
Journal of Mathematics and System Science 5 (2015) 156-164
doi: 10.17265/2159-5291/2015.04.004

The Benefits of Using Google Cloud Computing for

Developing Distributed Applications

Isak Shabani, Amir Kovaçi and Agni Dika
Dep. of Computer Engineering, Faculty of Electrical and Computer Eng., University of Prishtina, 1000, Prishtine, Kosovo

Received: January 24, 2015 / Accepted: February 25, 2015 / Published: April 25, 2015.

Abstract: IT as a dynamic filed changes very rapidly; efficient management of such systems for the most of the companies
requires handling tremendous complex situations in terms of hardware and software setup. Hardware and software itself
changes quickly with the time and keeping them updated is a difficult problem for the most of the companies; the problem is
more emphasized for the companies having large infrastructure of IT facilities such as data centers which are expensive to
be maintained. Many applications run on the company premises which require well prepared staff for successfully maintaining
them. With the inception of Cloud Computing many companies have transferred their applications and data into cloud computing
based platforms in order to have reduced maintaining cost, easier maintenance in terms of hardware and software, reliable and
securely accessible services. The benefits of building distributed applications using Google infrastructure are conferred in this
paper.

Key words: Datastore, BigTable, Distributed application, Cloud Computing

1. Introduction

Distributed Systems are those in which the
communication is performed through the message
exchange; the systems can be remotely located but
for them to efficiently communicate they should meet
the conditions such as concurrent communication,
action synchronization between the nodes in the
system, independent handling of the failures etc [1].
Google File System (GFS) is at the core of data
storage and processing through Google App engine
(GAE). GFS files are composed of chunks similar to
clusters in traditional file systems; further down GFS
contains many nodes of which each instance has a
Master Node and multiple Chunk Servers. The
Datastore operates on cloud and is spread across
multiple servers. Today distributed systems are
installed on different hardware and software platforms,
a key requirement such systems should meet is the

Corresponding author: Isak Shabani, Professor Assistant /
Ph.D., Research field: Distributed systems, Web services, Data
communication and synchronization. E-mail:
isak.shabani@uni-pr.edu.

ability to scale and fault tolerant data management [2].
Google through its advanced technical features
manages to retrieve data and to represent them in user
friendly format. Google has moved to Cloud
computing as which represent a new paradigm toward
data access and storage. Cloud computing offers to the
user services to access: hardware, software and data
resources thus, an integrated computing platform as a
service [3]. Google App Engine is a typical example
of platform as service; it enables the developers to use
its platform to build distributed application, using
programming languages such as Java and Python to
build powerful, reliable and secure application as
Google itself.

Rapid growth of computer systems together with
the LAN and WAN networks has increase the level of
data exchange which altogether have enabled
connection and information exchange between
different type of machines (PC, server, mobile
devices). This advancement of computer networks
known as distributed systems.

D
DAVID PUBLISHING

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 157

2. State of the Art

Distributed systems are defined as those systems in
which hardware and software components
communicate through message exchange. Google
today plays a central in the branch of Cloud
Computing which is defined as a technique of
providing the services through the Internet with the
capabilities to accommodate user requirements [4].
Those systems can physically be located in different
locations but for those to communicate efficiently they
should meet conditions such as concurrent
communication, synchronization of actions with the
other computer nodes, independent handle of failures
within the system so that the other parts to be
unaffected from the failure.

The main services that Google offers are Gmail,
Google Docs, Google Talk, and Calendar which aim
to replace the traditional software applications.
Through its API service platform, possibilities are
offered to the developer’s community and the
companies to develop and host their web based
applications. With the introduction of Google App
Engine, Google [5] has managed to go beyond the
software services and now it offers the entire system
infrastructure as services where different
organizations run their applications through the
Google platform.

