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Abstract: The formation of shear bands for time and length scales appropriate for deformation processes in the upper Lithosphere is 
investigated in plane strain finite element simulations under predominantly uniaxial extension and compression, respectively. The 
direction of gravity is assumed orthogonal to the extension/compression axis. Mathematically, the formation of shear zones may be 
explained as a consequence of changes in the type of the governing model equations. Such changes or bifurcations depend strongly on 
the details of the constitutive relationships such as strain softening, thermal or chemical effects, associated or non-associated—coaxial 
or non-coaxial flow rules. Here we focus on strain softening and coaxial and non-coaxial flow rules. In the simulations, we consider an 
initially rectangular domain with the dimensions L0, H0 in the horizontal, vertical directions, respectively. The domain is extended or 
compressed by prescribing a uniform, horizontal velocity field along one of the vertical boundaries while keeping the opposite 
boundary fixed. An important global descriptor of the deformation process is the relationship between the horizontal stress resultant 
(average horizontal stress) and the strain ln(L/L0), where L is the deformed length of the domain. The main goal of this paper is to 
investigate key factors influencing the phenomenology of the localization process such as flow rule, coaxial, non-coaxial and strain 
softening. Different origins of the mesh sensitivity of deformations involving localization are also investigated. 
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1. Introduction 

On a global scale, the continents drift as an integral 

part of the surface thermal boundary layer of the 

convection mantle. They have retained a distinct 

identity within the mantle flow for billions of years 

while developing a strong physical and chemical fabric 

along the way. Motions in the mantle are described by 

the equations of fluid dynamics for very large 

deformation. The rheology needed to describe 

deformation in the lithosphere is highly non-linear, and 

near the surface, where temperatures are less than 

approximately 600 oC, it becomes necessary to 

consider the role of plasticity [1, 2] and elasticity [3]. 

Structures experiencing large elastic-plastic 

deformations typically undergo a succession of 
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instabilities. For instance, a plate in extension will 

deform initially in a uniform fashion until, at a critical 

stress level, a neck forms around the symmetry axis of 

the deformation [4-11]. Subsequently, shear bands 

form within the region of the neck. Once the shear 

bands are established, the deformation of the plate is 

carried almost exclusively by the deformations of the 

bands, more or less passively accommodated by the 

elastic deformations of the surrounding material.  

Shear bands or faults are arguably the most important 

deformation mechanism in the upper lithosphere. They 

occur on many different scales, e.g., in the form of 

detachment faults in rift zones or as collapse 

mechanisms of geotechnical structures [12]. The stress 

and temperature conditions under which shear bands 

form depend strongly on the local material behavior and 

as such on the details of the constitutive relationships. If 

the flow rule is non-associated, e.g., if the pressure 
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sensitivity is not equal to the dilatancy factor relating the 

inelastic volume change to the equivalent plastic strain 

rate, then shear banding is possible under increasing 

stress, in the hardening regime [13, 14]. The stress level 

and the preferred band orientation also depend on 

whether the plastic strain rate has the same principal 

axes as the stress. If the latter is the case then the flow 

rule is designated as co-axial. Non-coaxial models have 

been proposed originally by de Josselin de Jong [15, 16]  

and Spencer [17, 18] in the context of granular materials. 

For Spencer the main motivation to consider 

non-coaxiality seemed to be the desire for a theory in 

which the stress and the velocity characteristics coincide. 

A number of researchers have considered the theory, 

looking at new derivations, various motivations and 

considering extensions [19-21]. A recent review is 

shown by Tordesillas et al. [22].  

In this paper, we will explore the role of 

non-coaxiality on shear banding in pure shear in 

compression and extension. The deformation and 

localization process is illustrated by results of large 

deformation finite element simulations for different 

sets of the strength parameters and loading rates. To 

facilitate quantitative comparisons, we also calculate 

the relationship between the average horizontal stress 

(stress resultant) conjugate to the prescribed boundary 

velocity and a strain measure for the horizontal 

extension of the (initially) rectangular domain under 

consideration. We assume incompressible 

deformations since the emphasis in this study is on 

large deformations. The equations of motion are 

integrated using an updated Lagrangian scheme. For 

the co-axial case we compare our results with previous 

results by Lemiale et al. [23].  

