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Abstract: There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures 
and core structures. The outrigger and belt truss systems are efficient structures for drift control and base moment reduction in tall 
buildings where the core alone is not rigid enough to resist lateral loads. Perimeter columns are mobilized for increasing the effective 
width of the structure, and they developed tension in the windward columns and compression in the leeward columns. Optimum 
locations for the outriggers have been studied because of the influence on the top displacement and base moment in the core. It was 
analyzed the optimal position for two to seven outriggers and belt trusses, aiming to achieve minimum bending moment and minimum 
drift. 
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1. Introduction 

The history of tall buildings can be traced back to 

19th century, in the United States of America, where 

most of them where built. Nowadays the trend of 

building high-rise structures can be associated with 

countries like China, United Arab Emirates, Malaysia 

or Singapore. As high-rise buildings are stretching 

towards the sky, problems with top deflection and base 

moment in the core can govern the choice and design of 

the structural system. Outrigger and belt truss 

structures represent a very efficient structural system 

because of the outriggers that reduce the top deflection 

and the moment at the core base. This is confirmed by 

the numerous core supported tall buildings that 

incorporate outriggers.  

Approximate methods were proposed by several 

authors: Taranath [1] studied the optimum location of a 

single outrigger and two outriggers respectively, by 
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replacing the outriggers, considered to be infinitely 

rigid, with a restraining spring; Smith and Coull [2] 

chose a compatibility method where the rotation of the 

core at outrigger level is equal to the outrigger rotation. 

The structure was considered to have uniform core, 

columns and outriggers throughout the height. The 

optimum location was found by maximizing the top 

deflection reduction and a non-dimensional 

characteristic parameter ω was introduced in order to 

study the performance of this type of structures; Wu 

and Li [3] studied the performance of structures with 

multiple outriggers subjected to horizontal loads, 

uniformly or triangularly distributed. The influence of 

outrigger positions and stiffness of core, columns and 

outriggers on the fundamental vibration period of the 

structure was also analysed; Hoenderkamp and Bakker 

[4] proposed a graphical preliminary analysis method 

for structures with braced frames core and outriggers. 

Compared to the method proposed by Smith and 

Coull [2], which includes the bending stiffness of the 

core and outriggers and the axial rigidity of the 

columns, Hoenderkamp and Bakker’s method [4] has 

the advantage of comprising two more values of 
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stiffness: racking shear stiffness of the braced frame 

and outriggers. Lee and Kim [5] conceptualized the 

outrigger-braced structure as a cantilever beam with 

rotational springs and took into consideration the 

shear rigidity of the core and outrigger. A two 

dimensional frame model was also developed by him, 

where each member of the structural system (core, 

outriggers and columns) were modeled as beam 

elements with shear rigidity considered.  

A problem with outriggers having too much stiffness 

is mentioned by Wu and Li [3], who draw attention on 

the issue of weak floors near this outrigger levels. The 

reduction of base moment is maximized while keeping 

the top drift under a required limit. Wu and Li [3] solve 

this problem of optimum design with constraints, with 

the help of a computer program developed in Matlab. 

This paper presents an optimum design problem 

similar to the one reported above, but solved using 

genetic algorithm.  

2. Review of Analytical Approach 

Smith and Coull [2] started their analysis by 

considering a two-outrigger structure, for which they 

wrote the two compatibility equations, written for each 

outrigger floor: the rotation of the core, at outrigger 

level, is equal to the outrigger rotation. The simplified 

form of the two equations is given as follows [2]: 

ଵሾܵ௩ܯ ൅ ܵ௛ሺܪ െ ଵሻሿݔ ൅ ܪଶܵ௛ሺܯ െ  ଵሻݔ

ൌ ݓ  
ൗܫܧ6 ሺܪଷ െ ଵݔ

ଷሻ              (1) 