Google File System (GFS) is at the core of data
processing and storage of the Google as search engine.
GFS files are separated in chunks similar to clusters or
sectors in the traditional file system. BigTable enable
data manipulation on the applications with massive
data. Through specific search strategies and data
operation features Google manages handling of huge
information, processing of many queries and
producing great results for the clients. Critical
requirements that Google is able to fulfill are those
related to reliability and continuous data provide [3].
Chubby is the service which synchronizes the
activities of the clients when accessing the distributed
resources.

3. Google Technological Infrastructure

From the distributed perspective, Google is built
from a number of distributed services which provide
the basic functionality; in general these features can be
grouped as following [1]:
 Communication layer model including the

service for remote procedure call and indirect
communication through request serialization of
remote calls.
 Coordination services and data provide access by

means of: GFS, Chubby and BigTable.
 Services for distributed processing performing

parallel operations in the physical layer infrastructure.
Google today plays a significant role in the

technology of cloud computing which is defined as a
set of applications based on the internet, with the
capability of storing and processing most of the user
requirements.

With the inception of Google App Engine, Google
has managed to go beyond software services and it
provides the infrastructure for distributed services as
cloud services where the businesses and organizations
can run their web applications through Google
framework [2].

Similarly with the file systems found on operating
systems which are used for general purpose operations
on files and directories on different applications, GFS
is also a distributed file system with a variety of
abstractions and provides more advanced capabilities.
The main aim is to process the growing requirements of
Google as a search engine and other request which
come from other web applications. There are a set of
requirements which GFS must fulfill:
 The first requirement is GFS to be executed in a

reliable way in the hardware and software
architecture.
 GFS is optimized for the patterns of usage

within Google, both in terms of the types of files
stored and the patterns to access the files. The number
of files stored in GFS is not huge in comparison with
other systems, but the files tend to be massive. The

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 158

patterns of access are also atypical of file systems in
general.
 GFS must meet all the requirements for the

Google infrastructure as a whole; that is, it must scale
(particularly in terms of volume of data and number of
clients), it must be reliable in spite of the assumption
about failures noted above, it must perform well and it
must be open in that it should support the
development of new web applications.

BigTable is a distributed storage system for
managing structured data that is designed to scale to a
very large size: petabytes of data across thousands of
commodity servers [6]. The App Engine Datastore is
based on Google’s Bitable, which is Google’s
storage system used for Gmail, Google Maps,
YouTube, and many other services. This system is
designed to scale across thousands of machines and
perform well under critical circumstances [7].
Applications such as Google Earth, Google Finance,
Orkut are typical cases of applications that use
BigTable. These applications have very strict
requirements to be fulfilled where through
asynchronous communications is required that
processes of millions of operations to be performed at
high speed and availability. BigTables store their data
in multidimensional arrays sorted in rows, columns and
the timestamp. The rows on the table are represented as
strings with atomic read and write operations taking
place. The columns which are accessed more
frequently are arranged to be as family of columns.
With the help of timestamp mechanism, the
arrangement is reached so that multiple versions of the
content can be saved in the same cell and the latest
version to be accessible. The rows are sorted
alphabetically and in the groups with similarities
are stored in the same engine for easy access.
Different from the database systems, Datastore uses
distributed architecture with the aim of properly
managing big dataset and it differs a lot from the
traditional databases how it describes the relationships
between data objects.

4. Google App Engine

Google App Engine is a web application hosting
service [4], it is a runtime platform based in Python and
it offers capacities to host applications, to store the data
and networking capabilities. The primary role of the
engine is to serve the applications which are
simultaneously accessed by many users, apart from the
traditional web content which is served; Google App
Engine serves the services such as mobile applications,
social networking web sites and multiplayer games.
Applications built with Google App Engine have the
same power as Google applications which we use in
our daily life. The application engine can serve
traditional website content too, such as documents and
images, but the environment is especially designed for
real-time dynamic applications. Applications
developed with Google App Engine run on distributed
resources, the programmer only is in charge of
developing the solutions. The runtime environment
operates in abstracted manner separated from the
underlying layer of the operating system in order to
avoid platform dependencies. The Google
infrastructure provides automatic, on-demand traffic
shaping and load balancing for the developed
application by distributing it across multiple
servers. Each application also runs in its own secure
sandbox, independent of other applications and
potential resource conflicts [5]. Using Google App
Engine as platform to build and deploy the applications
has some advantages over traditional techniques of
developing software solutions, such as offering of free
resources to a certain level; easily build and
maintenance of the applications. Though the App
Engine is a technology based in cloud computing it
does not need any virtual machine for the applications
to run and scale.

