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Abstract: Topological entropy can be an indicator of complicated behavior in dynamical systems. It is first introduce by Adler, 
Konheim and McAndrew by using open covers in 1965. After that it is still an active research by many researchers to produce more 
properties and applications up to nowadays. The purpose of this paper is to review and explain most important concepts and results of 
topological entropies of continuous self-maps for dynamical systems on compact and non-compact topological and metric spaces. 
We give proofs for some of its elementary properties of the topological entropy. Slight modification on Adler’s topological entropy is 
also presented. 
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1. Introduction  

Let 𝑋𝑋  be a Hausdorff topological space and 
𝑓𝑓:𝑋𝑋 → 𝑋𝑋 be a continuous self-map on 𝑋𝑋. The pair 
(𝑋𝑋,𝑓𝑓) is called a dynamical system. If 𝑛𝑛 ∈ ℕ, then 
𝑓𝑓𝑛𝑛 = 𝑓𝑓 ∘ 𝑓𝑓𝑛𝑛−1, 𝑓𝑓1 = 𝑓𝑓 and 𝑓𝑓0 is the identity map 
on 𝑋𝑋 . For 𝑥𝑥 ∈ 𝑋𝑋 , the sequence {𝑓𝑓𝑛𝑛(𝑥𝑥):𝑛𝑛 ∈ ℕ}  is 
called the orbit of 𝑥𝑥. If 𝑓𝑓 is a homeomorphism, the 
full orbit of 𝑥𝑥 is the sequence {𝑓𝑓𝑛𝑛(𝑥𝑥):𝑛𝑛 ∈ ℤ}. 

Topological entropy can be an indicator of 
complicated (chaotic) behavior in dynamical systems. 
Whether the topological entropy of a dynamical 
system is positive or not is of primary significance, 
due to the fact that positive topological entropy 
implies that one can assert that the system is chaotic. 
It is hard, as remarked by [9], to get a good idea of 
what topological entropy means directly from various 
definitions of topological entropy. Thus it is enough to 
know that topological entropy of a dynamical system 
is a measure of complexity of dynamic behavior of the  

system, and it can be seen as a quantitative 
measurement of how chaotic of a dynamical system. 
Generally speaking, the larger the topological entropy 
of a system is the more complicated the dynamics of 
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this system would be. 
This paper is organized as follow. In section 2, we 

review the earlier concept of topological entropy 
introduced by Adler et al. [1] as an invariant of 
topological conjugacy and also as an analogue of 
measure theoretic entropy. This topological entropy 
only holds on a compact topological space. In section 
3, we review and discuss another definition of 
topological entropy introduced by Bowen [2] using 
separating and spanning sets on metric space. This 
definition holds not only on compact space but also on 
non-compact space. Finally in the last section, slight 
modification of Adler’s topological entropy has been 
done by changing the symbol of refinement. 

2. Topological Entropy for Maps on 
Compact Spaces 

The original definition of topological entropy 
begins in 1965 by Adler et al. [1]. They introduce the 
topological entropy of a continuous self-map 
𝑓𝑓:𝑋𝑋 → 𝑋𝑋 on a compact space X. So in this section, we 
always let 𝑋𝑋  be a nonempty compact topological 
space, and 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 a continuous self-map. 

Definition 2.1. For any open cover 𝒰𝒰 of 𝑋𝑋, let 
𝑁𝑁(𝒰𝒰) denote the number of sets in a subcover of 
minimal cardinality. A subcover of a cover is minimal 
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if no other subcover contains fewer members. We call 
𝐻𝐻(𝒰𝒰) = log𝑁𝑁(𝒰𝒰) the entropy of 𝒰𝒰. 

Since 𝑋𝑋 is compact and 𝒰𝒰 is an open cover, there 
always exists a finite subcover. Then we have 
𝐻𝐻(𝒰𝒰) = log min{card(𝒱𝒱):𝒱𝒱 a finite subcover of  𝒰𝒰}. 

Definition 2.2. For any two covers 𝒰𝒰,𝒱𝒱of 𝑋𝑋 , 
𝒰𝒰 ∨ 𝒱𝒱 ≡ {𝐴𝐴 ∩ 𝐵𝐵:𝐴𝐴 ∈ 𝒰𝒰,𝐵𝐵 ∈ 𝒱𝒱}  defines their join. 
Similarly we can define the join ⋁𝑘𝑘=1

𝑛𝑛 𝒰𝒰𝑘𝑘 =
{⋂𝑘𝑘=1

𝑛𝑛 𝐴𝐴𝑘𝑘 : 𝐴𝐴𝑘𝑘 ∈ 𝒰𝒰𝑘𝑘} of any finite collection of open 
covers of 𝑋𝑋. 

Let 𝑓𝑓:𝑋𝑋 → 𝑋𝑋  be a continuous mapping on a 
compact space 𝑋𝑋. If 𝒰𝒰 is an open cover of X, then 
from continuity, the family 𝑓𝑓−1(𝒰𝒰) = {𝑓𝑓−1(𝑈𝑈):𝑈𝑈 ∈
𝒰𝒰 is again an open cover of X. Sometimes we will 
write 𝑓𝑓−1𝒰𝒰 instead of 𝑓𝑓−1(𝒰𝒰) if there is no chance 
for confusion. Similarly for 𝑓𝑓𝒰𝒰. 

The following proposition state the properties of 
𝑁𝑁(𝒰𝒰) and 𝐻𝐻(𝒰𝒰). 

Proposition 2.1. Let 𝒰𝒰,𝒱𝒱 be two open covers of a 
compact space 𝑋𝑋. Then 

(i) 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱) ≤ 𝑁𝑁(𝒰𝒰) ⋅ 𝑁𝑁(𝒱𝒱)  and 𝐻𝐻(𝒰𝒰 ∨ 𝒱𝒱) ≤
𝐻𝐻(𝒰𝒰) + 𝐻𝐻(𝒱𝒱); 

(ii) 𝑓𝑓−1(𝒰𝒰 ∨ 𝒱𝒱) = 𝑓𝑓−1(𝒰𝒰) ∨ 𝑓𝑓−1(𝒱𝒱); 
(iii) 𝑁𝑁(𝒰𝒰) ≥ 𝑁𝑁�𝑓𝑓−1(𝒰𝒰)� and 

𝐻𝐻(𝒰𝒰) ≥ 𝐻𝐻�𝑓𝑓−1(𝒰𝒰)�. If 𝑓𝑓 is onto, we have equality. 
(iv) 𝑁𝑁(𝑓𝑓𝒰𝒰) ≥ 𝑁𝑁(𝒰𝒰)  and 𝐻𝐻(𝑓𝑓𝒰𝒰) ≥ 𝐻𝐻(𝒰𝒰) . If 𝑓𝑓 

is homeomorphism, we have equality. 
Proof. (i) Let �𝐴𝐴1, … ,𝐴𝐴𝑁𝑁(𝒰𝒰)�  and �𝐵𝐵1, … ,𝐵𝐵𝑁𝑁(𝒱𝒱)� 

be subcovers of 𝒰𝒰 and 𝒱𝒱  of minimal cardinality, 
respectively. Then 

�𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑗𝑗 : 𝑖𝑖 = 1, … ,𝑁𝑁(𝒰𝒰), 𝑗𝑗 = 1, … ,𝑁𝑁(𝒱𝒱)� 
is a subcover of 𝒰𝒰 ∨ 𝒱𝒱 (possibly not minimal) of 
cardinality 𝑁𝑁(𝒰𝒰) ⋅ 𝑁𝑁(𝒱𝒱). Consequently 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱) ≤
𝑁𝑁(𝒰𝒰) ⋅ 𝑁𝑁(𝒱𝒱). 

