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Abstract: The relative toxicity of 48 anilines using the Tetrahymena pyriformis population growth characteristics 

50IGC (concentration causing 50% growth inhibition), available in the literature, was studied. At first, the entire data set was 

randomly split into a training set (31 chemicals) used to establish the QSAR model, and a test set (17 chemicals) for statistical 
external validation. A biparametric model was developed using, as independent variables, 3D theoretical descriptors derived from 
DRAGON software. The GA-MLR (genetic algorithm variable subset selection) procedure was performed on the trainingset by the 
software mobydigs using the OLS (ordinary least squares) regression method, and GA(genetic algorithm)-VSS(variable subset 

selection) by maximising the cross-validated explained variance ( 2
LOOQ ). The obtained model was examined for robustness 

( 2
LOOQ cross-validation, Y-scrambling) and predictive ability through both internal ( 2

LMOQ , bootstrap) and external validation ( 2
extQ ) 

methods. Descriptors included in the QSAR model indicated that 1
50log IGC

 value was related to molecular size and shape, and 

interaction of molecule with its surrounding medium or its target. Moreover, the applicability domain of the model was discussed. 
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1. Introduction 

Recently computational methods have been used to 

solve complex problems in many aspects of science. 

One particularly useful method—the development of 

QSARs (quantitative structure-activity relationships) 

has found application in environmental chemistry and 

ecotoxicology [1-5]. 

QSAR approach systematization which has to be 

associated to the work of Hansch and Fujita in 1964 [6] 

is based on the assumption that the structure of a 

molecule must contain the features responsible for its 

physical, chemical and biological properties and on 

the possibility of representing a molecule by 

numerical descriptors. 

The underlying hypothesis for QSAR models is that 

all molecules interact with the receptor in same or 

similar mode of action [7]. 

                                                           
Corresponding author: Leila Lourici, Ph.D., main research 

field: environmental chemistry. E-mail: leilalourici@yahoo.fr. 

The descriptors most used in the early QSAR 

analyses are the octanol/water partition coefficient 

(logP), the Hammett   constant [8, 9] acting as an 

electronic effect descriptor and the lipophilicity 

parameter  , which is defined by analogy to the 

electronic descriptor. Together with these empirical 

descriptors, the classical models employ other 

physical-chemical properties as parameters; some of 

them derived from quantum chemical calculations, 

namely: partial charges, HOMO/LUMO energies, etc.. 

An important topic in environmental chemistry and 

ecotoxicology consists of the effect of toxic agents on 

the growth of microbial species. The population 

growth of protozoa, in particuliar of ciliates, in varied 

concentrations of toxic substances has been assessed 

by comparing a number of specific experimental 

values, including population density [10], growth rates 

[11], growth curves [12] and number of generations 

[13]. 
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In all cases, the most tested species has been 

Tetrahymena pyriformis, a common freshwater 

hymenostome ciliate, which approximatively 

measures 50 μm in length and 30 μm in width [14]. 

Modern electronic equipment allows the easy 

determination of the population growth inhibition, 

providing a large collection of data for toxical 

research. 

Schultz et al. [15] evaluated the relative toxicity of 

48 selected anilines using the Tetrahymena pyriformis 

population growth characteristics 50IGC  

(concentration causing 50% growth inhibition) as an 

endpoint. The authors shown that simple 1
50pIGC   

(= 1
50log IGC  ) versus logP correlation can model 

environmental toxicity. The predictability of this logP 

dependent QSAR can be improved with the addition 

of   (the summation of the substituent electronic 

parameter ), as a second and orthogonal descriptor. 

The statistical parameters reported by the mentioned 

authors are only related to the fitting performances. 

In 1988, QSAR techniques suffered a great 

transformation due to the introduction of the so-called 

three dimensional (3D) molecular parameters, which 

accounted for the influence of different conformers, 

stereoisomers or enantiomers. 