Google App Engine supports developing
applications in several programming languages. With
the App Engine's Java runtime environment,
applications can be built by using standard Java
technologies including the JVM, Java servlets and the

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 159

Java programming language. Google App Engine also
features a dedicated Python runtime environment,
which includes a fast Python interpreter and the Python
standard library. The Java and Python runtime
environments are built to ensure that the applications
run quickly, securely, and without interference with
other apps on the system [6].

5. Google Datastore

Datastore is emerging as a promising way of storing
and organizing data, it supports many similar features
that the relational databases use to operate on data. The
most used approach for data storage of web application
is that based on Relational Databases model. Other
types of organizing are those based on the hierarchical
organization such as file systems, XML based
databases and object databases. The database system
supported by Google App Engine shares many features
found on the object databases without supporting join
operations on queries. Datastore uses tables, rows,
columns and queries similar to relational databases for
storing and performing standard create, read, update
and delete operations on data. The queries performed
on the Datastore return one or more entities of a given
type and they can also return only the keys of the
entities. Queries also can filter the data on the different
conditions based on the values of properties of the
entities; data ordering also is possible to be made.
Although it offers execution of queries which
syntactically look similar to SQL implemented on the
relational database where the queries are planned and
executed in the real time against the tables which are
stored in the way they are designed by the developer, in
the Google App Engine queries are run differently,
each of the queries is managed by an index which itself
is further managed by the Datastore. The Datastore also
has more complex structure than many other NoSQL
Datastores have. The first level, much like traditional
relational databases, is a table holding data. Each table
is split into multiple rows, with each row addressed
with a unique key string. The values inside the row are

arranged into cells, with each cell identified by a
column family identifier, a column name, and a
timestamp. The row keys are stored in ascending order
within file chunks called shards. This ensures that
operations accessing continuous ranges of keys are
efficient [7]. When the application runs a query, the
Datastore finds the corresponding index, it proceeds by
scanning the first row which matches the index and
returns the entity for each of the rows linked to the
index till the first row which does not match query.
Google App Engine provides some indexes for simple
queries, while for the complex queries the application
itself must have additional information for indexes
during the configuration phase. The engine itself offers
the possibility of creating a configuration file in which
the indexes used during the test phase can be used.
Through transaction features processes are performed
in the way that the changes are done in full or in case of
any failure they are rolled back to the previous state so
that during the multiple simultaneous accesses the data
are in coherent state. When the commands are called
though the Datastore API, the result is returned to the
caller only after the transaction is successfully
performed. The App Engine Datastore is primarily
designed and optimized for completely different usage
scenarios and performance characteristics than
relational storages.

The code listed below, in Java programing
language, depicts the case when an entity of Student
kind is created together with some features and the
types of data used to store the student data on the
datastore.

// datastore initiation
DatastoreService datastore = new

DatastoreServiceFactory().getDatastoreService();
Entity stu = new Entity("Student");

stu.setProperty("firstName",
req.getParameter("firstName_input"));

stu.setProperty("lastName",
req.getParameter("lastName_input"));

stu.setProperty("Email",

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 160

req.getParameter("email_input"));
//Save the data on the datastore
datastore.put(stu);