(ii) By the property of inverse image, 
𝑓𝑓−1(𝒰𝒰 ∨ 𝒱𝒱) = {𝑓𝑓−1(𝐴𝐴 ∩ 𝐵𝐵):𝐴𝐴 ∈ 𝒰𝒰,𝐵𝐵 ∈ 𝒱𝒱}

= {𝑓𝑓−1(𝐴𝐴) ∩ 𝑓𝑓−1(𝐵𝐵):𝐴𝐴 ∈ 𝒰𝒰,𝐵𝐵 ∈ 𝒱𝒱}
= 𝑓𝑓−1(𝒰𝒰) ∨ 𝑓𝑓−1(𝒱𝒱). 

(iii) Let �𝐴𝐴1, … ,𝐴𝐴𝑁𝑁(𝒰𝒰)�  be a subcover of 𝒰𝒰  of 
minimal cardinality. Since �𝑓𝑓−1(𝐴𝐴1), … ,𝑓𝑓−1�𝐴𝐴𝑁𝑁(𝒰𝒰)�� 
is also a subcover of 𝑓𝑓−1𝒰𝒰, possibly not minimal, we 

have 𝑁𝑁(𝑓𝑓−1𝒰𝒰) ≤ 𝑁𝑁(𝒰𝒰) . If 𝑓𝑓  is onto and 
�𝑓𝑓−1(𝐴𝐴1), … , 𝑓𝑓−1�𝐴𝐴𝑁𝑁(𝑓𝑓−1𝒰𝒰)�� is a subcover of 𝑓𝑓−1𝒰𝒰 
of minimal cardinality, then also �𝐴𝐴1, … ,𝐴𝐴𝑁𝑁(𝑓𝑓−1𝒰𝒰)� is 
a subcover of 𝒰𝒰. Thus we have, 𝑁𝑁(𝑓𝑓−1𝒰𝒰) ≥ 𝑁𝑁(𝒰𝒰). 

(iv) Let �𝑓𝑓𝐴𝐴1, … , 𝑓𝑓𝐴𝐴𝑁𝑁(𝑓𝑓𝒰𝒰)� be a subcover of 𝑓𝑓𝒰𝒰 
of minimal cardinality. Since 
�𝑓𝑓−1𝑓𝑓(𝐴𝐴1), … , 𝑓𝑓−1𝑓𝑓�𝐴𝐴𝑁𝑁(𝑓𝑓𝒰𝒰)�� is also a subcover of 
𝑓𝑓−1𝑓𝑓𝒰𝒰, possibly not minimal, we have 𝑁𝑁(𝑓𝑓−1𝑓𝑓𝒰𝒰) ≤
𝑁𝑁(𝑓𝑓𝒰𝒰) . Since 𝒰𝒰 ⊆ 𝑓𝑓−1𝑓𝑓𝒰𝒰 , 𝑁𝑁(𝒰𝒰) ≤ 𝑁𝑁(𝑓𝑓−1𝑓𝑓𝒰𝒰) 
and therefore 𝑁𝑁(𝒰𝒰) ≤ 𝑁𝑁(𝑓𝑓𝒰𝒰) . If 𝑓𝑓  is 
homeomorphism and 
�𝑓𝑓−1𝑓𝑓(𝐴𝐴1), … , 𝑓𝑓−1𝑓𝑓�𝐴𝐴𝑁𝑁(𝑓𝑓−1𝑓𝑓𝒰𝒰)��  is a subcover of 
𝑓𝑓−1𝑓𝑓𝒰𝒰  of minimal cardinality, then also 
�𝑓𝑓𝐴𝐴1, … , 𝑓𝑓𝐴𝐴𝑁𝑁(𝑓𝑓−1𝑓𝑓𝒰𝒰)� is a subcover of 𝑓𝑓𝒰𝒰. Thus we 
have, 𝑁𝑁(𝑓𝑓−1𝑓𝑓𝒰𝒰) ≥ 𝑁𝑁(𝑓𝑓𝒰𝒰) . Since 𝑓𝑓  is 
homeomorphism, 𝒰𝒰 = 𝑓𝑓−1𝑓𝑓𝒰𝒰 , then 𝑁𝑁(𝒰𝒰) =
𝑁𝑁(𝑓𝑓−1𝑓𝑓𝒰𝒰) ≥ 𝑁𝑁(𝑓𝑓𝒰𝒰).∎ 

Remark.(i) The operation ∨  is obviously 
commutative and associative. 

(ii) 𝑓𝑓−1(⋁ 𝒰𝒰𝑘𝑘
𝑛𝑛−1
𝑘𝑘=0 ) = ⋁ 𝑓𝑓−1(𝒰𝒰𝑘𝑘)𝑛𝑛−1

𝑘𝑘=0 . 
Lemma 2.1. For every open cover 𝒰𝒰 of 𝑋𝑋, the 

following 

lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻(⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )  

= lim
𝑛𝑛→∞

𝐻𝐻�𝒰𝒰 ∨ 𝑓𝑓−1(𝒰𝒰) ∨ ⋯∨ 𝑓𝑓−𝑛𝑛+1(𝒰𝒰)� 

exists and is a nonnegative real number. 
Proof. Consider the sequence 

𝑐𝑐𝑛𝑛 = 𝐻𝐻(⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑛𝑛−1
𝑘𝑘=0 ), 𝑛𝑛 ∈ ℕ. Since 𝑋𝑋 is nonempty, 

every open cover of 𝑋𝑋 contains at least one set, and 
therefore 𝑐𝑐𝑛𝑛 ≥ 0  for all 𝑛𝑛 ∈ ℕ . Proposition 2.1 
implies that (𝑐𝑐𝑛𝑛 :𝑛𝑛 ∈ ℕ)  is subadditive, i.e., 
𝑐𝑐𝑚𝑚+𝑛𝑛 ≤ 𝑐𝑐𝑚𝑚 + 𝑐𝑐𝑛𝑛  for all 𝑚𝑚,𝑛𝑛 ∈ ℕ: 
𝑐𝑐𝑚𝑚+𝑛𝑛 = 𝐻𝐻(⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑚𝑚+𝑛𝑛−1