2. Constitutive Relationships 

2.1 Rigid Plastic Model 

We derive a simple basic plane-strain non-coaxial 

rigid plastic model by assuming that the inelastic 

deformation is carried by a single slip system (Fig. 1), 

which is oriented under either (/4 + /2) or (/4 + 

/2) to the direction of the largest (least compressive) 

principal stress. The angle  is the angle of 

non-coaxiality [15, 17, 24], which is the angle 

between the direction of largest principal stress and 

the direction of largest principal strain rate. The flow 

rule is coaxial if  = 0 and non-coaxial if   0. The 

flow rules proposed by Harris [25] and Moresi and 

Muhlhaus [9] are obtained for  = , where  is the 

Mohr-Coulomb angle of friction. The following 

relationship exists between the plastic stretching p
ijD , 

the shear and normal vectors (si and nj,   

respectively) in the drawing plane, and the shear strain 

rate p : 

)(
2 ijji

p
p

ij nsnsD 


       (1) 

The components of the shear and the normal vector 

in Eq. (1) depend on the orientation of the shear 

mechanism relative to the principal stress axes. In   

Fig. 1, the shear and normal vectors corresponding to 

the orientations +/(/4 + /2) are marked by the 

indexes (a) and (b), respectively. The components of 

the shear and normal vector can be expressed in terms 

of trigonometric functions of   (/4 + /2) where,  

is the angle between the spatial coordinate system and 

the axis of the larger principal stress (Fig. 1). Using the 

well-known relationships for the principal stress  

angle : 
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Fig. 1  Principal stresses ( III  , ) and slide systems (sa, na) 
and (sb, nb); (x1, x2) are the coordinates of a global, spatially 
fixed Cartesian coordinate system. 
 

where the + sign applies if (/4 + /2) is active, and the 

– sign applies if (/4 + /2) is active. Alternatively  

Eq. (3) may be written as: 

)sin(cos
2

 ijij

p
p

ijD 



      (4) 

where, 
ijijij p   

with 2/)( 2211  p  

and ij  being the Kronecker delta tensor, and 
T

ij QQ 4/4/ '   
 ,  
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It can be shown that 0 
ijij

 
and  

2/2/   ijijijij 
     

 (6) 

From Eqs. (4) and (6), it follows that: 

p
ij

p
ij

p DD2
             

(7) 

We assume that plastic flow takes place if the 

Mohr-Coulomb yield criterion is satisfied. In this case 

we have: 


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where, c is the cohesion and  is the angle of friction. 

2.2 Viscous-Plastic Model for Single Slip 

We follow the standard approach by decomposing 

the total strain rate into a viscous and a plastic part, i.e., 
p

ij
v
ijij DDD                 (9) 

We define 
p

ijD  according to Eq. (4) and for the 

viscous part of the stretching we assume  2/ij
v
ijD  ; 

insertion into Eq. (9) yields: 
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The plastic viscosity is defined as following: 
pp pc  /)sincos(  .  

Inverting Eq. (10) for the deviatoric stress ij  

yields: 
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The tensor 
ijD  is defined in analogy to 

ij  as 
TDQQD 4/4/  . 

For 0 , Eq. (11) reduces to a standard, co-axial, 

viscous-plastic model. In the rigid-plastic limit, 

 , we recover the rigid plastic model (4). 