Several principles for assessing the validity of 

QSARs were proposed in 2002, as the “Setubal 

Principles” [16]; these were then modified in 2004 as 

the OECD (Organisation for Economic Co-operation 

and Development) Principles for QSAR validation 

[17]. To facilitate the consideration of a QSAR model 

for regulatory purpose, it should be associated with 

the following information: (a) a defined endpoint; (b) 

an unambiguous algorithm; (c) a defined applicability 

domain (AD); (d) appropriate measures of goodness 

of fit, robustness and predictivity; and (e) a 

mechanistic interpretation, if possible. Thus, further 

QSAR development on anilines should follow these 

guidelines. 

In this study a biparametric model for the toxicity 

of aniline derivatives was developed using, as 

independent variables, 3D theoretical descriptors 

calculated from the chemical structure alone 

(Geometrical and GETAWAY descriptors). The 

available data set  (taken from Schultz et al. [15]) 

was randomly split into  training set (31 objects), 

used to develop the QSAR model, and a validation set 

(17 objects), used only for statistical external 

validation. 

The model was examined for robustness and 

predictive ability through both internal and external 

validation methods. Finally, the QSAR applicability 

domain was discussed by the Williams plot of 

standardized residuals versus leverage values [18, 19]. 

2. Methodology 

2.1 Descriptors Generation 

The structures of the molecules were drawn using 

Hyperchem 6.03 software [20]. The final geometries 

were obtained with the semi empirical method AM1. 

All calculation were carried out at the RHF (restricted 

Hartree–Fock) level with non configuration 

interaction. The molecular structures were optimized 

using the algorithm Polak-Ribiere and a gradient norm 

limit of 0.001 kcal/Å. The resulted geometry was 

transferred into the software Dragon version 5.3 [21] 

to calculate 271 descriptors of the type Geometrical 

and GETAWAY (Geometry, Topology and Atoms 

Weighted AssemblY). Descriptors with constant or 

near constant values inside each group were discarded. 

For each pair of correlated descriptors (with 

correlation coefficient r ≥ 0.95), the one showing the 

highest pair correlation with the other descriptors was 

excluded. 

The GA (Genetic Algorithm) [22] has been 

considered superior to other methods of variable 

selection techniques. So, variable selection was 

performed on the training set, using GA in the 

MobyDigs version of Todeschini [23] by maximizing 

the cross-validated explained variance 2
LOOQ . 
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2.2 Model Development and Validation 

Multiple linear regression analysis and variable 

selection were performed by package MobyDigs for 

windows/PC [23], using OLS (ordinary least squares 

regression) method and, as previously indicated, 

GA-VSS (GA for variable subset selection). 

The goodness of fit of the calculated model was 

assessed by means of the multiple determination 

coefficient, R2 and the SDEC (standard deviation error 

in calculation) defined as :  

 2
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Cross validation techniques allow the assement of 

internal predectivity ( 2
LMOQ cross-validation, bootstrap) 

in addition to the robustness of the model ( 2
LOOQ

 
cross-validation, Y-scrambling). 

Cross validation by the LOO (leave-one-out) 

procedure employs n training sets of n-1 objects in 

and predicting each excluded object in the test set. The 

cross validated explained 2
LOOQ

 
is defined as: 
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where iy  
and y are, respectively, the measured, and 

averaged (over the entire data set) values of the 

dependent variable; /ˆi iy denotes the response of the 

i-th object estimated by using a model obtained 

without using the i-th object; the summations run over 

all compounds in the training set. 

The PRESS (predictive residual sum of squares) 

measures the dispersion of the predicted values. It is 

used to define 2Q , and the SDEP (standard deviation 

error in prediction) .  

P R E SS
SD E P

n


    
(3) 

A value 2Q  > 0.5 is generally regarded as a good 

result and 2Q  > 0.9 as excellent [18, 19]. 

However, studies have indicated that while 2Q  
is 

a necessary condition for high predictive power in a 

model, its alone is not sufficient. 

To avoid overestimating the predictive power of the 

model the leave-more out (LMO up to 50% of 

perturbation: LMO/50) procedure (repeated 8000 

times in this study) was also performed. In a typical 

LMO validation, n  objects of the data set are 

divided in G cancellation groups of equal size, 

 im n G . Based on the value of n , G is 

generally selected between 2 and 10. A large number 

of models are developed with each of the 

in m objects in the training set and im objects in the 

validation set. For each corresponding model 

im objects are predicted and 2
L M OQ computed (as 

average value of the number of validation runs). 