𝑘𝑘=0 )  
           = 𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑚𝑚−𝑛𝑛+1𝒰𝒰) 

    = 𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑚𝑚+1𝒰𝒰 ∨ 𝑓𝑓−𝑚𝑚𝒰𝒰 ∨⋯
∨ 𝑓𝑓−𝑚𝑚−𝑛𝑛+1𝒰𝒰) 

= 𝐻𝐻�𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑚𝑚+1𝒰𝒰
∨ 𝑓𝑓−𝑚𝑚(𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰)� 

≤ 𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑚𝑚+1𝒰𝒰)
+ 𝐻𝐻�𝑓𝑓−𝑚𝑚(𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰)� 
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≤ 𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑚𝑚+1𝒰𝒰)
+ 𝐻𝐻(𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰) 

  = 𝑐𝑐𝑚𝑚 + 𝑐𝑐𝑛𝑛 . 
The fourth equality follows from Proposition 2.1(ii); 

the next inequality from Proposition 2.1 (i); and the 
final inequality from Proposition 2.1 (iii). From the 
subadditivityof (𝑐𝑐𝑛𝑛) , clearly it is a decreasing 
sequence. It follows by an elementary result from real 
analysis that the lim𝑛𝑛→∞ 𝑐𝑐𝑛𝑛 exists and equals 

inf𝑛𝑛∈ℕ 𝑐𝑐𝑛𝑛 . Thus the lim𝑛𝑛→∞
𝑐𝑐𝑛𝑛
𝑛𝑛

 exists and is a 

nonnegative real number.∎ 
Definition 2.3. The topological entropy of 𝑓𝑓 with 

respect to an open cover 𝒰𝒰 is defined by  

ℎ(𝑓𝑓,𝒰𝒰) = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 ),  

and the topological entropy of 𝑓𝑓  is defined as 
ℎ(𝑓𝑓) = sup𝒰𝒰{ℎ(𝑓𝑓,𝒰𝒰): 𝒰𝒰  is an open cover of  𝑋𝑋}，  
where the supremum is taken over all open covers 𝒰𝒰 
of 𝑋𝑋. Obviously, ℎ(𝑓𝑓) ∈ [0,∞]. 

Lemma 2.2. Let 𝒰𝒰 be an open cover of 𝑋𝑋. Then  
ℎ(𝑓𝑓,𝒰𝒰) ≤ 𝐻𝐻(𝒰𝒰). 
Proof. By Definition 2.3, Proposition 2.1 (i) and 

(iii), 

ℎ(𝑓𝑓,𝒰𝒰) = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰) 

≤ lim
𝑛𝑛→∞

1
𝑛𝑛

[𝐻𝐻(𝒰𝒰) + 𝐻𝐻(𝑓𝑓−1𝒰𝒰) + ⋯+ 𝐻𝐻(𝑓𝑓−𝑛𝑛+1𝒰𝒰)] 

     ≤ lim
𝑛𝑛→∞

1
𝑛𝑛

[𝐻𝐻(𝒰𝒰) +𝐻𝐻(𝒰𝒰) + ⋯+ 𝐻𝐻(𝒰𝒰)] 

= lim𝑛𝑛→∞
1
𝑛𝑛

[𝑛𝑛𝐻𝐻(𝒰𝒰)] = 𝐻𝐻(𝒰𝒰). ∎ 

Definition 2.4. A cover 𝒱𝒱  is said to be a 
refinement of a cover 𝒰𝒰, denoted as 𝒰𝒰 ≺ 𝒱𝒱, if every 
element of 𝒱𝒱 is a subset of some element of 𝒰𝒰. In 
other words, 𝒰𝒰 ≺ 𝒱𝒱 if 𝐴𝐴 ∈ 𝒱𝒱, there exists a 𝐵𝐵 ∈ 𝒰𝒰 
such that 𝐴𝐴 ⊆ 𝐵𝐵. 

Lemma 2.3. Let 𝒰𝒰,𝒱𝒱,𝒰𝒰′ and  𝒱𝒱′ be open covers 
of 𝑋𝑋. Then the following statements hold: 

(i) 𝒰𝒰 ≺ 𝒰𝒰′,𝒱𝒱 ≺ 𝒱𝒱′⟹𝒰𝒰∨𝒱𝒱 ≺ 𝒰𝒰′ ∨ 𝒱𝒱′. 
(ii) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ 𝑁𝑁(𝒰𝒰) ≤ 𝑁𝑁(𝒱𝒱)  and  𝐻𝐻(𝒰𝒰) ≤ 𝐻𝐻(𝒱𝒱) . 

(iii) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱) = 𝑁𝑁(𝒱𝒱) and 
      𝐻𝐻(𝒰𝒰 ∨ 𝒱𝒱) = 𝐻𝐻(𝒱𝒱) 

(iv) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ 𝑓𝑓−1(𝒰𝒰) ≺ 𝑓𝑓−1(𝒱𝒱) 
(v) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ ℎ(𝑓𝑓,𝒰𝒰) ≤ ℎ(𝑓𝑓,𝒱𝒱). 
Proof. (i) Consider 𝐴𝐴′ ∩ ′𝐵𝐵 ∈ 𝒰𝒰′ ∨ 𝒱𝒱′  where 

𝐴𝐴′ ∈ 𝒰𝒰′  and 𝐵𝐵′ ∈ 𝒱𝒱′ . By hypothesis there exists 
𝐴𝐴 ∈ 𝒰𝒰  and 𝐵𝐵 ∈ 𝒱𝒱  such that 𝐴𝐴′ ⊆ 𝐴𝐴  and 𝐵𝐵′ ⊆ 𝐵𝐵 . 
Thus 𝐴𝐴′ ∩ 𝐵𝐵′ ⊆ 𝐴𝐴 ∩ 𝐵𝐵 where 𝐴𝐴 ∩ 𝐵𝐵 ∈ 𝒰𝒰 ∨ 𝒱𝒱.  

(ii) Let �𝐵𝐵1, … ,𝐵𝐵𝑁𝑁(𝒱𝒱)�  be a subcover of 𝒱𝒱  of 
minimal cardinality. Since 𝒰𝒰 ≺ 𝒱𝒱 , there exists a 
subcover �𝐴𝐴1, … ,𝐴𝐴𝑁𝑁(𝒱𝒱)�  of 𝒰𝒰  such that 𝐴𝐴𝑖𝑖 ⊆ 𝐵𝐵𝑖𝑖  
for 𝑖𝑖 = 1, … ,𝑁𝑁(𝒱𝒱). Therefore 𝑁𝑁(𝒰𝒰) ≤ 𝑁𝑁(𝒱𝒱).  