6. Google App Engine and Cloud Computing

Google App Engine represent the service for hosting
web applications which usually are accessed through
the web browsers which can be in form of social
networks, games, mobile applications, publications etc.
The engine also can serve to standard applications such
as documents, images, but its primary usage is for real
time dynamic applications [8]. Especially it is designed
for storing applications with multiple users which are
simultaneously accessed, the engine manages to do this
by scaling. With the increase of the number of users,
the engine allocates more resources with the
applications not having to worry about the processes
that happen during the adaption process of the
resources. The engine is composed of three main
components [6]: applications instances, data store
features and services. The engine handles the requests
by identifying the application from the name of the
domain of the address; it proceeds by offering one the
servers which in most of the cases is the server which
offers the fastest response. In order for the resources to
be used as much as possible and avoiding repeating
initializations, the engine allows longer execution
environment than the handling of the requests. Each of
the instances has local memories for storing the
imported source code and data structures. The engine
handles instances creation and destruction based on the
traffic needs. Different from the traditional way of
accessing the applications, the application code does
not access the server in that way, the application can
read the files form the system files but it cannot write
on them and it cannot read other applications files.
Google app engine offers three execution environments:
Java environment, Python and the environment based
on the language called go. Static files which do not
change on the web sites, such as html files, CSS,
images and other non-dynamic files is not necessary to

be taken to much care when programming in Google
App Engine, these files are managed by the dedicated
server for the static files.

Today Cloud Computing techniques are being used
massively also thanks to the advancements in the
information technology infrastructures. This increase
leads to the need of advancement of the human and
hardware resources in order to maintain the systems
which are built using such techniques. The decision
to use the external resources is proven to be a good
choice for the companies who use those services
because of the efficiency which is provided by the
service providers. The companies which offer
services based on cloud computing technologies
usually provide their services in one of the following
ways [9]:
 Hardware as a Service (HaaS): As the result of

rapid advances in hardware virtualization, IT
automation and usage metering & pricing, users could
buy IT hardware, or even an entire data center, as a
pay-as-you-go subscription service.
 Software as a Service (SaaS): software or an

application is hosted as a service and provided to
customers across the Internet. This mode eliminates
the need to install and run the application on the
customer’s local computers. SaaS therefore alleviates
the customer’s burden of software maintenance, and
reduces the expense of software purchases by
on-demand pricing.
 Data in various formats and from multiple

sources could be accessed via services by users on the
network. Users could, for example, manipulate the
remote data just like they operate on a local disk or
access the data in a semantic way in the Internet.

Cloud computing can be used to write versatile
applications, although cloud computing can
efficiently be used to develop almost all kinds of
the applications, including standalone ones, it is
advisable to write the applications by using cloud
computing techniques should they fall in on one of the
categories [10]:

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 161

 Collaborative applications: if the application are
developed to be used by a group of people working
together, share data, communicate or collaborate the
application should be built using cloud computing
technologies.
 In cases when the application is of nature of

services, then cloud based techniques is ideal choice.
Even though the difference between the applications
and services is quite narrow, there are sometime some
applications which look like services in fact they are
centralized applications.

If the applications intend to perform massive
computation which with user’s computer cannot be
carried out, then the cloud computing techniques are
ideal to perform such computation by offering timely
access on the resources. Typical example of this kind of
application is research teams working on big data
projects.

Cloud Computing uses technology, services and the
applications similar to those based in web using them
as tools to build services, when using the word cloud
two main concepts are denoted:

Abstractions: Many details of the implementation
are not made known to the developers and the users of
the applications. Applications are run in the physical
layer and the data are stored in unknown locations;
administration is done by the service provide and the
access in enabled to all those involved.

Virtualization: The resources are shared were the
systems are managed by the needs arising from the
main infrastructure; the cost of the service is dependent
from the volume of the usage of the service.

Cloud computing usually is of two main models:
Deployment models: represents the location and

management of the cloud infrastructure
Service models: represents the specific service

which can be accessed through the cloud computing
platform.

7. GQL – Google Query Language

Google Query Language provides an efficient way

of accessing data. The version of GQL implemented
here is based on the Google Visualization API Query
Language [11]. Even though the syntax is similar to
SQL used in much database software it has some
limitations. Query formulation in the execution
environment of the engine such as Java and Python is
performed in the way that the Datastore is required to
return the entities or the keys that meet the different
criteria.

