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Abstract: Topological entropy can be an indicator of complicated behavior in dynamical systems. It is first introduce by Adler,
Konheim and McAndrew by using open covers in 1965. After that it is still an active research by many researchers to produce more
properties and applications up to nowadays. The purpose of this paper is to review and explain most important concepts and results of
topological entropies of continuous self-maps for dynamical systems on compact and non-compact topological and metric spaces.
We give proofs for some of its elementary properties of the topological entropy. Slight modification on Adler’s topological entropy is
also presented.
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1. Introduction this system would be.
. This paper is organized as follow. In section 2, we
Let X be a Hausdorff topological space and ] ) )
. . review the earlier concept of topological entropy
f:X = X be a continuous self-map on X. The pair
(X, f) is called a dynamical system. If n € N, then
fr=fofm"l fl=f and f° is the identity map
on X. For x € X, the sequence {f™(x):n € N} is
called the orbit of x. If f is a homeomorphism, the
full orbit of x is the sequence {f™(x):n € Z}.

Topological entropy can be an indicator of

introduced by Adler et al. [1] as an invariant of
topological conjugacy and also as an analogue of
measure theoretic entropy. This topological entropy
only holds on a compact topological space. In section
3, we review and discuss another definition of
topological entropy introduced by Bowen [2] using
. ) L . separating and spanning sets on metric space. This
complicated (chaotic) behavior in dynamical systems. .
) . definition holds not only on compact space but also on
Whether the topological entropy of a dynamical ) ) . i
) L . ) T non-compact space. Finally in the last section, slight
system is positive or not is of primary significance, . . )
. . modification of Adler’s topological entropy has been
due to the fact that positive topological entropy .
o . . done by changing the symbol of refinement.
implies that one can assert that the system is chaotic.
It is hard, as remarked by [9], to get a good idea of 2. Topological Entropy for Maps on
what topological entropy means directly from various Compact Spaces

definitions of topological entropy. Thus it is enough to . . )
The original definition of topological entropy

begins in 1965 by Adler et al. [1]. They introduce the
topological entropy of a continuous self-map

know that topological entropy of a dynamical system
is a measure of complexity of dynamic behavior of the

system, and it can be seen as a quantitative . . .
) ) f:X = X onacompact space X. So in this section, we
measurement of how chaotic of a dynamical system. )
) ) always let X be a nonempty compact topological
Generally speaking, the larger the topological entropy .
. . ] space, and f:X — X a continuous self-map.
of a system is the more complicated the dynamics of .
Definition 2.1. For any open cover U of X, let

N(U) denote the number of sets in a subcover of
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if no other subcover contains fewer members. We call
H(U) =logN(U) the entropy of U.
Since X is compact and U is an open cover, there
always exists a finite subcover. Then we have
H(U) = logmin{card(V):V a finite subcover of U}.
Definition 2.2. For any two covers U,Vof X,
UvVP={ANB:A€U,B eV} defines their join.
the join Vi_ Uy =
{Nr_1Ax: A € Uy} of any finite collection of open

Similarly we can define
covers of X.

Let f:X > X be a continuous mapping on a
compact space X. If U is an open cover of X, then
from continuity, the family f~1(U) = {f"1(U):U €
U is again an open cover of X. Sometimes we will
write f~1U instead of f~1(U) if there is no chance
for confusion. Similarly for fU.

The following proposition state the properties of
N(U) and H(U).

Proposition 2.1. Let U,V be two open covers of a
compact space X. Then

i) N(UVVP)SNUW)-NWV) and H(UVV) <
H(W) + HW);

(i) fUVY)=fH WV F);

(iii) N(W) = N(f~1(w) and
H(W) = H(f~1(W)).If f is onto, we have equality.

(iv) N(fu)=N(U) and H(fUW) = H(W). If f
is homeomorphism, we have equality.

Proof. (i) Let {Ay,.., Ay} and {By, ..., Byan}
be subcovers of U and V of minimal cardinality,
respectively. Then

{4inB:i=1,.,NW,j=1,..,.NOV)}
is a subcover of U V7V (possibly not minimal) of
cardinality N(U) - N(V). Consequently N(UV V) <
N -NW).

(i1) By the property of inverse image,
fAuvy)={f'(AnB):A€UBEV}

={f'A)nfYB):AeUBEeV}
= fl W v ).