(iii) Obviously by (i), 𝒱𝒱 = {𝑋𝑋} ∨ 𝒱𝒱 ≺ 𝒰𝒰 ∨ 𝒱𝒱  so 
that 𝑁𝑁(𝒱𝒱) ≤ 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱) by (ii). On the other hand, 
𝒰𝒰 ≺ 𝒱𝒱  and 𝒱𝒱 ≺ 𝒱𝒱  implies 𝒰𝒰 ∨ 𝒱𝒱 ≺ 𝒱𝒱 ∨ 𝒱𝒱 ≺ 𝒱𝒱 . 
Thus 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱) ≤ 𝑁𝑁(𝒱𝒱). 

(iv) Let 𝐴𝐴 ∈ 𝑓𝑓−1(𝒱𝒱) , then 𝑓𝑓(𝐴𝐴) ∈ 𝒱𝒱 . Since 
𝒰𝒰 ≺ 𝒱𝒱, there exists 𝐵𝐵 ∈ 𝒰𝒰 such that 𝑓𝑓(𝐴𝐴) ⊆ 𝐵𝐵. This 
implies that 𝐴𝐴 ⊆ 𝑓𝑓−1�𝑓𝑓(𝐴𝐴)� ⊆ 𝑓𝑓−1(𝐵𝐵) ∈ 𝑓𝑓−1(𝒰𝒰) . 
Thus 𝑓𝑓−1(𝒰𝒰) ≺ 𝑓𝑓−1(𝒱𝒱). 

(v) By part (i) and (iv), it follows that 𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨
⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰 ≺ 𝒱𝒱 ∨ 𝑓𝑓−1𝒱𝒱 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒱𝒱  for all 
𝑛𝑛 ∈ ℕ. Therefore by (ii), 
𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰)

≤ 𝐻𝐻(𝒱𝒱 ∨ 𝑓𝑓−1𝒱𝒱 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒱𝒱). 
This yields the claim. ∎ 

Theorem 2.1. If 𝜙𝜙:𝑋𝑋 → 𝑌𝑌  is a continuous 
surjection and 𝑔𝑔:𝑌𝑌 → 𝑌𝑌 a continuous map such that 
𝜙𝜙 ∘ 𝑓𝑓 = 𝑔𝑔 ∘ 𝜙𝜙 , then ℎ(𝑔𝑔) ≤ ℎ(𝑓𝑓) . If 𝜙𝜙  is a 
homeomorphism, then ℎ(𝑓𝑓) = ℎ(𝑔𝑔). 

Proof. If 𝒰𝒰 is an open cover of 𝑌𝑌, then𝜙𝜙−1(𝒰𝒰) is 
an open cover of 𝑋𝑋 and 

ℎ�𝑓𝑓,𝜙𝜙−1(𝒰𝒰)� = lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻(⋁ 𝑓𝑓−𝑘𝑘(𝜙𝜙−1𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )  

= lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(⋁ 𝜙𝜙−1(𝑔𝑔−𝑘𝑘𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )  

= lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(𝜙𝜙−1 ⋁ 𝑔𝑔−𝑘𝑘𝒰𝒰𝑛𝑛−1

𝑘𝑘=0 )  

= lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻(⋁ 𝑔𝑔−𝑘𝑘(𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )  

     = ℎ(𝑔𝑔,𝒰𝒰) 
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by Proposition 2.1 (iii). It follows that 

ℎ(𝑓𝑓) = sup
𝒱𝒱

{ℎ(𝑓𝑓,𝒱𝒱):𝒱𝒱 is an open cover of 𝑋𝑋} 

≥ sup
𝜙𝜙−1𝒰𝒰

{ℎ(𝑓𝑓,𝜙𝜙−1𝒰𝒰):𝜙𝜙−1𝒰𝒰 is an open cover of 𝑋𝑋}   

= sup
𝒰𝒰

{ℎ(𝑔𝑔,𝒰𝒰):𝒰𝒰 is an open cover of 𝑌𝑌} 

    = ℎ(𝑔𝑔). 
If 𝜙𝜙 is a homeomorphism and if 𝒰𝒰 is an open 

cover of 𝑋𝑋 , then 𝜙𝜙(𝒰𝒰) = (𝜙𝜙−1)−1(𝒰𝒰) is an open 
cover of 𝑌𝑌 and we have 𝜙𝜙−1 ∘ 𝑔𝑔 = 𝑓𝑓 ∘ 𝜙𝜙−1. So  
       ℎ(𝑔𝑔,𝜙𝜙𝒰𝒰) = ℎ�𝑔𝑔, (𝜙𝜙−1)−1(𝒰𝒰)� 

= lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻(⋁ 𝑔𝑔−𝑘𝑘((𝜙𝜙−1)−1𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )  

= lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻((𝜙𝜙−1)−1 ⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )  

= lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻(⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 ) = ℎ(𝑓𝑓,𝒰𝒰)  

by Proposition 2.1 (iii). It follows that 

ℎ(𝑔𝑔) = sup
𝒱𝒱

{ℎ(𝑔𝑔,𝒱𝒱):𝒱𝒱 is an open cover of 𝑌𝑌}  

≥ sup
𝜙𝜙𝒰𝒰

{ℎ(𝑔𝑔,𝜙𝜙𝒰𝒰):𝜙𝜙𝒰𝒰 is an open cover of 𝑌𝑌}

= sup
𝒰𝒰

{ℎ(𝑓𝑓,𝒰𝒰):𝒰𝒰 is an open cover of 𝑋𝑋} 

      = ℎ(𝑓𝑓).  ∎ 
Corollary 2.1. Let 𝑓𝑓:𝑋𝑋 ⟶ 𝑋𝑋  be a continuous 

mapping and let ∼ be an equivalence relation on 𝑋𝑋 
such that 𝑓𝑓(𝑥𝑥) ∼ 𝑓𝑓(𝑦𝑦) whenever 𝑥𝑥 ∼ 𝑦𝑦 . Let 
𝑓𝑓:𝑋𝑋/∼→ 𝑋𝑋/∼ be the mapping defined by 𝑓𝑓 ∘ 𝜋𝜋 =
𝜋𝜋 ∘ 𝑓𝑓  where 𝜋𝜋  is the projection of 𝑋𝑋 onto 𝑋𝑋/~ . 
Then ℎ�𝑓𝑓� ≤ ℎ(𝑓𝑓). 

Proof. The projection 𝜋𝜋:𝑋𝑋 ⟶ 𝑋𝑋/~  is a 
continuous surjection with 𝑓𝑓 ∘ 𝜋𝜋 = 𝜋𝜋 ∘ 𝑓𝑓. The result 
follows by Theorem 2.1.∎ 

Theorem 2.2. Topologically conjugate maps have 
the same topological entropy, ℎ(𝑓𝑓) = ℎ(𝑔𝑔 ∘ 𝑓𝑓 ∘ 𝑔𝑔−1) 
where 𝑓𝑓:𝑋𝑋 ⟶ 𝑋𝑋 is a continuous map and 𝑔𝑔:𝑋𝑋 ⟶ 𝑌𝑌 
is a homeomorphism. 

