

evaluated the correlation between these sequences and 

found to ρ = 0.99. 

3.1.2 Test 2 

For this validation test, there was raised a synthetic 

EMG signal with the following characteristics: (a) 

simulation time: 8,000 ms; (b) sampling frequency: 

10,000 Hz; (c) number of Motor Units: 5; (d) 

signal-to-noise ratio: 20 dB (Fig. 9). 

Initially, it was held the MUAPs detection of the 

EMG signal. After that, the step of MUAPs clustering, 

using Hidden Markov Model and Spectral Clustering, 

resulted in 5 groups of MUAPs, morphologically 

distinct (Fig. 10). 

In each one of the five groups of MUAPs, it was 

found that DE algorithm was able to validate the 

quality of the groups, it is, managed to detect only one 

morphological pattern in each group. In groups 2 and 3, 

DE achieved the convergence of 98% and 99% of the 

population of MUAPs, respectively. In the remaining 

groups, it was reached 100% of convergence with 

MUAPs that belonged to a single pattern. 

In this way, it is possible to infer that the Hidden 

Markov Model and Spectral Clustering algorithm 

reached a good quality in MUAPs clustering, as they 

showed a strong similarity of pattern between the 

members of all the groups analyzed. 

And also, the system provided the firing sequence 

of the Motor Units present in the EMG signal analysis. 

To assess the correctness of this sequence, it was 

calculated the correlation between it and the original 

sequence that generated the synthetic signal, and was 

obtained a correlation coefficient ρ = 0.98, which 

indicates a high correlation between the two 

sequences. 
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Fig. 8  Result of the proposed system: firing sequence of Motor Units. 
 

 
Fig. 9  Synthetic EMG signal with five Motor Units actives. 
 

3.2 Real EMG Signals 

In the validation process with real EMG signals, 

tests were conducted with the signals of the database 

avaliable by Ref. [10], using the two channels collected 

at array of electrodes. 

For the validation of the results, the correlations of 

system responses between the signals from the two 

array of electrodes were observed. Table 1 presents a 

summary of the application of the system in the EMG 

signals collected from 15 volunteers. For each 

volunteer, the following variables are presented: 

(1) The amount of Motor Units detected in EMG 

signal collected from the electrode 1; 

(2) The amount of Motor Units detected in EMG 

signal collected from the electrode 2; 

(3) The correlation coefficient ρ between the firing 

sequence of the Motor Units of the two EMG signals 

collected by the two electrodes; 

(4) The average correlation coefficient ρ between 

morphological patterns of MUAPs detected between the 

two EMG signals, collected by the two electrodes. This 

average was calculated on the basis of the correlation 

coefficient between all groups of morphological patterns 
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Fig. 10  MUAPs groups detected in step of clustering: (a) 
group of MUAPs with standard waveform of type 1; (b) 
group of MUAPs with standard waveform of type 2; (c) 
group of MUAPs with standard waveform of type 3; (d) 
group of MUAPs with standard waveform of type 4; (e) 
group of MUAPs with standard waveform of type 5. 
 

of MUAPs detected in the two EMG signals. 

The results obtained with the real EMG signals are 

consistent with those that were expected for the 

validation of the proposed system. The choice of this 

database of EMG signals is due mostly to the fact of 

having available signals collected by EMG electrodes 

very close of each other (array of electrodes). This 

setup was a necessary condition in order to validate the  

Table 1  Summary of the application of the proposed 
system in the real EMG signals. 

Volunteer

Motor 
Units 
Electrode 
1 

Motor 
Units 
Electrode 
2 

ρ sequences ρ MUAPS

1 2 2 0.88 0.91 

2 3 3 0.92 0.89 

3 3 3 0.89 0.91 

4 2 2 0.90 0.75 

5 3 3 0.93 0.79 

6 2 2 0.86 0.87 

7 2 2 0.92 0.96 

8 3 3 0.88 0.93 

9 3 3 0.88 0.91 

10 2 2 0.82 0.77 

11 2 2 0.88 0.91 

12 3 3 0.90 0.94 

13 2 2 0.70 0.84 

14 4 4 0.71 0.83 

15 3 3 0.88 0.94 
 

proposed system for real EMG signals, because, due to 

the proximity of the electrodes, the decomposition of 

EMG signals detected by them should be consistent. 

Thus, the consistency between the results obtained 

from these two channels EMG, denotes the correctness 

of developed system. 

4. Discussion 

In both types of tests conducted with synthetic and 

real EMG signals, the system provided the following 

results on the decomposition of surface EMG signal: 

(1) Amount of actives Motor Units; 

(2) Morphological pattern of the MUAP generated 

by each Motor Unit; 

(3) Firing sequence of the Motor Units. 

In tests conducted with synthetic EMG signals, the 

system has detected correctly the amount of active 

Motor Units and presented, also, a strong correlation 

between the firing sequence of Motor Units generated 

by the proposed system and by the synthetic 

signal-whose characteristics is already known. 

The detection of the firing sequence of the Motor 

Units was noted in Table 1, by examining the 

correlation coefficient ρ, there was a strong correlation 
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between all Motor Units firing sequences analyzed. 

This result demonstrates that the developed system 

detected the correct sequence of firing of Motor Units, 

because there was consistency in the correlation 

between the two Motor Units firing sequences detected 

by EMG signal collected by the two array of electrodes. 