Eq. (11) may be rewritten in a form more amenable 

for numerical analysis as: 
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For the rotation tensor Q in Eq. (13), we assume a 

rotation of /4 as in the first relationship of Eq. (5); the 

subscript /4 has been dropped for convenience of 

notation. The tensor L is symmetric with respect to 

interchange of I  j, k  j as it should, however, L is 

not invariant with respect to an interchange of the 

indexes i  k, j  l. This, however, means that the 

corresponding boundary value problems are non 

self-adjoint, i.e., the stiffness matrix in finite element 

calculations is non-symmetric which is similar to the 
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situation in non-associated plasticity. Indeed, the 

plastic flow rule given as Eq. (3) or Eq. (4) is 

non-associated. 

Recently, Muhlhaus et al. [26] formulated a 

non-coaxial model based on double slip mechanism 

within the framework of a Cosserat continuum theory. 

For the double slip model, there are two plastic strain 

rates governing the flow rule, only one of which can be 

determined from the yield criterion. A closure for the 

other is proposed. 

2.3 Softening Model 

The effect of material damage accumulation, e.g., 

through micro-crack growth or porosity nucleation is 

considered by the following simple strain softening 

relationship proposed by Moresi and Muhlhaus [9]: 

)/,1min()( 00    pcccc     (14) 

where, 0c  is the initial cohesion, c is the residual 

cohesion and 
p is the accumulated plastic strain, i.e.,
p

ij
p

ij
p DDdtd 2/  ; the parameter   is the value of 

the accumulated plastic strain at which the cohesion 

assumes its residual value. 

3. Extension and Compression of a 
Rectangular Layer 

We conduct numerical simulations on a rectangular 

domain with initial dimensions (L0, H0) under 

extension or compression in horizontal x1-direction. 

The simulation is carried with non-dimensionalized 

governing equations, with the density of the material  

= 1, and all parameters are non-dimensional. Gravity is 

an external force in vertical x2-direction acting in the 

domain. All boundaries are assumed as smooth, i.e., no 

shear stresses. The top boundary is assumed as stress 

free. The vertical velocity is assumed to be zero at the 

bottom boundary. The velocities in x1-direction V1 = V 

and V1 = V are prescribed at the right and left 

boundaries, respectively, where V > 0 in the extension 

case and V < 0 in the compression case. The initial 

dimensions of the domain are precribed as (L0, H0) = (3, 

1) in extension and (4, 1) in compression, respectively. 

We also assume a small weak zone (0.04 × 0.04) with 

weaker constant viscosity w =  / 100 located at the 

middle of the bottom boundary, where,  = 100 is the 

viscosity of the surrounding material. We choose the 

internal friction tan = 0.4 (0.6), the initial cohesion c0 

= 4.0 (20.0), the residual cohesion c = 2.0 (10.0) for 

extension (compression) cases respectively, and γ= 

0.1. The boundary velocity is V = 0.035 (0.5) for 

extension (compression). 

3.1 Bounding Solutions for Stress Resultants 

In this section, we derive static bounding solutions 

for the extension and compression cases considered 

below. In the extension case, we have 2211 0    

and from the yield criterion 0cossin   cp  

it follows for plastic limit states: 
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Under gravity, we have: 

)( 222 xHg          (16) 

and, for the stress resultant 2

0

11/1 dxH
H

  , we 

obtain the expression: 
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It can be seen that from Eq. (17), in the extension 

case, the stress resultant is negative (i.e., compressive).  


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
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(18) 

Under extensive conditions, the stress becomes 

compressive once the cohesion is sufficiently small 

according to the inequality Eq. (18).  

For the compressive case in the plastic limit state, 

,02211   we obtain: 
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3.2 Numerical Simulation and Velocity Calibration 

In the simulations, we use quadrilateral 4-noded 
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element with selective integration: 4 gauss points for 

the velocity degrees of freedom and one (central) 

Gauss point for the pressure. This simple, so called 

selective integration method is known to produce 

adequate answers to incompressible deformation 

problems although the method does not pass the B-B 

(Brezzi-Babushka) condition [27]. The pressure 

corresponding to the incompressible deformation is 

solved with penalty scheme. The angle of 

non-coaxiality is assumed to be constant in the 

numerical simulation. In addition to the yield criterion: 

0cossin   cp , we also employ pressure 

cutoff at  sin/coscp  . The domain is 

discretised into 384 × 128 elements.  