Proof. Let 𝒰𝒰 be an open cover of 𝑋𝑋. Since 𝑔𝑔 is a 
homeomorphism, 𝑔𝑔𝒰𝒰 is an open cover of 𝑌𝑌. Hence        

ℎ(𝑔𝑔 ∘ 𝑓𝑓 ∘ 𝑔𝑔−1,𝑔𝑔𝒰𝒰) 

= lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻�⋁ (𝑔𝑔 ∘ 𝑓𝑓 ∘ 𝑔𝑔−1)−𝑖𝑖(𝑔𝑔𝒰𝒰)𝑛𝑛−1

𝑖𝑖=0 �  

= lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻( 𝑔𝑔𝒰𝒰 ∨ 𝑔𝑔 ∘ 𝑓𝑓−1 ∘ 𝑔𝑔−1𝑔𝑔𝒰𝒰 ∨⋯∨ 𝑔𝑔 ∘ 𝑓𝑓−𝑛𝑛+1

∘ 𝑔𝑔−1𝑔𝑔𝒰𝒰) 

= lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻( 𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰) = ℎ(𝑓𝑓,𝒰𝒰). 

The third equality follows from Proposition 2.1. 
Hence ℎ(𝑓𝑓) = ℎ(𝑔𝑔 ∘ 𝑓𝑓 ∘ 𝑔𝑔−1).∎ 

Theorem 2.3. (i) For the topological entropy of 
iterates the formula ℎ(𝑓𝑓𝑘𝑘) = 𝑘𝑘 ⋅ ℎ(𝑓𝑓) holds for all 
𝑘𝑘 ∈ ℕ.  

(ii) If 𝑓𝑓  is a homeomorphism, then ℎ(𝑓𝑓) =
ℎ(𝑓𝑓−1)  and therefore ℎ(𝑓𝑓𝑘𝑘) = |𝑘𝑘|ℎ(𝑓𝑓)  for all 
𝑘𝑘 ∈ ℤ. 

Proof. (i) For any open cover 𝒰𝒰 of 𝑋𝑋 we have 

ℎ(𝑓𝑓𝑘𝑘) = sup
𝒰𝒰

{ℎ(𝑓𝑓𝑘𝑘 ,𝒰𝒰):𝒰𝒰 is an open cover of 𝑋𝑋} 

≥ ℎ�𝑓𝑓𝑘𝑘 ,⋁ 𝑓𝑓−𝑖𝑖(𝒰𝒰)𝑘𝑘−1
𝑖𝑖=0 �  

= lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻�⋁ (𝑓𝑓𝑘𝑘)−𝑖𝑖�⋁ 𝑓𝑓−𝑖𝑖(𝒰𝒰)𝑘𝑘−1

𝑖𝑖=0 �𝑛𝑛−1
𝑖𝑖=0 �  

= lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛𝑘𝑘+1𝒰𝒰)  

= 𝑘𝑘 lim𝑛𝑛→∞
1
𝑛𝑛𝑘𝑘
𝐻𝐻�⋁ 𝑓𝑓−𝑖𝑖(𝒰𝒰)𝑛𝑛𝑘𝑘−1

𝑖𝑖=0 �  

    = 𝑘𝑘ℎ(𝑓𝑓,𝒰𝒰). 
Thus ℎ(𝑓𝑓𝑘𝑘) ≥ 𝑘𝑘ℎ(𝑓𝑓). On the other hand, since for 

any open cover 𝒰𝒰, 
⋁ (𝑓𝑓𝑘𝑘)−𝑖𝑖𝒰𝒰 ≺ ⋁ 𝑓𝑓−𝑖𝑖𝒰𝒰𝑛𝑛𝑘𝑘−1

𝑖𝑖=0
𝑛𝑛−1
𝑖𝑖=0 ,  

we have 

ℎ(𝑓𝑓,𝒰𝒰) = lim𝑛𝑛→∞
1
𝑛𝑛𝑘𝑘
𝐻𝐻�⋁ 𝑓𝑓−𝑖𝑖(𝒰𝒰)𝑛𝑛𝑘𝑘−1

𝑖𝑖=0 �  

≥ lim𝑛𝑛→∞
1
𝑛𝑛𝑘𝑘
𝐻𝐻�⋁ (𝑓𝑓𝑘𝑘)−𝑖𝑖𝒰𝒰𝑛𝑛−1

𝑖𝑖=0 �  

= 1
𝑘𝑘

lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻�⋁ (𝑓𝑓𝑘𝑘)−𝑖𝑖𝒰𝒰𝑛𝑛−1

𝑖𝑖=0 �  

=
1
𝑘𝑘
ℎ(𝑓𝑓𝑘𝑘 ,𝒰𝒰) 

by Lemma 2.3(ii). Thus 𝑘𝑘ℎ(𝑓𝑓) ≥ ℎ(𝑓𝑓𝑘𝑘).  
(ii) If 𝑓𝑓 is a homeomorphism and 𝒰𝒰 any open 
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cover of 𝑋𝑋, then 

ℎ(𝑓𝑓,𝒰𝒰) = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )  

  = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻 �𝑓𝑓𝑛𝑛−1(⋁ 𝑓𝑓−𝑘𝑘(𝒰𝒰)𝑛𝑛−1

𝑘𝑘=0 )�  

  = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓𝒰𝒰 ∨⋯∨ 𝑓𝑓𝑛𝑛−1𝒰𝒰) 

= lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(𝒰𝒰 ∨ (𝑓𝑓−1)−1𝒰𝒰 ∨⋯∨ (𝑓𝑓−1)−𝑛𝑛+1𝒰𝒰) 

 = ℎ(𝑓𝑓−1,𝒰𝒰). 
Thus ℎ(𝑓𝑓) = ℎ(𝑓𝑓−1). If 𝑘𝑘 < 0, then  
ℎ(𝑓𝑓𝑘𝑘) = ℎ((𝑓𝑓−1)−𝑘𝑘) = −𝑘𝑘ℎ(𝑓𝑓−1) = |𝑘𝑘|ℎ(𝑓𝑓). 

This yields the statement. ∎ 

3. Topological Entropy for Maps on Metric 
Spaces 

Bowen [2] defines the topological entropy ℎ(𝑓𝑓) of 
a uniformly continuous map 𝑓𝑓:𝑋𝑋 → 𝑋𝑋 on an arbitrary 
metric space (𝑋𝑋,𝑑𝑑)  (not necessarily compact) via 
(𝑛𝑛, 𝜀𝜀)-separated and (𝑛𝑛, 𝜀𝜀)-spanning sets. In general, 
this quantity depends on the metric d. But for X being 
compact it coincides with the topological entropy as 
defined by Adler et al. [1]. 

