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Abstract: There is an increasing trend to apply GNSS continuous observation of short baselines to the monitoring of engineering works, 
such as bridges and dams, for their structural analysis and safety control. In the case of large dams, one important application of the 
GNSS continuous observation is the establishment of early warning systems that demand accurate, frequently updated information and 
where the analysis of the baseline time series, in order to separate signal from noise is mandatory. The paper presents a study on the 
performance of linear filters of the asymmetric moving average type to smooth baseline time series. The transfer function of the filter is 
adopted as a smoothing criterion to choose an adequate order for the moving average, in face of the spectral density function of the 
baseline time series. One series of measurements of a short test baseline (325 m), materialized in the campus of the National Laboratory 
for Civil Engineering, is used as an example of the proposed strategy. 
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1. Introduction 

The continuous observation of short baseline vectors 

defined by permanent GNSS stations has been 

increasingly applied to the monitoring of engineering 

works, such as bridges, buildings and dams, for 

structural analysis with safety control purposes. The 

sampling frequency and the processing frequency of 

the phase observations must be adjusted to the type of 

work: the monitoring of a bridge, due to the vibrations 

caused by the wind and vehicle loading, needs a much 

higher processing frequency than the monitoring of a 

dam, unless seismic actions are to be taken into 

account. 

The use of GNSS permanent stations with 

continuous observation in warning systems of large 

engineering works requires, on one hand, short 

processing intervals, and on the other hand, real time 

high quality results. The asymmetric filters of the 

simple moving average type, that act as low-pass filters, 

appear to be one solution to the problem. The paper 
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presents a study on the properties of this type of filters, 

in particular, on the performance of their gain and 

phase shift functions.  

The concepts are applied to a time series resulting 

from the observation of a short (325 m) test baseline 

temporarily materialized in the campus of the National 

Laboratory for Civil Engineering (NLCE), over three 

days. The observations were carried out with two 

TOPCON dual frequency GNSS receivers with 

chokering antennae and processed with the 

PINNACLE software. The measurements were carried 

out with a sampling frequency of 0.2 Hz and the 

processing interval was five minutes [1]. 

2. Linear Filters, Gain and Phase Shift 

A linear combination of the terms of a time series 

(x0,x1,...,xn): 
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where the m (= q + r + 1) coefficients wj are weights, is 

said to be a linear filter of order m. If q = r and wj = w–j, 

the filter is said to be symmetric. If the weights sum up 

to one, the filter is called a weighted moving average. If 
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the weights are equal and sum up to one, the filter is 

called a simple moving average [2]. 

The application of a filter to a time series (the input 

time series (x0, x1,...,xn)) produces a new time series 

(the output time series (y0, y1,...,yn)). The spectral 

characteristics of the output series are related to the 

spectral characteristics of the input series by means of 

the transfer function of the filter. The transfer function 

is a complex function with arguments in the frequency 

domain. The modulus of the transfer function is called 

the gain of the filter [3]. The argument of the transfer 

function is called the phase shift of the filter [3]. 

If the gain of the filter, for a given angular frequency 

(), is greater than one, the filter amplifies the input 

series in that frequency. Otherwise, if the gain of the 

filter, for (), is lesser than one, the filter softens the 

input series in that frequency.  

Besides the change in amplitude the filter may also 

introduce a phase shift on the output time series 

depending on the frequency. Though the symmetric 

filters do not introduce significant phase shifts, the 

asymmetric ones do. 

3. The Asymmetric Simple Moving Averages 

The asymmetric simple moving averages (ASMA) 

of order m (= q+1), which have constant weights (wj = 

m–1), may be expressed as: 
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The gain function of an ASMA filter of order m (= 

q+1) is: 
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Fig. 1 presents the graphics of the gain function, for 

ASMA filters of orders m = 6, 12, 24, 36 and 48. The 

(dimensionless) values of the gain functions are plotted 

against periods from 24 h to 0 h. The Figure shows that 

all these filters are low-pass filters. The 48th order 

ASMA filter begins to reduce the amplitudes at lower 

frequencies, i.e., at higher periods, than the 36th order 

ASMA filter, and so on. The 6th order ASMA is the 

more permissive filter to high frequencies, i.e., to low 

periods. 