Every GQL query always begins with SELECT
*, SELECT key or SELECT <property list>, where

property is a comma delimited list of one or more
entity properties to be returned from the query. The
optional DISTINCT clause specifies that only
completely unique results will be returned in a result
set. This will only return the first result for entities
which have the same values for the properties that are
being projected.

The optional FROM clause limits the result set to
those entities of the given kind. A query without a
FROM clause is called a kind less query and cannot
include filters on properties.

The optional WHERE clause filters the result, set to
those entities that meet one or more conditions. Each
condition compares a property of the entity with a
value using a comparison operator. If multiple
conditions are given with the AND keyword, then an
entity must meet all of the conditions to be returned by
the query. GQL does not have an OR operator.
However, it does have an IN operator, which provides a
limited form of OR. The IN operator compares value of
a property to each item in a list, an entity whose value
for the given property equals any of the values in the
list can be returned for the query.

The code below shows how the queries are written
by using the tools which offers Google. In this case we
have used Python programming language together with
the necessary Google App Engine tools.

from google.appengine.ext import db
import webapp2from google.appengine.api import

memcache

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 162

class People (db.Model): name=db.StringProperty()
email = db.StringProperty() age =
db.IntegerProperty()

p = People (key_name='K1',name = 'Isak Shabani',
age = 37, email = 'isak.shabani@uni,pr.edu').put()

People (key_name = 'K2',name = 'Amir Kovaci',
age = 30, email = 'amir.kovaci@uni-pr.edu').put()

People (key_name = 'K3',name = 'John Smith',
age = 29, email = 'johny@smith.com').put() People

(key_name = 'K4',name = 'Arsim Besimi', age = 16,
email = 'arsim@yahoo.com,

parent = p).put()
People (key_name = 'K5',name = 'Artan Kosova',

age = 89, email = 'artan@kosova.com').put()
After executing the code above, people data

(name, email, and age) will be saved on the given entity.
The keys K1, K2, …., K5 are used to uniquely identify
each of the records of the People entity. Google App
Engine offers tools to view the entities together with
their data that they contain, Datastore viewer shows the
data of the entity which stores people data is shown
here:

The following shows how the data are retrieved by
running some queries for representing the data:

self.response.write('<h3>People</h3>')
pyetesori = "SELECT * FROM People where

age >= 18 AND age <= 35" varpeople =
db.GqlQuery(pyetesori) man in varpeople:
self.response.write(man.email +' ' + str(man.age)
+'</br>')

self.response.write('Executed query: ' +
pyetesori+'')
Two entities of the same kind can have different

properties, whereas different entities can have
properties with same name but with different type [12].
Although there are quite similarities with relational
databases, it has quite some differences with them,
Datastore is designed to process big data. Google App
Engine supports also the Java programming language.
In the code below we have shown the case where a
Datastore of Student kind is created; it contains some

properties with different types of values and saves them
in a new entity.

//Datastore initialization
Datastore ServiceDatastore = new

DatastoreServiceFactory().getDatastoreService();
Entitystu = new Entity("Student");

stu.setProperty ("Name", req.getParameter
("name_input"));
stu.setProperty ("Surname", req.getParameter
("surname_input"));
stu.setProperty ("Email", req.getParameter
("email_input"));
//Save the data into the data store
Datastore.put(stu);
Save, display and delete of the entities is done by

using the corresponding commands of the Datastore.
Data can be retrieved from the store by using
getDatastoreService method of
DatastoreServiceFactory class. Programming in
Google App Engine by using both of the
programming languages Java and Python yields great
applications. Python is the lightweight dynamic
language; Java offers the most enriched features, its
Google Web Toolkit (GWT) offers to the programmer
many tools to easily develop the applications. The
main aspects to be considered when choosing a
programming language to use are:
 Strong typing: can catch many kinds of

programming errors when the program is
compiled. This is particularly valuable in an
environment like the cloud, where it’s harder to debug
your program. It is difficult to just fire up a debugger
and probe it.
 Style: As it is presented above, developing a cloud

application in Java has a very different Style and
structure from Python. For some developers, the style
of Java development in App Engine can be much more
comfortable than Python.
 Tools: Google released a set of plugins for the free

Eclipse IDE for building Java/GWT App Engine
services and applications.

mailto:%27arsim@yahoo.com

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 163

Fig. 1 Datastoreviewer shows the data of the entity which stores people data.