Definition 3.1. Let (𝑋𝑋,𝑑𝑑) be a metric space and 
𝑓𝑓:𝑋𝑋 → 𝑋𝑋a uniformly continuous map (abbreviated: 
𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑) ). For each 𝑛𝑛 ∈ ℕ , 𝑑𝑑𝑛𝑛 ,𝑓𝑓(𝑥𝑥, 𝑦𝑦) =

max0≤𝑖𝑖≤𝑛𝑛−1 𝑑𝑑 �𝑓𝑓𝑖𝑖(𝑥𝑥),𝑓𝑓𝑖𝑖(𝑦𝑦)� defines a metric on X, 

topologically equivalent to d. A set 𝐸𝐸 ⊆ 𝑋𝑋 is 
(𝑛𝑛, 𝜀𝜀) -separated if for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐸𝐸  with 𝑥𝑥 ≠ 𝑦𝑦  it 
holds that 𝑑𝑑𝑛𝑛 ,𝑓𝑓(𝑥𝑥, 𝑦𝑦) > 𝜀𝜀 . A set 𝐹𝐹 ⊆ 𝑋𝑋 is 
(𝑛𝑛, 𝜀𝜀)-spans another set 𝐾𝐾 ⊆ 𝑋𝑋 (with respect to 𝑓𝑓) if 
for every 𝑥𝑥 ∈ 𝐾𝐾 there is a 𝑦𝑦 ∈ 𝐹𝐹 with 𝑑𝑑𝑛𝑛 ,𝑓𝑓(𝑥𝑥, 𝑦𝑦) ≤
𝜀𝜀.  

Definition 3.1. For a compact set 𝐾𝐾 ⊆ 𝑋𝑋 , let 
𝑟𝑟𝑛𝑛(𝜀𝜀,𝐾𝐾) be the smallest cardinality of a set which 
(𝑛𝑛, 𝜀𝜀) -spans K, and let 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾)  be the largest 
cardinality of an (𝑛𝑛, 𝜀𝜀)-separated set contained in K. 
We write 𝑟𝑟𝑛𝑛(𝜀𝜀,𝐾𝐾, 𝑓𝑓)  or 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾, 𝑓𝑓)  if we wish to 
stress the dependence on 𝑓𝑓. Define 

𝑟𝑟(𝜀𝜀,𝐾𝐾, 𝑓𝑓) = limsup𝑛𝑛→∞
1
𝑛𝑛

log 𝑟𝑟𝑛𝑛(𝜀𝜀,𝐾𝐾), 

𝑠𝑠(𝜀𝜀,𝐾𝐾,𝑓𝑓) = limsup𝑛𝑛→∞
1
𝑛𝑛

log 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾). 

Lemma 3.1. 

(i) 𝑟𝑟𝑛𝑛(𝜀𝜀,𝐾𝐾) ≤ 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾) ≤ 𝑟𝑟𝑛𝑛 �
1
2
𝜀𝜀,𝐾𝐾� < ∞. 

(ii) For 𝜀𝜀1 < 𝜀𝜀2 , 𝑟𝑟(𝜀𝜀1,𝐾𝐾,𝑓𝑓) ≥ 𝑟𝑟(𝜀𝜀2,𝐾𝐾,𝑓𝑓)  and 
𝑠𝑠(𝜀𝜀1,𝐾𝐾,𝑓𝑓) ≥ 𝑠𝑠(𝜀𝜀2,𝐾𝐾, 𝑓𝑓). 

By the Lemma 3.1, the following definition makes 
sense. 

Definition 3.2. For 𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑)  and 𝐾𝐾 ⊆ 𝑋𝑋 
compact, set ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾) = lim𝜀𝜀→0 𝑟𝑟(𝜀𝜀,𝐾𝐾,𝑓𝑓) =
lim𝜀𝜀→0 𝑠𝑠(𝜀𝜀,𝐾𝐾, 𝑓𝑓) , and one defines the topological 
entropy of 𝑓𝑓  is ℎ𝑑𝑑(𝑓𝑓) = sup{ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾):𝐾𝐾 ⊆
𝑋𝑋 compact. 

In Definition 3.2, we stress the dependence on the 
metric 𝑑𝑑  used. Metrics 𝑑𝑑  and 𝑑𝑑′  on 𝑋𝑋  are 
uniformly equivalent if 𝑖𝑖𝑑𝑑𝑋𝑋 : (𝑋𝑋,𝑑𝑑) ⟶ (𝑋𝑋,𝑑𝑑′)  and 
𝑖𝑖𝑑𝑑𝑋𝑋 : (𝑋𝑋,𝑑𝑑′) ⟶ (𝑋𝑋,𝑑𝑑) are both uniformly continuous 
maps of metric spaces. In this case 𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑) if 
and only if 𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑′) . Bowen [2] proves the 
following properties of ℎ𝑑𝑑(𝑓𝑓). 

Theorem 3.1. (i) If 𝑑𝑑1  and 𝑑𝑑2  are uniformly 
equivalent metrics on 𝑋𝑋, then  ℎ𝑑𝑑1

(𝑓𝑓) = ℎ𝑑𝑑2
(𝑓𝑓). 

(ii) For iterates it holds that ℎ𝑑𝑑(𝑓𝑓𝑚𝑚) = 𝑚𝑚 ⋅ ℎ𝑑𝑑(𝑓𝑓) 
for all 𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑) and 𝑚𝑚 ∈ ℕ. 

Proof. (i) Given 𝜀𝜀1 > 0, choose 𝜀𝜀2 > 0 such that 
𝑑𝑑2(𝑥𝑥, 𝑦𝑦) < 𝜀𝜀2 implies 𝑑𝑑1(𝑥𝑥, 𝑦𝑦) < 𝜀𝜀1  and choose 
𝜀𝜀3 > 0 such that 𝑑𝑑1(𝑥𝑥,𝑦𝑦) < 𝜀𝜀3implies 𝑑𝑑2(𝑥𝑥,𝑦𝑦) < 𝜀𝜀2. 
Let 𝐾𝐾 ⊆ 𝑋𝑋 be compact, then an (𝑛𝑛, 𝜀𝜀2)-spanning set 
for 𝐾𝐾 with respect to 𝑑𝑑2 is an (𝑛𝑛, 𝜀𝜀1)-spanning set 
for 𝐾𝐾  with respect to 𝑑𝑑1 . Hence 𝑟𝑟𝑛𝑛(𝜀𝜀1,𝐾𝐾,𝑑𝑑1) ≤
𝑟𝑟𝑛𝑛(𝜀𝜀2,𝐾𝐾,𝑑𝑑2).  Similarly 𝑟𝑟𝑛𝑛(𝜀𝜀2,𝐾𝐾,𝑑𝑑2) ≤
𝑟𝑟𝑛𝑛(𝜀𝜀3,𝐾𝐾,𝑑𝑑1). Letting 𝑛𝑛 ⟶ ∞ , 𝑟𝑟𝑑𝑑1

(𝜀𝜀1,𝐾𝐾,𝑓𝑓) ≤
𝑟𝑟𝑑𝑑2

(𝜀𝜀2,𝐾𝐾,𝑓𝑓) ≤ 𝑟𝑟𝑑𝑑1
(𝜀𝜀3,𝐾𝐾,𝑓𝑓).  If 𝜀𝜀1 ⟶ 0 , then 

𝜀𝜀2 ⟶ 0  and 𝜀𝜀3 ⟶ 0  so we have ℎ𝑑𝑑1
(𝑓𝑓,𝐾𝐾) =

ℎ𝑑𝑑2
(𝑓𝑓,𝐾𝐾). 

