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Abstract: Modeling pavement granular materials have played a significant role in pavement design procedure. Modeling can be 
through an experimental or numerical approach to predict the granular behavior during cyclic loading. Current design process in 
western Australia is based on linear elastic analysis of layers. The analysis is largely performed through a well-known program 
CIRCLY which is applied to model bound pavement material behavior. The KENLAYER is one of the common pavement software 
models used for pavement design in the United State which performs non-linear analysis for granular materials. Alternatively, a general 
finite element program such as ABAQUS can be used to model the complicated behavior of multilayer granular materials. This study is 
to compare results of numerical modeling with these three programs on a sample constructed pavement model. Moreover, a parametric 
study on the effects of Poisson ratio over the surface deflection of the flexible pavement has been conducted. It is found that increase in 
Poisson ratio of asphalt layer will increase the surface deflection while the increase in Poisson ratio of granular layers decreases the 
surface deflection. 
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1. Introduction 

Design and construction procedures for 

transportation infrastructure such as road pavements, 

railway formations, and airfield pavements are aimed 

at assessing the permanent deformations and fatigue 

cracking of the bound or unbound layers. Currently, 

there is a growing trend to use computer software in 

design and analysis of pavement materials, however, 

each of these programs has its own specific ability and 

limitations. These computer programs are manipulated 

to model (called numerical modeling) behavior of 

flexible pavement under certain condition. Two 

different approaches are usual: first approach is using 

an analytical solution provided from theory of 

elasticity with calibration factors to match empirically 

observed behavior while second approach is 

implementation of finite element technique to solve 

general equilibrium of the whole layered system.    

The advantages of numerical models for designers 
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and researches are that they are considerably cheaper 

and they provide very rapid computation on standard 

computers. Moreover, in numerical modeling the full 

layered pavement system behavior can be observed and 

investigated.  

1.1 Review of Elastic Computer Programs: CIRCLY 

5.0 and KENLAYER 

Based on linear elastic theory, an analytical solution 

of layered semi-infinite half-space can be calculated. 

The assumptions are that stress-strain behavior is linear 

elastic and the pavement domain has no limit in 

horizontal direction. In vertical direction, there is a 

horizontal stress-free surface at top of the medium 

while the bottom is extended to infinite depth. 

Two well-accepted pavement design programs, 

KENLAYER and CIRCLY, calculate pavement 

system responses (stress, strain, deformation, etc.) 

based on elastic theory. 

The KENLAYER Computer Program (Huang [1, 2]) 

is accepted computer program which can model 

pavement layers as linear elastic, nonlinear elastic or as 
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Mohr-Coulomb elastoplastic materials. The main core 

of KENLAYER is the solution for an elastic multilayer 

system under a circular loaded area. 

The KENLAYER Computer Program can only be 

used to analyze flexible pavements with no joints. This 

program can use the superposition principle for 

multiple wheels. It can also use an iterative technique 

to solve non-linear problems [3]. 

Gedafa [3] used KENLAYER and HDM-4 to 

analyze flexible pavement performance. In this study, 

these two computer programs have been compared. It 

is concluded that KENLAYER is can be more easily 

applied to performance analysis while HDM-4 is a 

more powerful tool in the field of strategy analysis.  

CIRCLY [4] is a computer program for pavement 

design and can be applied to material analysis. It can 

model materials either isotropic or anisotropic. The 

load is considered as the tyre pressure uniformly 

distributed over a circular area. The analysis is 

assumed to be under static condition and superposition 

principle is valid.  

CIRCLY was developed as a geomechanical 

program in the Division of Applied Geomechanics of 

CSIRO (Commonwealth Scientific and Industrial 

Research Organization) of Australia. Then in 1987, the 

NAASRA (National Association of Australian State 

Road Authorities) used CRICLY in the Guide to 

Structural Design of Pavements. This is the basis for 

“Guide to Structural Design of Pavements” developed 

and modified by AUSTROADS (formerly NAASRA) 

in 1992 and 2004. The CIRCLY 5.0 (current version of 

the program) is written in FORTRAN IV [5].   