(ii1) Let {Al, ---:AN(’U)} be a subcover of U of
minimal cardinality. Since {f 4y, ... (A N(u))}
is also a subcover of f~1U, possibly not minimal, we

have N(f'U)<N(U) . If f is onto and
{f‘l (A), .., 1 (AN(f—lu))} is a subcover of f~1U
of minimal cardinality, then also {Al, ...,AN(f—lu)} is
a subcover of U. Thus we have, N(f~1U) > N(1U).
(iv) Let {fAl, ...,fAN(fru)} be a subcover of fU
of minimal cardinality. Since
{FfAD, . fHf(Anw)} is also a subcover of
f1fU, possibly not minimal, we have N(f~1fU) <
N(fUu). Since UCS f~I1fU, N(UW <N(fu)
NWSNFW . If f s
homeomorphism and
{f‘lf(Al), ...,f'lf(AN(f—lfu))} is a subcover of
f7fU of minimal cardinality, then also
{fAl, ...,fAN(f—1fu)} is a subcover of fU. Thus we

and therefore

have, N(f7fU) = N(fU) Since f s
homeomorphism, U= f"1fU , then N(U)=
N(f1fu) > N(fU).m

Remark.(i) The operation V is obviously

commutative and associative.

(i) £ (ViZo W) = VESS f 1 (W)

Lemma 2.1. For every open cover U of X, the
following

limn_m%H(V}E;é ()]

= rlli_r)roloH(‘u VW V-V (W)

exists and is a nonnegative real number.
Proof. Consider the

c, = H\VEZS £7%(U)), n € N. Since X is nonempty,

every open cover of X contains at least one set, and

sequence

therefore ¢, =0 for all n € N. Proposition 2.1
(cp:n€EN) s
Cmin < €y + ¢, forall m,neN:
Cmim = HOVEZ T FR(W))
=HUVf v v fmrtiqy)
=HUVfUv-vfF™yuyvfFmuyy..
v fomonrlyy)
=H(Uvf1tuv-vfmtiy
VMUY eV FY))
<HCUVfUuv--vfmtiy)
+H(f™UV - v W)

implies that subadditive, i.e.,
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<HCUVfUuv-vfmtiy)
+H(UV -V )
=Cy +Cp.

The fourth equality follows from Proposition 2.1(ii);
the next inequality from Proposition 2.1 (i); and the
final inequality from Proposition 2.1 (iii). From the
subadditivityof (c,), clearly it is a decreasing
sequence. It follows by an elementary result from real
analysis that the

lim,, . c, exists and equals

. . [ . .
inf,eyc, . Thus the lim,_,— exists and is a
n

nonnegative real number.m
Definition 2.3. The topological entropy of f with
respect to an open cover ‘U is defined by

R(f, W) = lim ~ H(VEZS f (W),

and the topological entropy of f is defined as
h(f) = supy{h(f,U): U is an open cover of X},
where the supremum is taken over all open covers U
of X. Obviously, h(f) € [0, ].

Lemma 2.2. Let U be an open cover of X. Then

h(f,U) < H(U).

Proof. By Definition 2.3, Proposition 2.1 (i) and
(ii1),

1
h(f,U) = rlli-r»?oZH(u VU Y v YY)
< AEIQO%[H(U) + H(f_l‘u) 4ot H(f—n+1u)]

< lim 1[H(‘u) +H(U) + -+ HW)]

n-on
= limn_m%[nH(’U)] =H(W). m

Definition 2.4. A cover V is said to be a
refinement of a cover U, denoted as U < V, if every
element of V is a subset of some element of U. In
other words, U <V if A €V, there exists a B €U
such that A € B.

Lemma 2.3. Let U, V,U and V’ be open covers
of X. Then the following statements hold:

) U<UV<V=>UVV<UVV.

(i) U<PVP=N(U)<N) and H(U) < HV).

(iii)) U<V =NUVV)=N(V) and
HUvVV)=HV)

(iv) U<V = flw=< 1w

V) U<V = h(f,U) <h(f,V).

Proof. (i) Consider A'N'BeU' VYV’
A'€U' and B'€V’'. By hypothesis there exists
A€U and BEV such that A’S A and B'S B.
Thus AANB'"©SANB where ANBEUVYV.

(i) Let {Bl, ...,BN(V)} be a subcover of V of
minimal cardinality. Since U <7V, there exists a
subcover {Al, ...,AN(V)} of U such that A; € B;
for i =1,..., N(V). Therefore N(U) < N(V).

(iii) Obviously by (i), V={X}VV <UVYV so
that N(V) < N(UV V) by (ii). On the other hand,
U<V and V<V implies UVV<VVV V.
Thus N(UVV) < N).