(ii) Clearly, 𝑟𝑟𝑛𝑛(𝜀𝜀,𝐾𝐾, 𝑓𝑓𝑚𝑚) ≤ 𝑟𝑟𝑚𝑚𝑛𝑛 (𝜀𝜀,𝐾𝐾,𝑓𝑓); it follows 

that 1
𝑛𝑛

log 𝑟𝑟𝑛𝑛(𝜀𝜀,𝐾𝐾,𝑓𝑓𝑚𝑚 ) ≤ 𝑚𝑚
𝑚𝑚𝑛𝑛

log 𝑟𝑟𝑚𝑚𝑛𝑛 (𝜀𝜀,𝐾𝐾, 𝑓𝑓) and 

therefore ℎ𝑑𝑑(𝑓𝑓𝑚𝑚) ≤ 𝑚𝑚 ⋅ ℎ𝑑𝑑(𝑓𝑓). Since 𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑), 
given 𝜀𝜀 > 0, there exist 𝛿𝛿 > 0 such that 𝑑𝑑(𝑥𝑥,𝑦𝑦) <
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𝛿𝛿  implies max0≤𝑖𝑖≤𝑚𝑚−1 𝑑𝑑 �𝑓𝑓𝑖𝑖(𝑥𝑥),𝑓𝑓𝑖𝑖(𝑦𝑦)� < 𝜀𝜀.  So an 

(𝑛𝑛, 𝛿𝛿) -spanning set for 𝐾𝐾  with respect to 𝑓𝑓𝑚𝑚  is 
automatically an (𝑚𝑚𝑛𝑛, 𝜀𝜀)-spanning set for 𝐾𝐾  with 
respect to 𝑓𝑓. Hence 𝑟𝑟𝑛𝑛(𝛿𝛿,𝐾𝐾, 𝑓𝑓𝑚𝑚 ) ≥ 𝑟𝑟𝑚𝑚𝑛𝑛 (𝜀𝜀,𝐾𝐾, 𝑓𝑓), so 
𝑟𝑟(𝛿𝛿,𝐾𝐾,𝑓𝑓𝑚𝑚 ) ≥ 𝑚𝑚𝑟𝑟(𝜀𝜀,𝐾𝐾, 𝑓𝑓) . Therefore ℎ𝑑𝑑(𝑓𝑓𝑚𝑚 ,𝐾𝐾) ≥
𝑚𝑚 ⋅ ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾). So, ℎ𝑑𝑑(𝑓𝑓𝑚𝑚) ≥ 𝑚𝑚 ⋅ ℎ𝑑𝑑(𝑓𝑓).  ∎ 

If 𝑋𝑋 is compact and if 𝑑𝑑 and 𝑑𝑑′ are equivalent 
metrics then they are uniformly equivalent. Also each 
continuous map 𝑓𝑓:𝑋𝑋 ⟶ 𝑋𝑋 is uniformly continuous. 
Therefore if 𝑋𝑋  is compact metrizable space the 
entropy of 𝑓𝑓 does not depend on the metric chosen 
on 𝑋𝑋 (provided that metric induces the topology of 
𝑋𝑋). 

Theorem 3.2. Let (𝑋𝑋,𝑑𝑑) be a metric space and 
𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑). If 𝐾𝐾 ⊆ 𝐾𝐾1 ∪⋯∪ 𝐾𝐾𝑚𝑚  are all compact 
subsets of 𝑋𝑋, then  

ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾) ≤ max
1≤𝑖𝑖≤𝑚𝑚

ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾𝑖𝑖). 

Proof. Clearly 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾) ≤ 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾1) +⋯+
𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾𝑚𝑚 ). Fix 𝜀𝜀 > 0. For each 𝑛𝑛 ∈ ℕ, choose 𝐾𝐾𝑖𝑖(𝑛𝑛 ,𝜀𝜀) 
such that 𝑠𝑠𝑛𝑛�𝜀𝜀,𝐾𝐾𝑖𝑖(𝑛𝑛 ,𝜀𝜀)� = max1≤𝑗𝑗≤𝑚𝑚 𝑠𝑠𝑛𝑛�𝜀𝜀,𝐾𝐾𝑗𝑗 �. Then 
𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾) ≤ 𝑚𝑚 ⋅ 𝑠𝑠𝑛𝑛�𝜀𝜀,𝐾𝐾𝑖𝑖(𝑛𝑛 ,𝜀𝜀)� and so,  

log 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾) ≤ log𝑚𝑚 + log 𝑠𝑠𝑛𝑛�𝜀𝜀,𝐾𝐾𝑖𝑖(𝑛𝑛 ,𝜀𝜀)�. 
Choose 𝑛𝑛𝑗𝑗 ⟶ ∞ such that  

1
𝑛𝑛𝑗𝑗

log 𝑠𝑠𝑛𝑛𝑗𝑗 (𝜀𝜀,𝐾𝐾) ⟶ limsup
𝑛𝑛⟶∞

1
𝑛𝑛

log 𝑠𝑠𝑛𝑛(𝜀𝜀,𝐾𝐾) 

and so that  𝐾𝐾𝑖𝑖(𝑛𝑛𝑗𝑗 ,𝜀𝜀)  does not depend on 𝑗𝑗  (i.e., 
𝐾𝐾𝑖𝑖�𝑛𝑛𝑗𝑗 ,𝜀𝜀� = 𝐾𝐾𝑖𝑖(𝜀𝜀) ∀𝑗𝑗 ). Therefore 𝑠𝑠(𝜀𝜀,𝐾𝐾, 𝑓𝑓) ≤

𝑠𝑠�𝜀𝜀,𝐾𝐾𝑖𝑖(𝜀𝜀),𝑓𝑓�.  Choose 𝜀𝜀𝑞𝑞 ⟶ 0  so that 𝐾𝐾𝑖𝑖�𝜀𝜀𝑞𝑞�  is 

constant (= 𝐾𝐾𝑖𝑖0 , say). Henceℎ𝑑𝑑(𝑓𝑓,𝐾𝐾) ≤ ℎ𝑑𝑑�𝑓𝑓,𝐾𝐾𝑖𝑖0� ≤
max1≤𝑖𝑖≤𝑚𝑚 ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾𝑖𝑖).  ∎ 

Corollary 3.1. Let (𝑋𝑋,𝑑𝑑) be a metric space and 
𝑓𝑓 ∈ UC(𝑋𝑋,𝑑𝑑) and also let 𝛿𝛿 > 0. In order to compute 
ℎ𝑑𝑑(𝑓𝑓), it is suffices to take the supremum of ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾) 
over those compact subsets of diameter less than 𝛿𝛿. 