Fig. 2 Retrieved data from the Datastore.

8. Conclusions

In this paper we have aimed to depict some of
benefits which Google through its App Engine offers to
build cloud based applications by using the Google
infrastructure. Thus we have discussed about the GFS,
Datastore and its foundation core BigTable as powerful
tool to store and serve highly reliable data to the end
users. The programming features of Google App
Engine were also introduced by emphasizing the two
main programming languages which its supports: Java
and Python. The data storage approach which Google
offers to the companies and the developers to design
distributed applications enables them to get into
development by using many features which many
Relational Databases Software similarly share; SQL
syntax found in most of the database software tools is
similar to GQL though some substantial changes exist.

References
[1] Birman, Kenneth P., and Thomas A. Joseph. "Reliable

communication in the presence of failures." ACM

Transactions on Computer Systems (TOCS) 5.1 (1987):
47-76., accessed on [30/09/2014]

[2] Bunch, Chris, et al. "An evaluation of distributed
Datastores using the AppScale cloud platform." Cloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on. IEEE, 2010.

[3] Wang, Lizhe, et al. "Cloud computing: a perspective
study." New Generation Computing 28.2 (2010):
137-146.

[4] Armbrust, Michael, et al. "A view of cloud computing."
Communications of the ACM 53.4 (2010): 50-58.

[5] Buyya, Rajkumar, Chee Shin Yeo, and Srikumar
Venugopal. "Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing
utilities." High Performance Computing and
Communications, 2008. HPCC'08. 10th IEEE
International Conference on. Ieee, 2008

[6] Chang, Fay, et al. "BigTable: A distributed storage
system for structured data." ACM Transactions on
Computer Systems (TOCS)

[7] (2008): 4.
[8] De Jonge, Adrian. Essential app engine: building high-

performance java apps with google app engine.
Addison-Wesley Professional, 2011

[9] Wolfgang Emerich: Distributed Systems Principles:
http://www0.cs.ucl.ac.uk/staff/w.emmerich/lectures/ds98-
99/dsee3.pdf, accessed on [11/10/2014]

http://www0.cs.ucl.ac.uk/staff/w.emmerich/lectures/ds98-
http://www0.cs.ucl.ac.uk/staff/w.emmerich/lectures/ds98-

The Benefits of Using Google Cloud Computing for Developing Distributed Applications 164

[10] Scientific Cloud Computing: Early Definition and
Experience:
http://cyberaide.googlecode.com/svn/trunk/papers/08-
cloud/vonLaszewski-08-cloud.pdf, 2008, accessed on
[05/10/2014]

[11] Chu-Carroll, Mark C. Code in the Cloud. Pragmatic
Bookshelf, 2010.

[12] Querly Language Reference: https://developers.google.
com/chart/interactive/docs/querylanguag e, accessed on

[20/09/2014]
[13] Chang, Fay, et al. "BigTable: A distributed storage

system for structured data."ACM Transactions on
Computer Systems (TOCS) 26.2 (2008): 4.

[14] Sosinsky, Barrie. Cloud computing bible. Vol. 762. John
Wiley & Sons, 2010.

[15] Mell, Peter, and Tim Grance. "The NIST definition of
cloud computing." National Institute of Standards and
Technology 53.6 (2009): 50.

http://cyberaide.googlecode.com/svn/trunk/papers/08-
http://cyberaide.googlecode.com/svn/trunk/papers/08-
http://cyberaide.googlecode.com/svn/trunk/papers/08-
https://developers.google/