(iv) Let A€ f~1(V), then f(A)EV . Since
U <V, there exists B € U such that f(A) € B. This
implies that A < f~1(f(A)) < f*(B)ef (W) .
Thus f=1(W) < f~1(V).

(v) By part (i) and (iv), it follows that UV f~1UV
VY <PV VYV Y for o all
n € N. Therefore by (ii),

HUV fuv--v iy

<SH@YVfWv..v iy,
This yields the claim. m

Theorem 2.1. If ¢:X -V is
surjection and g:Y = Y a continuous map such that
pof=gog, then h(g)<h(f). If ¢ is a
homeomorphism, then h(f) = h(g).

Proof. If U is an open cover of Y, thengp~1(U) is
an open cover of X and

h(f, ¢~ (W) = lim, .~ H(V}Z3 f (7))

where

a continuous

= lim %H(V}E;& ¢ (g7Fu)

= lim ~ H(¢™ Vi 2} g™*u)

n-—-oo
= limn_m%H(Vﬁgé gF (W)

= h(g, W)
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by Proposition 2.1 (iii). It follows that
h(f) = sup{h(f,V):V is an open cover of X}
v

> sup {h(f, ¢ U): ¢~ U is an open cover of X}
ptu

= sup{h(g,U): U is an open cover of Y}
U

= h(g).

If ¢ is a homeomorphism and if U is an open
cover of X, then ¢(U) = (¢~1)1(U) is an open
coverof Y and wehave ¢ 1og=fogp L So

h(g,¢U) = h(g, (9~ (W))

= lim, ... - H(V}=} g7 (™D W)
= limn_m%H((d)_l)_l VIZS R (W)

. 1 1.
= hmn—>00 ;H(V"],(L:(])- k (u)) = h(fu u)
by Proposition 2.1 (iii). It follows that

h(g) = sup{h(g,V):V is an open cover of Y}
v
= sup{h(g, pU): ¢'U is an open cover of Y}
U

= sup{h(f,U): U is an open cover of X}
U

=h(f). m

Corollary 2.1. Let f:X — X be a continuous
mapping and let ~ be an equivalence relation on X
such that f(x) ~ f(y) whenever
f:X/~— X/~ be the mapping defined by fom =
mof where m is the projection of Xonto X/~.
Then h(f) < h(f).

Proof. The projection

continuous surjection with f om = mo f. The result

x~y . Let

mX— X/~ is a

follows by Theorem 2.1.m

Theorem 2.2. Topologically conjugate maps have
the same topological entropy, h(f) = h(gofog™)
where f:X — X is a continuous map and g: X — Y
is a homeomorphism.

Proof. Let U be an open cover of X. Since g isa
homeomorphism, gU is an open cover of Y. Hence

h(gefog gl

= lim,,.. - H(VI= (g o f o g7) 7' (gW)

1
= lim EH(g’UVg of‘1 og_lg’llv---vg of—n+1
n-—-oo
°g~lgU)

1
=lim—H(UV fUv--v U = h(f,W).

n-won

The third equality follows from Proposition 2.1.
Hence h(f) =h(gofog™').m

Theorem 2.3. (i) For the topological entropy of
iterates the formula h(f*) =k - h(f) holds for all
k € N.

(i) If f is a homeomorphism, then h(f) =
h(f™1) and therefore h(f*) = |k|h(f) for all
k € Z.

Proof. (i) For any open cover U of X we have

h(f*) = sup{h(f¥,U):U is an open cover of X}
U

2 h(f*Visd (W)

= lim, .. - H(VIL (P~ (VI £ (W)

= limn%%H(‘u VUV v R

= klim,,_,.— H(V¥5! £ (W)

= kh(f,UW).
Thus h(f*) = kh(f). On the other hand, since for
any open cover U,

VIS (FD iU < Vs £,
we have

h(f,U) = limn_miH(V?fo'l W)

> lim, .. H(ViZ (F) ')

= +lim,, .~ H(VIZ (F) )

—lh ku
_E (fl )

by Lemma 2.3(ii). Thus kh(f) = h(f").
(i) If f is a homeomorphism and U any open
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cover of X, then

A(f, W) = lim ~H(VEZ) £ (W)
= i (i)

1
=lim—H(UV fUv-v fr1u)

n-on
1
= lim HH(U v HMuv v (FH™ )
n-—-o0

= h(f~1, ).
Thus h(f) = h(f~1). If k < 0, then
h(F®) = R((F)™) = —kh(f 1) = [k (f).