We will derive an estimate for the prescribed 

boundary velocity in the extension case which   

would guarantee plastic deformations in the    

absence of the imperfection at (L0/2, 0). From the 

constitutive relation in the viscous regime, we have

LVD /84 22112211   . At the onset of 

plastic deformation this stress should be equal to that 

given by Eq. (15). To guarantee plastic deformation the 

velocity V should ensure that this stress is not less than 

the latter. With σ22 given by Eq. (16) and integrating 

these expressions with respect to x2 in the range 

,0 2 Hx   we obtain: 



















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 sin1

cos2

sin1

sin

8

c
gH

L
V     (20) 

Using the parameters given above the condition in 

Eq. (20) is satisfied for V = 0.03 and in the simulations 

we use V = 0.035.  

3.3 Mesh Sensitivity 

Because of strain softening, mesh sensitivity of the 

numerical solution is present. The reason for this kind 

of mesh sensitivity which is only indirectly related to 

the usual discretisation error has been well described 

by Schreyer [28]. The critical property of the softening 

related mesh sensitivity, namely zero plastic 

dissipation upon mesh refinement can be removed by 

including the effect of elasticity [29] or by enriching 

the physics of the mechanical model by inclusion of 

additional, micromechanical degrees of freedom [30]. 

The present simple viscous-plastic model seems 

adequate however in the context of large plastic 

deformations where the initial softening part of the 

deformation process represents only a small part of the 

total deformation.  

The relationship between the average horizontal 

stress σ and the average horizontal strain )/ln( 0LL  

is represented for two levels of mesh refinement in  

Fig. 2. The finer mesh has 384 × 128 elements and the 

coarse mesh has 192 × 64 elements. Fig. 2a shows the 

variation of the stress with strain for compression with 

non-coaxial rule and softening, while Fig. 2b shows the 

variation for extension with non-coaxial rule and 

softening. It can be seen that it is sensitive to the mesh 

size.  

4. Effects of Non-coaxiality and Softening 

4.1 Effects in Compression 

We first consider simulation of the compression of 

the rectangular layer. Fig. 3a shows the variation of the  
 

 
      (a)                                   (b)  

Fig. 2  Variation of average normal stress with strain for two meshes under (a) compression and (b) extension. 
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      (a)                                   (b)  

Fig. 3  Variation of average horizontal stress with horizontal strain in: (a) compression and (b) extension. 
 

average normal stress on the right boundary with the 

horizontal strain,  , for various material models. The 

CO (coaxial) model results from the non-coaxial angle 

0  and NC (non-coaxial) model has a non-coaxial 

angle   . The cohesion 0cc   gives the NS 

(non-softening) case. The SF (softening) effect is 

governed by Eq. (14). The clear effects of 

non-coaxiality and the softening can be seen under 

compression. The non-coaxial material is weaker than 

the coaxial material (the stress is smaller). The 

softening effect starts at a very early stage and the 

stress drops in the initial softening phase. It is noted 

that the stress at the start of simulation is different for 

coaxial and non-coaxial flow rule. This is due to the 

choice of a high boundary velocity which makes the 

deformation plastic so that the non-coaxiality takes 

effect at start. This difference disappears when low 

value (V = 0.35) is used. 

Fig. 4 shows the distribution of the second invariant 

of strain rate ijij DD  for deformed configurations 

of various material models under compression at strain 

level ε = 0.1. Shear bands which emanate from the 

weaker zone in which the invariant of the strain rate 

concentrates are clearly seen in all four types of 

materials. For coaxial materials, the bands start 

relatively straight. When the material does not soften, 

they remain relatively straight. At later stages, these 

two bands disappear and instead one single band 

merges and runs from lower corner of the domain 

where the weak zone is no longer in the shear band. If 

the material softens, then the bands become concave 

curved (Fig. 4b) and at later stages multiple crossing 

bands merge. The central part of the top surface has 

concave shape (Figs. 4a and 4b). For non-coaxial 

materials, the bands start convex curved and then 

straighten gradually. Convex curved shear bands are 

also obtained by Lemiale et al. [23] for high friction. 