In order to evidence the existence of fortuitous 

correlations, the randomization test (Y-scrambling) 

[24] was adopted. This test consists of building a 

property vector whose components are the 

components of the actual property vector, but 

randomly permuted in their positions. This new 

activity vector is used as if it was really an 

experimental one, and a QSAR model is computed in 

the usual way. This process was repeated 300 times, in 

order to test the capacity factor of the model to extract 

actual structure/activity relationships. 

By bootstrap validation technique, the original size 

of the data set ( n ) is preserved for the training set, by 

the selection of n  objects with repetition; in this way 

the training set usually consists of repeated objects 

and the evaluation set of the object left out [25]. The 

model is calculated on the training set and responses 

are predicted on the evaluation set. All the squared 

differences between the true response and the 

predictive response of the objects of evaluation set are 

collected in PRESS. This procedure of building 

training sets and evaluation sets is repeated 5,000 

times in this study, PRESS are summed and the 

average predictive power is calculated. 
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By using the selected model the values of the 

response for the test objects are calculated and the 

quality of these predictions is defined in terms of 
2
extQ , which is defined as: 

 
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where extn and trn  are the number of objects in 

the external set (or left out by bootstrap), and the 

number of training set objects, respectively. 

Other useful parameters are 2R , calculated for the 

validation chemicals by applying the model 

developped on the training set, and external standard 

deviation error of prediction ( extSDEP ), defined as: 

 2

1

1
ˆ

extn

ext i i
iext

SDEP y y
n 

     

  

(5) 

where the sum runs over the test set objects ( extn ). 

2.3 QSAR AD (Applicability Domain) 

The AD was discussed by the Williams plot [18, 19] 

of jacknified residuals versus leverages (hat diagonal) 

values ( ih ). The jacknifed residuals (or Studentized 

residuals) are the standardized cross-validated 

residuals. Each residuals is divided by its standard 

deviation, which is calculated without the i-th 

observation. The leverage ( ih ) value of a chemical in 

the original variable space is defined as : 

ih    1T T
i ix X X x  ( i = 1,…,n )    (6) 

where ix  is the descriptor row-vector of the query 

compound, and X  is the  1n p  matrix of p  

model parameter values for n training set compounds. 

The superscript T refers to the transpose of the 

matrix/vector. 

The warning leverage value ( *h ) is defined as 

 3 1p n . When h value of a compound is lower 

than *h , the probability of accordance between 

predicted and actual values is as high as that for the 

compounds in the training set. A chemical with 

ih > *h will reinforce the model if the chemical is in 

the training set. But such a chemical in the validation 

set and its predicted data may be unreliable. However, 

this chemical may not appear to be an outlier because 

its residual may be low. Thus the leverage and the 

jacknified residual should be combined for the 

characterization of the AD. 

3. Results and Discussion 

3.1 Development and Validation of QSAR Models 

Application of the GA-VSS led to several good 

models for the prediction of 1
5 0p IG C 

 
based on 

different sets of molecular descriptors. The best two 

dimensional model was constructed using the radius 

of gyration ( RGyr ) and R  maximal autocorrelation 

of lag 3 weighted by van der Waals atomic volume 

v ( 3 R v ). All data concerning value of 

R G yr , 3 R v and biological activity are summarized 

in Table 1. 

The equation of the optimal model can be written 

as:  

   




vRRGyr
pIGC

3)416.1(342.16
069.0439.1174.0602.31

50  (7) 

All relevant statistical parameters are reported in 

Table 2. 

Values of 2R and 2
adjR attest the good fitting 

performances of the model which, moreover, is very 

highly significant (great value of the Fisher parameter 

F). 

The model is robust, the difference between 2R  

and 2Q is small (1%). Fig. 1 shows a plot contrasting 

experimental and cross-validated 1
50pIGC  . The point 

dispersion is small, although in this case there are two 

points a little bit far away from the rest. 