This yields the statement. m

3. Topological Entropy for Maps on Metric
Spaces

Bowen [2] defines the topological entropy h(f) of
a uniformly continuous map f:X — X on an arbitrary
metric space (X,d) (not necessarily compact) via
(n, €)-separated and (n, €)-spanning sets. In general,
this quantity depends on the metric 4. But for X being
compact it coincides with the topological entropy as
defined by Adler et al. [1].

Definition 3.1. Let (X,d) be a metric space and
f:X — Xa uniformly continuous map (abbreviated:
f€UCX,d) ). For each n€N, d,f(x,y) =

maxg<<,—1 d (fi(x),fi(y)) defines a metric on X,

set ECXis
(n, &) -separated if for all x,y € E with x #y it
holds that d, (x,y)>¢ . A set FCX is
(n, €)-spans another set K € X (with respect to f) if

topologically equivalent to d. A

for every x € K there is a y € F with d,, f(x,y) <
£.

Definition 3.1. For a compact set K € X, let
1,(&, K) be the smallest cardinality of a set which
(n,e) -spans K, and let s,(g,K) be the largest
cardinality of an (n, &)-separated set contained in K.
We write 1,(g,K,f) or s,(¢, K, f) if we wish to
stress the dependence on f. Define

r(, K, f) = limsup,, %logrn (s, K),

s(e, K, f) = limsup,_,o %log s, (&, K).
Lemma 3.1.
. 1
() n(eK)<s,(K)<m (ES,K) < oo,

(ii) For & <¢&, r(e, K, f)=7r(e, K, f) and
s(er, K, f) =2 s(e, K, f).

By the Lemma 3.1, the following definition makes
sense.

Definition 3.2. For f €UC(X,d) and K<SX
he(f,K) =lim,_or(s, K, f) =
lim,_qs(¢, K, f), and one defines the topological
of f is  hy(f) =sup{hy(f,K):K S
X compact.

compact, set
entropy

In Definition 3.2, we stress the dependence on the
metric d used. Metrics d and d' on X are
uniformly equivalent if idy:(X,d) — (X,d") and
idy: (X,d) — (X,d) are both uniformly continuous
maps of metric spaces. In this case f € UC(X,d) if
and only if f € UC(X,d"). Bowen [2] proves the
following properties of hy (f).

Theorem 3.1. (i) If d; and d, are uniformly
equivalent metrics on X, then hg (f) = hg, (f).

(ii) For iterates it holds that hy(f™) =m - hy(f)
forall f € UC(X,d) and m € N.

Proof. (i) Given & > 0, choose &, > 0 such that
di(x,y) <& and
g3 > 0 such that dq(x,y) < ezimplies d,(x,y) < &.

dy(x,y) < & implies choose
Let K € X be compact, then an (n, &;)-spanning set
for K with respect to d, is an (n, & )-spanning set
for K with respect to d;. Hence 7,(e,K,d;) <
1, (&, K, dy). Similarly 1, (&2, K,dy) <
1,(&3,K,dq). Letting , 1a, (e, K f) <
14,(e0, K, f) <74,(e3,K,f). If & —0 , then
& —0 and & — 0 so we have hy (f,K)=
hq, (f, K).

(ii) Clearly, 1, (&, K, f™) < 1,00 (6, K, f); it follows

n — oo

that %logrn(e,l(,fm) S:—nlogrmn(e,l(,f) and

therefore h,;(f™) <m- hy(f). Since f € UC(X,d),
given & > 0, there exist § > 0 such that d(x,y) <
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§ implies maxoggn_ld(f"(x),f"(y)) <e& So an

(n, §) -spanning set for K with respect to f™ is
automatically an (mn, €)-spanning set for K with
respect to f. Hence 1,(8, K, f™) = 1, (6, K, f), so
r(6,K, f™) =2mr(e, K, f). Therefore hy(f™,K) =
m-hy(f,K).So, hy(f™)=m - hy(f). m

If X is compact and if d and d’' are equivalent
metrics then they are uniformly equivalent. Also each
continuous map f:X — X is uniformly continuous.
Therefore if X is compact metrizable space the
entropy of f does not depend on the metric chosen
on X (provided that metric induces the topology of
X).

Theorem 3.2. Let (X,d) be a metric space and
feuCX,d). If K€ KyU--UK,, are all compact
subsets of X, then

hqe(f,K) < max hq(f, K.

Proof. s,(e,K) <s,(,K) + -+
Sy (& Ky). Fix € > 0. For each n € N, choose K;(, ()

Clearly

such that sn(s, Ki(n,g)) = MaXigjgn sn(e, K-). Then
s,(e,K) <m-s, (s, Ki(n_e)) and so,
logs,(g,K) <logm + logs, (s, Ki(n_e)).