ܪଵܵ௛ሺܯ െ xଶሻ ൅ ଶሾܵ௩ܯ ൅ ܵ௛ሺܪ െ  ଵሻሿݔ

ൌ ݓ
ൗܫܧ6 ሺܪଷ െ ଵݔ

ଷሻ              (2) 

where, Sh and Sv are: 
ܵ௛ ൌ 1

௧ܫܧ
ൗ ൅ 1

௖ܫܧ
ൗ      (3) 

ܵ௩ ൌ ݀
଴ܫܧ12

ൗ       (4) 

and M1 and M2 are the restraining moments introduced 

by the outrigger action; EIt, EI0 and EIc are the bending 

stiffness of the core, the effective bending stiffness of 

outriggers and axial stiffness of columns; H is the 

height of the core; x1 and x2 are the distances from the 

top to the outrigger levels; w is the uniform horizontal 

loading as shown in Fig. 1. 

The characteristic non-dimensional parameter ω, 

which is a function of core-column stiffness ratio and 

core-outrigger stiffness ratio, is given by the following 

expression [2]: 

߱ ൌ ܵ௩ ܵ௛ܪ⁄              (5) 

Eqs. (1) and (2) can be expressed in the matrix form, 

as well as the expression for the restraining moments 

introduced by the outriggers [3]: 

ܵ௛ܪ ൤
߱ ൅ ሺ1 െ ଵሻߦ 1 െ ଶߦ

1 െ ଶߦ ߱ ൅ ሺ1 െ ଶሻ൨ߦ
ିଵ

൜
ଵܯ
ଶܯ

ൠ ൌ

ଷܪݓ                                     ⁄௧ܫܧ6 ቊ
1 െ ଵߦ

ଷ

1 െ ଶߦ
ଷቋ            (6) 

൜
ଵܯ
ଶܯ

ൠ ൌ

         
௪ுమ

଺ாூ೟ௌ೓೓
ቊ

1 െ ଵߦ
ଷ

1 െ ଶߦ
ଷቋ · ൤

߱ ൅ ሺ1 െ ଵሻߦ 1 െ ଶߦ

1 െ ଶߦ ߱ ൅ ሺ1 െ ଶሻ൨ߦ
ିଵ

  (7) 

For a structure with n outriggers, Eq. (7) can be 

generalized in the following form [3]:  

ቐ

௥ଵܯ
.௥ଶܯ .
௥௡ܯ

ቑ ൌ
௪ுమ

଺ாூ೟ௌೡ
ሾܣሿሼܤሽ்          (8) 

The top drift and base core moment in a multi-level 

outrigger structure are also expressed in a matrix form 

[3]: 

∆଴ൌ
௪ுర

଼ாூ೟
െ

௪ுర

ଵଶாூ೟

ଵ

ாூ೟ௌ೓
ሼܤሽሾܣሿ்ሼܥሽ் ൌ

௪ுర

଼ாூ೟
െ ∆௘     (9) 

௫ܯ   ൌ
௪ுమ

ଶ
െ

௪ுమ

଺ாூ೟ௌ೓೓

ሼܤሽሾܣሿ்ሼ݁ሽ்      (10) 

where, ξ1 = x1/H, ξ2 = x2/H, ..., ξn = xn/H and  

ሾܣሿ ൌ ቎

߱ ൅ ሺ1 െ ଵሻߦ 1 െ ଶߦ … 1 െ ௡ߦ

1 െ ଶߦ ߱ ൅ ሺ1 െ ଶሻߦ … 1 െ …௡ߦ
1 െ ௡ߦ

…
1 െ ௡ߦ

…
…

…
߱ ൅ ሺ1 െ ௡ሻߦ

቏

ିଵ

(11) 

 ሼܤሽ ൌ ൛1 െ ଵߦ
ଷ 1 െ ଶߦ

ଷ  …  1 െ ௡ߦ
ଷൟ               (12) 

ሼܥሽ ൌ ൛1 െ ଵߦ
ଶ 1 െ ଶߦ

ଶ  …  1 െ ௡ߦ
ଶൟ             (13) 

ሼ݁ሽ ൌ ሼ1 1 …  1ሽ                              (14) 

3. Constrained Optimization Problem 

As mentioned by Wu and Li [3, 6], outrigger floors 

represent irregularities in the stiffness distribution of a 

tall building, and they cause the formation of weak 

storeys near the outrigger levels under wind or  

earthquake  action.  Zhang  et al.  [7]  studied  a  50  storeys 
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Table 2  Outrigger locations, core base moment and top drift for the example structure in all four cases.  