The phase-shift function of a filter originates a time 

delay () in the output (filtered) time series. The 

phase-shift of an ASMA filter of order m (= q+1) is: 
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Fig. 1  The gain function of ASMA filters of order 6, 12, 24, 36 and 48. The periods, in the x-axis, are in hours. The gains, in the 
y-axis, are dimensionless. 
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The time delay originated by the phase-shift is given 

by: 

p
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where p is the period. 

Fig. 2 presents the graphics of the phase-shift 

function for ASMA filters of orders m = 6, 12, 24, 36 

and 48. The values of the phase-shift function are 

plotted for the frequencies correspondent to periods 

between 24 h and 0 h. The Figure shows that, for the 

same period, the phase-shift increases with the order of 

the ASMA filter. 

According to the Fig. 2, for a semidiurnal wave, the 

6th order ASMA filter suffers a phase-shift of 20º, 

which corresponds to a 40 minutes time delay, and the 

48th order ASMA filter suffers a phase shift of 180º, 

which corresponds to a 6 hour delay. The time delay of 

a high order ASMA filter may overcome the benefit of 

its smoothing properties. 

4. The Periodogram 

Let x(t) to be a continuous real function defined in 

the time interval [0, T], which values: 
)t(xx,),t(xx),t(x),t(xx 1nn221100    (6) 

are known (or measured) on n equally spaced epochs 

(tk), such that the (constant) sampling interval t 

verifies: 
Tt)1n(                (7) 

The function x(t) may be expanded in a finite 

Fourier series in the time interval [0, T] [4]: 
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where: (1) r = n/2 and s = r – 1, if n is even; (2) r = s = (n 

– 1)/2, if n is odd. The angular frequencies of the 

Fourier series (8) are: 
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The periodogram of the time series is the graphic of the 

spectral density function: 
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plotted as a function of the periods (pk = T/k). The 

maximum values of the periodogram (10) are attained 

at the periods of order k with the most significant 

amplitudes (ak, bk, ck). 

 
Fig. 2  The phase-shift of ASMA filters of order 6, 12, 24, 36 and 48. The periods, in the x-axis, are in hours. The phase-shifts, 
in the y-axis, are in degrees. 
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5. The Test Baseline 

A short baseline (325 m), materialized temporarily 

at the campus of the NLCE, was observed continuously 

over three days, beginning at 0 h of the first day. The 

observations were carried out, with a sampling 

frequency of 0.2 Hz, using two dual frequency GNSS 

receivers and chokering antennae from TOPCON [1]. 

The carrier phase observations were processed with 

five minute intervals.  

A time series of 863 baseline vectors was obtained. 

The Cartesian components (x, y, z) were transformed to 

the topocentric components: North-South (N), 

East-West (E) and Up-Down (U). The topocentric 

components measured in the first epoch were 

subtracted from all the others, originating three new 

series of 862 topocentric component changes (dN, dE, 

dU). 

Fourier expansions in the interval [0, T = 3 days] 

were carried out for the two time series of the 

topocentric component changes (dN and dE), in order 

to compute the spectral density functions and draw the 

correspondent periodograms. Fig. 3 presents the 

periodogram of the observed North-South component 

changes (dN) for periods between three days (72 hours) 

and 10 minutes (the Nyquist frequency). The Figure 

shows that the most significant values are in the range 

of the higher periods (lower frequencies). 