Choose n — o such that

1
msupalog sn (&, K)

n—oo

1 :
n—jlog Sn; (&, K) = 1i

and so that Kimn; e) does not depend on j (ie.,

Kin;e) = KiyVj ). Therefore  s(g,K, f) <

s(& Kie),f). Choose &, — 0 so that Ky is

constant (= K; , say). Hencehy (f,K) < hd(f, Kio) <
maxiggn ha (f,K;). ®

Corollary 3.1. Let (X,d) be a metric space and
f € UC(X,d) and also let § > 0. In order to compute
hq (), it is suffices to take the supremum of h,(f, K)
over those compact subsets of diameter less than §.

Proof. Since K is compact, it can be covered by a
finite number of balls By, ..., B, of diameter % and

hence

ha(f, K) < max; << ha(f, K N cl(By)),
so that hy(f) = maxq<y, hy (f,K Nncl(B)). w

Corollary 3.2. If X is a compact metrizable space
and d is any metric on X, then

h(f) = ha(f) = ha(f,X) = h(f, X).

Proof. If K is a compact subset of X, then
hqe(f,K) < hy(f,X). Tt follows from Theorem 4(i)
that hy(f) doesnotdependon d. m

When X is compact, Corollary 3.2 can be used to
simplify the definition of h(f). Take any metric d
giving the topology of X, then

1
h(f) = limlimsup—logr, (&, X)
0 pouee N

- 1
= l{r& hmsupglog s, (&, X).

n-co

These expressions have the following interpretation.
Suppose we want to count the number of orbits of
length n (an orbit of length n is a set
{x, f(x), ..., f""1(x)} but we can only measure to an
error €. Then both 7,(¢,X) and s,(g,X) can be
interpreted as the number of orbits of length n up to
error €. So as € — 0, h(f) is a measurement of the
growth rate in n of the number of orbits of length n
up to error &.

Other papers dealing with extensions of topological
entropy to non-compact spaces are Hofer [8], Bowen
[3], Canovas [4], Canovas& Rodriguez [7], and
Canovas&Linero [5, 6].

Next we make a slight modification on the symbol
of refinement. The properties of this modification also
investigated below.

Definition 3.3. A cover U is said to be a
refinement of a cover V, denoted as U < V, if every
member of U is a subset of some member of V. In
other words, U < Vif A € U, there exists a B €V
such that A € B.

The following proposition is analogue results of
Lemma 2.3.

Proposition 3.1. Let T, VP, Uand V' be open
covers of X. Then the following statements hold:

) U<UV<V=>UVVP<UVYV.
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(i) U<V =NU) =2NWV)and H(U) = H(V).

(iii) U<V=NUVV)=N(U)andH(UV
V=HU.

(iv) U<V = fl(w=< 1.

V) U<V = h(f,U) = h(f,V).

Proof. (i) Consider ANBE€UVV where A€
Uand B € V. By hypothesis there exists A’ € U’ and
B'€V' such that AS A" and B S B'. Thus
ANB S A'NnB'where ANB'eU'VYV"

(i) Let {Al, :AN(’U)} be a subcover of U of
minimal cardinality. Since U <V, there exists a
subcover {Bl, ---:BN(’U)} of V suchthat A; € B; for
i=1,..,N(UW. Therefore N(U) = N(V).

(iii) Obviously by (i), UVPV <UV{X}=TU so
that N(U Vv V) = N(U) by (ii). On the other hand,
U<V and U< Uimplies U<UVU<UVV.
Thus N(U) = N(UV V).

(iv) Let A€ f~1(U), then f(A)€U. Since
U <V, there exists B €V such that f(A) € B. This
implies that A < f71(f(4)) € f~U(B) € fL(V).
Thus f~1(W) < f~1(V).

(v) By part (i) and (iv), it follows that UV f1UV
VY <YV VYV Y for o all
n € N. Therefore by (ii)

HUV fuv--v 7w

>HWVfIVv..v iy,
This yields the claim.m

Theorem 3.3. For the topological entropy of

iterates the following formula holds:
h(f*) = kh(f) forall k € N.

Proof. The proof of first part is similar to the proof
of Theorem 2.3. The proof for the second part is as
follow. Since for any open cover U, V¥, f~U <
VL (F U, we have

R, U) = limy, o, — H(VIEGT £7(U))

s limy o L BV )

= 2 lim, Lo, ~ H(VIS (F) )

1 h(fk,u

= 5w
by Proposition 3.1(ii). Thus kh(f) = h(f*). =
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