The central part of top surface has convex shape (Figs. 

4c and 4d).  

4.2 Effects in Extension 

Fig. 3b shows the variation of the average normal 

stress with the strain under extension for various 

material models. If there is no softening, then 

non-coaxiality has very little effect. For softening 

materials, non-coaxiality has a big effect and the stress 

drops in the initial softening stage. The stress increases 

again under increasing strain through the thinning of 

the layer thickness; the latter causing a decrease in the 

effect of gravity.  

Fig. 5 shows the distribution of the second invariant 

of strain rate with deformed configuration for various 

models under extension at strain level ε = 0.1. For 

coaxial material without softening, there are less 

distinguishable bands emerging from the weak zone 

where the second invariant of the strain rate in the 

bands does not differ much from that in the remaining 

region (Fig. 5a). The bands disappear at a later stage. If 

the material softens, then there is no clear picture with 

two bands. Instead multiple bands merge and develop 

and a strain concentrating region is found at the 

opposite site of the weak zone (Fig. 5b). At later stages, 

two bands merge from the region and join         

the neighboring bands. For non-coaxial materials, three 
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Fig. 4  Distribution of second invariant of strain rate under compression at strain ε = 0.1 for four types of materials: (a) 
CO/NS, (b) CO/ SF, (c) NC/NS and (d) NC/SF. 

 

 
Fig. 5  Distribution of second invariant of strain rate under extension at strain ε = 0.1 for four types of materials: (a) CO/NS, 
(b) CO/ SF, (c) NC/NS and (d) NC/SF.  

 

strain concentrating regions start on the top surface. 

The two off-centre surface concentrations correspond 

to outcrops of shear bands nucleated from the bottom 

centre perturbation and the centre surface 

concentration represents an outcrop of a 

tensile-separation (Mode I) fracture. If the material 

does not soften, extension of the bands terminates and 

more short bands merge from the top surface (Fig. 5c). 

If the material softens, then the bands from the two 

off-centre regions continue to extend and reach the 

weak zone (Fig. 5d). This pattern remains until end of 

the simulation. 

5. Conclusions 

In this paper, we formulate a simple viscous-plastic 

constitutive relation based on non-coaxial flow rule 

with single slip mechanism. Numerical simulations of 

rectangular domain with compression and extension 
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0.8

0.6

0.4

0.2

3.348 

2.541 

1.734 

0.9270 

0.1200

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

4.419 

3.326 

2.232 

1.138 

0.04433

1.0

0.8

0.6

0.4

0.2

3.759 

2.830 

1.901 

0.9724 

0.04341 

Max: 2.208 
Min: 0.3716 

Max: 3.348 
Min: 0.1200

Max: 3.759 
Min: 0.04341 

Max: 4.419 
Min: 0.04436

0.5   1.0   1.5   2.0   2.5   3.0   3.5 
(a) 

0.5   1.0  1.5   2.0   2.5   3.0   3.5 
(b) 

0.5   1.0   1.5   2.0   2.5   3.0   3.5 
(c) 

0.5   1.0  1.5   2.0   2.5   3.0   3.5 
(d) 
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conditions are carried out. Shear bands are formed in 

most cases. The non-coaxiality yields curved shear 

bands at the beginning in compression case. In 

extension case, multiple bands can form.  

As deformation proceeds, the directions of principal 

stress and plastic strain rate change. Thus the angle of 

non-coaxiality varies with deformation. The angle of 

non-coaxiality is taken as a material parameter and is 

assumed to be constant in the numerical simulation in 

this paper. In a further study, we will calculate the 

angle of non-coaxiality.  
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