The two time series of North-South (dN) and 

East-West (dE) component changes were processed 

with a 12th order ASMA filter. The two output time 

series (dN12 and (dE12) were expanded in a finite 

Fourier series in the same interval [0, T = 3 days]. The 

resulting periodogram for the (dN12) time series is 

presented at the Fig. 4. The comparative analysis of the 

periodograms of the Figs. 3–4 shows the effect of the 

12th order ASMA filter. The higher frequencies (lower 

periods, bellow two hours) were almost annihilated by 

the filter. 

To quantify the visual comparison of the Figs. 3–4, 

the Table 1 presents the five highest values of the 

spectral density functions (c) of the dN and dE time 

series (before filtering) as well as the correspondent 

values of the spectral density functions (c12) of the time 

series dN and dE (after filtering) and the correspondent 

periods (in hours). The table shows that the amplitudes 

that correspond to the larger periods remain unchanged 

though the amplitudes that correspond to the smaller 

periods are significantly reduced. 

 
 

 
Fig. 3  Periodogram of the observed North-South component changes (dN) time series. The periods, in the x-axis, are in hours 
(the scale is not uniform). The amplitudes, in the y-axis, are in mm. 
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Fig. 4  Periodogram of the North-South component changes (dN) time series, after filtering with a 12th order ASMA. The 
periods, in the x-axis, are in hours (the scale is not uniform). The amplitudes, in the y-axis, are in mm. 
 

Table 1  Maximum values of the spectral density function and the correspondent periods. 

dN dE 

period c c12 period c c12 

12.00 h 0.573 mm 0.565 mm 12.00 h 0.327 mm 0.324 mm 

24.00 h 0.499 mm 0.491 mm 00.75 h 0.321 mm 0.070 mm 

01.00 h 0.437 mm 0.007 mm 01.30 h 0.296 mm 0.091 mm 

03.00 h 0.395 mm 0.324 mm 02.00 h 0.265 mm 0.169 mm 

00.92 h 0.389 mm 0.024 mm 00.56 h 0.262 mm 0.031 mm 
 

 
Fig. 5  Graphics of the observed North-South component changes (dN) time series, the spectral composition of the four most 
significant frequencies and the time series after filtering with a 12th order ASMA. The periods, in the x-axis, are in hours. The 
amplitudes, in the y-axis, are in mm. 
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According to the Table 1, in both cases of the dN and 

the dE time series, the amplitude of the dominant 

harmonic, which is a semidiurnal harmonic, is not 

affected by the 12th order ASMA filter. In the case of 

the dN time series, the amplitude of the second 

dominant harmonic, which is a diurnal harmonic, is not 

also affected by the filter.  

6. Smoothing the observed time series 

The spectral decomposition may be used to smooth 

the observed time series (dN, dE, dU). The Fig. 5 

presents the graphic of the observed (dN) time series 

and the graphic of its reconstruction with a composition 

of the four more significant frequencies: the 

semidiurnal, the diurnal, etc. (see Table 1). The Figure 

also presents the result of the application of a 12th 

order ASMA filter to the observed (dN) time series. A 

quick look to the graphics shows that the spectral 

composition reduces the variability of the data roughly 

to a 2 mm band, while the 12th order ASMA filter has 

a slightly worse performance in this domain.     

The comparison of the graphic of the spectral 

composition to the graphic of the 12th order ASMA 

filtered series (Fig. 4) shows differences justifiable by 

the criteria used in the definition of these two filters: (1) 

The spectral composition uses the most significant 

frequencies, whether they are high or low; (2) The 

ASMA filter, as a low-pass filter, uses the low 

frequencies, whether they are significant or not. 

7. Conclusions 

The 12th order ASMA filter is adequate to remove 

the high frequencies and therefore is fit to smooth the 

observed time series as a low-pass filter. However, the 

12th ASMA filter has a significant phase shift for the 

lower frequencies that may turn the symmetric filters a 

better choice, for some applications. 

The experiment presented in the paper is rather a 

methodological exercise: further experiments over 

longer observation intervals, with different sampling 

and processing frequencies should be carried out and 

other kinds of filters should be experimented. 
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