Case (ω) Outrigger positions ξ = (ξ1ξ2... ξn) Base moment in core (kNm) Top drift (m) 

Two outriggers (0.1377) (0.5141, 0.8300) 1.0085e + 005 0.5 

Three outriggers (0.1377) (0.5410, 0.7410, 0.9410) 9.0754e + 004 0.4878 

Four outriggers (0.1377) x = (0.3272, 0.5272, 0.7272, 0.9272) 8.7995e + 004 0.3710 

Five outriggers (0.1377) x = (0.1398, 0.3398, 0.5398, 0.7398, 0.9398) 8.7760e + 004 0.3427 
 

Table 3  Base moment and top drift in the structure for the four cases analyzed.  

Four outriggers  Five outriggers Six outriggers Seven outriggers 

ω = 0.05 ω = 0.122  ω = 0.05 ω = 0.122 ω = 0.05 ω = 0.122 ω = 0.185  ω = 0.05 ω = 0.122 ω = 0.185
Base moment 
(kNm) 

87,398 122,450  86,798 108,730 86,750 108,590 117,250  86,753 103,550 115,830 

Top drift (m) 0.6 0.6  0.569 0.6 0.503 0.57 0.6  0.483 0.54 0.597 

 

    

Fig. 4  Optimum location of four and five outriggers with different rigidities. 
 

    

Fig. 5  Optimum distribution of six and seven outriggers with different rigidities.  
 

4.2 Case Study No. 2 

A similar building but with a height of 240 m and 60 

floors will be analyzed by considering three different 

outrigger stiffness. This is achieved by varying the 

value of ω in those three cases. Only the outrigger 

rigidities are changed, while the bending stiffness and 

the column axial rigidity are taken as constants. The 

distance between two adjacent outrigger levels was 
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reduced to eight floors. Results are presented in Figs. 4 

and 5, regarding the distribution of outriggers 

throughout the height of the building (ξi) for the cases 

when the building has four, five, six and seven outriggers, 

respectively. Table 3 shows the results conserving the 

efficiency for each case: base moment and top drift. 

Results are analyzed in conclusion part of the article.   

5. Conclusions 

The following conclusions can be made from the 

above analyses: 

• For the first example building, the reduction 

efficiency for core base moment is almost the same for 

five and four outriggers, from another point of view, 

the top drift is lower in the five outriggers braced 

building case; 

• For the second example building, in all four cases 

(4-7 outriggers), the more rigid the outriggers, the 

higher the optimum location, for the case of seven 

outriggers the location of outriggers is dictated by the 

limit of eight floors between two adjacent outriggers. 

For the same building, if outriggers are made more 

rigid (ω = 0.05), there is no significant reduction of 

core base moment for more than four outriggers, but 

the top drift is reduced by almost 20%. In the case of ω 

= 0.122 (outriggers are more flexible), the reduction of 

core base moment is more significant from four 

outriggers to seven outriggers integrated in the building 

and reduction of top drift is 10%. This could be a good 

alternative to stiffer outrigger levels, which have the 

downside of forming weak floors near them. At the 

same time, in order to reduce the value of the structural 

parameter ω from 0.122 to 0.05 without changing the 

properties of the core and exterior columns, the rigidity 

of the outrigger has to be increased 10 times, in this 

case.  

This is not necessary the best option to be 

considered due to the same irregularity in stiffness 

distribution along the height. 
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