And also, in the analysis of synthetic signal, the system 

showed a high correlation coefficient between the 

firing sequence of the Motor Units detected by EMG 

signal analysis and synthetic string that, that in fact 

generated this signal EMG. 

And also, when comparing the morphologic pattern 

generated by the system for each EMG signal analyzed 

of the array of electrode, the system also obtained a 

strong correlation in all cases analyzed. To the two 

electrodes, the system detected morphological patterns 

of MUAPs similar, that is, detected the same amount of 

active Motor Units and the same pattern of 

morphological MUAP generated by each one of them. 

In that way, it can be inferred that the system provided 

answers consistent with those that were proposed. 

It is important to note the use of DE algorithm for the 

quality evaluation of a group of MUAPs and, also, in 

the presentation of the morphological pattern of a 

certain group of MUAPs: The final result of the 

application of DE algorithm is exactly the 

morphological pattern of the MUAP generated by the 

Motor Unit. In all tests, it was obtained a convergence 

of 100% of the MUAPs population for a single 

morphological pattern, when considered the 

neighborhood next to the pattern detected. This result 

reflects very well the good functioning of the 

probabilistic selection implemented in DE algorithm, 

because it shows that the population, in no one of the 

cases analyzed, became stuck in a great local and 

prevented from reaching the great global. 

It was possible to verify that the optimization of the 

parameters of the Hidden Markov Model with DE 

algorithm also proved to be effective, whereas in all 

cases analyzed, HMM was raised so that the likelihood 

between the HMM of MUAPs of EMG signal 

presented the proximity necessary to be accomplished 

the clustering, using the Spectral Algorithm, and thus 

the amount of active Motor Units could be detected. If 

HMM had not been raised correctly, this condition 

would have been reflected in the clustering stage, 

because it would not be possible to correctly identify 

the amount of active Motor Units and the group 

cohesion of MUAPs would not be detected 

successfully when evaluated with DE. 

Nevertheless, other existing systems of 

decomposition of surface EMG signals use predefined 

patterns of MUAPs to accomplish the grouping of 

MUAPs and, thus, detect the amount of active Motor 

Units. However, the proposed system does not need to 

know a priori which is a pattern of MUAP, it will be 

created a Hidden Markov Model for each MUAP 

detected and, through the spectral clustering, they are 

clustered in groups appropriate. Thus, the non-use of 

predefined patterns of MUAPs is also a differential 

technique implemented in this project. 

The representation of each MUAP by a HMM, using 

the technique of extraction of characteristics is a 

scientific advance in the research area of 

decomposition of surface EMG signal, since it is not 

necessary to make the supervised clustering of MUAPs, 

i.e., it is not necessary to know a priori the possible 

MUAPs patterns that should be found in the EMG 

signal. 

It is therefore possible to conclude that the 

probabilistic graphic Hidden Markov Model, spectral 

clustering technique and the differential evolution have 

potential applicability in the decomposition of surface 

EMG signals. And also, these tools presented coherent 

and cohesive results across all validation tests carried 

out. Thus, this set of tools is promising and may be a 

new direction for the research in the area of 

decomposition of surface EMG signal. 

5. Conclusions 

Through the results obtained it is possible to infer that 

the proposed system of decomposition of surface EMG 
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signal presented a functioning consistent with the 

expected results. Thus, it is possible to affirm that the 

developed system presented coherent results in terms of: 

(1) Identification of the amount of active Motor 

Units in EMG signal; 

(2) Presentation of morphological patterns of 

MUAPs presented in EMG signal; 

(3) Identification of the firing sequence of Motor 

Units in EMG signal. 

It is important to emphasize the potentiality of the 

Hidden Markov Model and Spectral Clustering for the 

process of MUAP clustering of the surface EMG signal. 

And also, the DE algorithm proved to be a good tool for 

the process of internal quality assessment of MUAPs 

groups. These tools presented in this article, which had 

not been used in other researches in the area of 

decomposition of EMG signals, provided excellent 

results for surface EMG signal processing. 

The developed system is not intended to solve all 

problems concerning the decomposition of surface 

EMG signals, but he presents a new approach and new 

techniques which produce useful results to clinical 

practice and Biofeedback therapies. The architecture of 

the proposed model constitutes a breakthrough in the 

research of decomposition of surface electromyography. 

Despite the innovations of the techniques proposed 

in the developed system and of the satisfactory results, 

the proposed system has some limitations: 

(1) The validation of the system was carried out only 

for the First Interosseous Dorsal muscle I; 

(2) The system does not treat the phenomenon 

cross-talk and the superposition of MUAPs; 

(3) The system does not consider the case of two or 

more Motor Units generate the same morphological 

pattern of MUAP, that is, it is considered that each 

Motor Unit generates a morphological pattern of 

MUAP distinguished; 

(4) The system considers that a Motor Unit always 

generates a same pattern of MUAP. 

From the developed work, other studies may be 

performed to improve the results and the application of 

the proposed system: 

(1) Investigation of the use of this system in 

Biofeedback techniques; 

(2) Validation, application and analysis of the 

developed system in EMG signals from other muscle 

groups; 

(3) Investigation of the use of this system in clinical 

practice; 

(4) Calculating the probability of firing of Motor Units. 
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