One of the referred studies in which an interesting 

comparison has been presented was undertaken by 

Ullidtz [6]. In this paper, six pavement program 

including CIRCLY and KENLAYER were compared 

against the measured field data. Field data is collected 

from three full scale pavement projects from CEDEX 

(Centro De Estudios Y Experimentacion De Obras 

Publicas) in Spain, DTU (Technical University of 

Denmark) in Denmark and LAVOC (Laboratoire Des 

Voies De Circulation) in Switzerland. 

A review of the mechanistic design approach in 

pavement design has been undertaken by Wardle     

et al. [7]. According to Wardle, “unbound layers 

should be ‘sub-layered’ in order to better model their 

non-linear response. If a non-layered model is used, the 

computed strains caused by a vehicle will be different, 

and the failure criterion that is then derived from 

performance data using the different strains will also be 

different.” In this study, CIRCLY is manipulated to 

calculate the vertical strain for 4 t and 20 t wheel load 

and the results is plotted in different depth.  

Hadi and Symons [8] have compared results of the 

CIRCLY program with a finite element model 

constructed in MSC/NASTRAN and STRAND. 

According to their study, CIRCLY resulted in a lower 

number of allowable repetitions based on 

AUSTROADS recommended loading. 

Tutumluer et al. [9] compared the results of 

pavement modeling through finite element program 

GT-PAVE and CIRCLY for a cross anisotropic model. 

In this study, the two programs were used to calculate 

the elastic response of layered pavement system. 

Although both of these programs are based on an 

analytical solution, they are unable to produce “the 

exact” results. The reason is that in both programs, the 

calculation approach is numerical and there is a level of 

approximation in each. 

1.2 Review of ABAQUS Application in Flexible 

Pavement Modeling 

Advancing technology in computers is making it 

more attractive for engineers to use advanced 

computational methods instead of analytical solutions 

limited by computer power. One of the most accepted 

methods among the available options is the FEM (finite 

element method). The main advantage of FEM-based 

programs is their ability to model various types of 

mechanical loadings and behaviors in a two or three 

dimensional medium. 

Recently the ABAQUS program, a general purpose 
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FEM program, has been employed to model layered 

flexible pavement system. 

Zaghloul and White [10] have used ABAQUS to 

model the three dimensional behavior of a pavement 

layered system under dynamic loading.  

Mallela and George [11], Uddin et al. [12] and Cho 

et al. [13] also employed ABAQUS in a three 

dimensional model. Kim et al. [14-16] have used the 

general purpose finite element computer program 

ABAQUS in their study on modeling the nonlinear 

behavior of the stress-dependent pavement foundation 

(subgrade).  

Vuong [17] has investigated the effect of repeated 

loading on pavement granular materials. In this study, a 

nonlinear finite element has been used to predict the 

stress-strain response of the pavement system. Many 

loading conditions, including single, tandem, tri and 

quad axle have been chosen to validate the finite 

element analysis results.  

Bodhinayake [5] has used the ABAQUS to model 

nonlinearity in subgrade soil while other pavement 

layers has been modeled as a linear elastic material.  

In the current study, the ABAQUS software package 

is used to determine its capacity and compare the 

output with the KENLAYER and CIRCLY programs. 

1.3 Current Study 

The main purpose of this research is to compare 

three different programs which use different 

approaches to predict the behavior of pavement 

materials. To do so, three well-known programs which 

are: KENLAYER, CIRCLY and ABAQUS are 

manipulated to construct a sample layered pavement 

system. A fixed geometry and load condition is chosen 

for analysis. The analysis has been repeated whilst 

varying Poisson ratio individually to the asphalt layer, 

granular layer and subgrade to determine the sensitivity 

to this parameter, the results of analysis from each 

program have been extracted and compared. 