The model demonstrates a very good stability in 

internal  validation  (difference between 2
LOOQ  and  
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Table 1  Values of RGyr, R3v+ and inhibition of growth concentration pIGC50
-1 for a set of 48 anilines. The first 17 chemicals 

are the test set. 

Chemical pIGC50
-1 RGyr R3v+ Chemical pIGC50

-1 RGyr R3v+ 

4-hexylaniline  2.04 3.434 0.023  3,4-dimethylaniline -0.29 2.132 0.029 

2,3-chloro   1.02 2.169 0.087  3-ethyl   -0.12 2.204 0.021 

4-methyl -0.02 2.008 0.021  2-chloro   -0.09 1.982 0.041 

2,4,6-trichloro   1.01 2.588 0.039  2,4-dimethyl  -0.30 2.133 0.022 

2-bromo   0.46 2.013 0.056  2-ethyl  -0.25 2.107 0.023 

4-butyl   1.05 2.998 0.022  3-fluoro  0.04 1.932 0.025 

2-chloro-6-methyl    0.12 2.156 0.037  2-propyl   0.06 2.414 0.023 

2-phenyl   0.86 2.680 0.019  3-chloro   0.09 2.111 0.042 

3-iodo   0.61 2.158 0.071  2-isopropyl   0.10 2.190 0.024 

3,4,5-trichloro  1.51 2.451 0.088  4-isopropyl   0.21 2.403 0.024 

4-ethyl   0.04 2.286 0.021  2-chloro-5-methyl   0.20 2.245 0.037 

3-chloro-4-methyl   0.45 2.208 0.049  4-octyl    2.34 3.914 0.022 

5-chloro-2-methyl   0.51 2.300 0.03  2-iodo  0.35 1.981 0.070 

2,6-dichloro   0.33 2.291 0.04  4-chloro-2-methyl    0.35 2.298 0.033 

3-phenyl   0.78 2.815 0.021  3-chloro-2-methyl    0.45 2.153 0.044 

2,5-dichloro   0.58 2.448 0.039  2,4-dichloro    0.56 2.390 0.040 

3,5-dichloro   0.71 2.423 0.038  4-propyl    0.49 2.611 0.024 

2-methyl  -0.55 1.892 0.024  3-bromo   0.52 2.179 0.058 

3-methyl   -0.43 1.968 0.026  2,6-dichloro-3-methyl   0.69 2.407 0.041 

2,6-dimethyl  -0.43 2.047 0.024  4-phenyl    0.95 2.904 0.022 

3,5-dimethyl   -0.37 2.158 0.017  3,4-dichloro    1.14 2.281 0.089 

2,5-dimethyl   -0.35 2.134 0.023  2,4,5-trichloro   1.30 2.577 0.086 

2-fluoro   -0.31 1.846 0.025  2,3,4-trichloro    1.35 2.405 0.087 

2-chloro-4-methyl   0.24 2.211 0.039  4-pentyl   1.67 3.246 0.022 
 

Table 2  Statistical parameters of the developed model. 

trn  extn  2
LOOQ  2R  

2
/50LMOQ  

2
BOOTQ  

2
adjR  2

extQ  

31 17 93.85 94.99 92.34 92.48 94.64 92.13 
SDEC SDEP SDEPext s F 
0.151 0.168 0.184 0.159 265.64 
 

 

Fig. 1  Experimental (
exp50pIGC ) versus cross-validated (

cvpIGC 50
) activity for the training set objects. 

pI
G
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2
/50LMOQ is about 1%), while bootstrapping confirms 

the internal predictivity and stability of the 

model. extSDEP is a little bit different from SDEP ; 

the model works slightly worse in external prediction 

than in internal prediction. The model was also 

verified by Y-scrambling. Fig. 2 clearly ensures the 

existence of a linear relationship between 
1

50pIGC  and the descriptors RGyr and 3 R v . As 

can be observed the permuted responses yield poor 

predictive models, all having 2Q < 0.2. On the other 

hand, the correctly ordered 1
50pIGC   yield good 

statistical parameters, and therefore it is located 

isolated in the plot. 