2. Numerical Modeling 

While there is a traditional inclination towards 

laboratory and field tests in pavement engineering, 

recently the numerical modeling option has attracted 

many researchers. Duncan et al. [18] first used the finite 

element approach in flexible pavements analysis. Huang 

[19] calculated stresses and displacements in nonlinear 

soil through finite element modeling. Since then many 

authors have used numerical modeling to calculate 

induced damage in pavement layers, including the 

asphalt layer, base and subgrade. 

In the first step of this study, a sample layered 

pavement system has been modeled in CIRCLY, 

KENLAYER and ABAQUS. The result of surface 

deflection is then plotted and compared. In the next 

step, different Poisson ratios for each layer have been 

modeled and the results of the three programs are 

presented.  

2.1 Characteristics of the Model 

A sample section of a layered pavement with same 

thickness, geometry and loading characteristics is 

modeled in the aforementioned programs. Fig. 1 

illustrates the geometry of the modeled pavement.  

The material properties of the first trial run are listed 

in Table 1. All layers are assumed to behave linear 

elastically under a 0.75 MPa pressure loading, which is 

applied over a circular area of 92 mm radius. This is 

taken as a circular representation of the tyre pressure in 

the AUSTROADS method employed in CIRCLY 

(AUSTROADS [20]). 

Materials properties for the first analysis are 

presented in Table 1. 

2.2 Constructed Model in KENLAYER and CIRCLY 

KENLAYER and CIRCLY are based on elastic 

theory. In three-dimensional elastic analysis, the 

stresses and strains are related to each other. Eq. (1) 

shows this relation [21]: 
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The first step of the analysis is performed to verify 

the finite element model accuracy against the elastic 

solution models. The results of surface deflections 

calculated by each model are presented in Fig. 4. 

Whilst an acceptable agreement is observed, the 

surface deflection determined by ABAQUS is less than 

what is determined by KENLAYER and CIRCLY. It 

can be interpreted that the finite element mesh is 

behaving slightly “stiffer” than the analytical solution. 

3. Effect of Poisson Ratio on the Numerical 
Results 

The next step of this study was to determine the 

effect of variation in Poisson’s ratio on the numerical 

prediction of surface deflection for the constructed 

model. This was achieved by applying six different 

Poisson ratios for each layer and determining the 

vertical displacement beneath the center of the tyre 

contact area. In each case where the Poisson’s ratio of a 

selected layer is modified, the material properties for 

all other layers are maintained constant as presented in 

Table 1. For example, when the Poisson’s ratio for 

asphalt layer is varying from 0.2 to 0.45, the Poisson 

ratio for the base and subgrade are assumed to be 0.35 

and 0.4, respectively.  

It is worth mentioning that the range of assumed 

Poisson ratios is beyond the accepted ranges, such as 

0.2 for asphalt layer or 0.45 for granular base layer, but 

have been applied solely to investigate the trend in the 

behavior of the model and determine the sensitivity of 

the models to this parameter.  

Figs. 5-7 illustrate the results of surface deflection 

for the variations in Poisson’s ratios in each layer. For 

comparison purposes the results obtained from the 

three programs are presented conjointly.   

Fig. 5 shows the effect of variations of Poisons ratio 

on the asphalt layer, and whilst the numerical 

magnitude of the calculation is different, the trend is 

the same for each model.  

Fig. 6 shows the effect of variations of Poisons ratio 

on the base layer, and whilst the numerical magnitude 

of the calculation is different, the trend is the same for 

each model.  

It can be seen that CIRCLY shows the largest values 

for the deflection in all cases, while the ABAQUS 

values are the lowest, and KENLAYER gives a result 

between these two. 

However, the variation in the Poisson ratio for the 

base layer and asphalt layers leads to opposite trends in 

surface deflection. The increase of the Poisson ratio for 
 

 
Fig. 4  Comparison of surface deflection.  
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