Using the same training set as before, a model was 

calculated by us on the molecular descriptors selected 

by Schultz et al. [15]. It follows the expression :  

  123.04848.0)113.0(404.11
50pIGC

 
+   OWKlog047.0727.0 

          
 (8) 

The corresponding fitting and prediction parameters 

reported in Table 3 show that the model presented in 

this paper is slightly better than the one based on the 

Schultz et al. [15] approach. 

3.2 Mechanistic Interpretation  

By interpreting the descriptors in the proposed 

model, it is possible to gain some insight into factors 

that are likely related to inhibition of microbial growth. 

Of the two descriptors, one is GETAWAY ( 3 R v ) 

and one is Geometrical ( R G y r ). 

R-GETAWAY descriptors which are represented 

by  R k w were calculated as follows. The molecular 

influence matrix was denoted by H and resembled the 

leverage (or influence) matrix defined in regression 

diagnostics [26]. 

The value of H was calculated from the molecular 

matrix M (M has A rows corresponding to the 

Cartesian coordinates x, y, z of each atom in 

optimized molecular structure) as follows: 

  1T TH M M M M


    (9) 

where the superscript T refers to the transposed matrix. 

The maximal contributed to the autocorrelation at 

each lag represented by   Rk w  can be defined 

as:  

 
Fig. 2  Randomization test associated to the previous QSAR model. Crosses represent the randomly ordered activities, and 
the square corresponds to the real activities. 
 

Table 3  Statistical parameters of the Schultz et al. [15] approach model.  

trn  extn  2
LOOQ  2R  

2
/50LMOQ  

2
BOOTQ  

2
adjR  2

extQ  

31 17 89.24 91.62 85.38 86.06 91.03 81.28 

SDEC SDEP SDEPext s F 

0.196 0.222 0.293 0.206 153.1523 

Q
2 

R2
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Fig. 3  Williams plot of the current QSAR model. 
 

 max ,
 
  
  

ii jj

ij i j ij
ij

h h
Rkw w w k d

r
i≠j and 

 k = 1,2,...,8              (10) 

where   Rk w is the w -weighted kth order 

maximal R index, rij is the 3D geometric distances 

between each pair of atoms i and j, dij is the 

topological diameter, hii and hjj are diagnonal terms of 

the H matrix and   is a Dirac delta function defined 

as: 
                1 if ijd k  

    , ijk d                            (11)
                 0 if ijd k  

3 R v describes the size and the shape of the 

molecules. It is known that size, shape and symmetry 

of molecules play a key role in the process of 

distribution of molecule between two immiscible 

liquid phases. At the same time this descriptor 

indicates the role of the volume ( v ) in deciding the 

activity. 

Mean size is a simple and very significant property 

of a molecule [27]. Easily obtained from light 

scattering experiments, a common measure of mean 

size such as the radius of gyration ( RGyr ) provides 

valuable information on interaction of molecule with 

its surrouding medium or its target. 

3.3 Applicability Domain 

As shown in the Williams plot (Fig. 3), the only 

high leverage chemical ( * 0.29 ih h ) of the 

training set (4-octylaniline) is perfectly predicted, as 

normally happens for chemicals influential in training 

sets. Only one outlier is observed (3-fluoroaniline) 

which can be judged by its standardized residual 

greater than three standard deviation units (3 ). 

4. Conclusion 

A QSAR model on inhibition of microbial growth 

by anilines was developed using the OECD guidelines. 

h* = 0.29 

4-octylaniline 

3-fluoroaniline  

c  
e i

st
d

 

hi 



Inhibition of Microbial Growth by Anilines: A QSAR Study 

  

670

The available data set was randomly split into training 

and validation sets. 

The QSAR model proposed in this paper is stable, 

robust, with good fitting and predictive performance. 

It is predictive for the chemicals used in the model 

development (internal validation on training chemicals) 

and also for chemicals not used in the model 

development (statistical external validation on 

validation set chemicals). The AD of the QSAR model 

was also described. The factors governing biological 

activities are the molecular size and shape, and 

interactions of molecule with its surrounding medium 

or its target. 
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