Proof. Since 𝐾𝐾 is compact, it can be covered by a 

finite number of balls 𝐵𝐵1, … ,𝐵𝐵𝑚𝑚  of diameter 𝛿𝛿
2
 and 

hence  

ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾) ≤ max1≤𝑖𝑖≤𝑚𝑚 ℎ𝑑𝑑�𝑓𝑓,𝐾𝐾 ∩ cl(𝐵𝐵𝑖𝑖)�, 
so that ℎ𝑑𝑑(𝑓𝑓) = max1≤𝑖𝑖≤𝑚𝑚 ℎ𝑑𝑑�𝑓𝑓,𝐾𝐾 ∩ cl(𝐵𝐵𝑖𝑖)�. ∎ 

Corollary 3.2. If 𝑋𝑋 is a compact metrizable space 
and 𝑑𝑑 is any metric on 𝑋𝑋, then 

ℎ(𝑓𝑓) = ℎ𝑑𝑑(𝑓𝑓) = ℎ𝑑𝑑(𝑓𝑓,𝑋𝑋) = ℎ(𝑓𝑓,𝑋𝑋). 
Proof. If 𝐾𝐾  is a compact subset of 𝑋𝑋 , then 

ℎ𝑑𝑑(𝑓𝑓,𝐾𝐾) ≤ ℎ𝑑𝑑(𝑓𝑓,𝑋𝑋). It follows from Theorem 4(i) 
that ℎ𝑑𝑑(𝑓𝑓) does not depend on 𝑑𝑑. ∎ 

When 𝑋𝑋 is compact, Corollary 3.2 can be used to 
simplify the definition of ℎ(𝑓𝑓). Take any metric 𝑑𝑑 
giving the topology of 𝑋𝑋, then  

ℎ(𝑓𝑓) = lim
𝜀𝜀→0

limsup
𝑛𝑛→∞

1
𝑛𝑛

log 𝑟𝑟𝑛𝑛(𝜀𝜀,𝑋𝑋) 

= lim
𝜀𝜀→0

limsup
𝑛𝑛→∞

1
𝑛𝑛

log 𝑠𝑠𝑛𝑛(𝜀𝜀,𝑋𝑋). 

These expressions have the following interpretation. 
Suppose we want to count the number of orbits of 
length 𝑛𝑛  (an orbit of length 𝑛𝑛  is a set 
{𝑥𝑥, 𝑓𝑓(𝑥𝑥), … , 𝑓𝑓𝑛𝑛−1(𝑥𝑥)} but we can only measure to an 
error 𝜀𝜀 . Then both 𝑟𝑟𝑛𝑛(𝜀𝜀,𝑋𝑋)  and 𝑠𝑠𝑛𝑛(𝜀𝜀,𝑋𝑋)  can be 
interpreted as the number of orbits of length 𝑛𝑛 up to 
error 𝜀𝜀. So as 𝜀𝜀 → 0, ℎ(𝑓𝑓) is a measurement of the 
growth rate in 𝑛𝑛 of the number of orbits of length 𝑛𝑛 
up to error 𝜀𝜀.  

Other papers dealing with extensions of topological 
entropy to non-compact spaces are Hofer [8], Bowen 
[3], Canovas [4], Canovas& Rodriguez [7], and 
Canovas&Linero [5, 6]. 

Next we make a slight modification on the symbol 
of refinement. The properties of this modification also 
investigated below. 

Definition 3.3. A cover 𝒰𝒰  is said to be a 
refinement of a cover 𝒱𝒱, denoted as 𝒰𝒰 ≺ 𝒱𝒱, if every 
member of 𝒰𝒰 is a subset of some member of 𝒱𝒱. In 
other words, 𝒰𝒰 ≺ 𝒱𝒱if 𝐴𝐴 ∈ 𝒰𝒰, there exists a 𝐵𝐵 ∈ 𝒱𝒱 
such that 𝐴𝐴 ⊆ 𝐵𝐵. 

The following proposition is analogue results of 
Lemma 2.3. 

Proposition 3.1. Let 𝒰𝒰,𝒱𝒱,𝒰𝒰′and 𝒱𝒱′  be open 
covers of 𝑋𝑋. Then the following statements hold: 

(i) 𝒰𝒰 ≺ 𝒰𝒰′,𝒱𝒱 ≺ 𝒱𝒱′⟹𝒰𝒰∨𝒱𝒱 ≺ 𝒰𝒰′ ∨ 𝒱𝒱′. 
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(ii) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ 𝑁𝑁(𝒰𝒰) ≥ 𝑁𝑁(𝒱𝒱) and 𝐻𝐻(𝒰𝒰) ≥ 𝐻𝐻(𝒱𝒱). 
(iii) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱) = 𝑁𝑁(𝒰𝒰) and 𝐻𝐻(𝒰𝒰 ∨

𝒱𝒱=𝐻𝐻𝒰𝒰. 
(iv) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ 𝑓𝑓−1(𝒰𝒰) ≺ 𝑓𝑓−1(𝒱𝒱). 
(v) 𝒰𝒰 ≺ 𝒱𝒱 ⟹ ℎ(𝑓𝑓,𝒰𝒰) ≥ ℎ(𝑓𝑓,𝒱𝒱). 
Proof. (i) Consider 𝐴𝐴 ∩ 𝐵𝐵 ∈ 𝒰𝒰 ∨ 𝒱𝒱  where 𝐴𝐴 ∈

𝒰𝒰and 𝐵𝐵 ∈ 𝒱𝒱. By hypothesis there exists 𝐴𝐴′ ∈ 𝒰𝒰′ and 
𝐵𝐵′ ∈ 𝒱𝒱′  such that 𝐴𝐴 ⊆ 𝐴𝐴′ and 𝐵𝐵 ⊆ 𝐵𝐵′ . Thus 
𝐴𝐴 ∩ 𝐵𝐵 ⊆ 𝐴𝐴′ ∩ 𝐵𝐵′where 𝐴𝐴′ ∩ 𝐵𝐵′ ∈ 𝒰𝒰′ ∨ 𝒱𝒱′.  

(ii) Let �𝐴𝐴1, … ,𝐴𝐴𝑁𝑁(𝒰𝒰)�  be a subcover of 𝒰𝒰  of 
minimal cardinality. Since 𝒰𝒰 ≺ 𝒱𝒱 , there exists a 
subcover �𝐵𝐵1, … ,𝐵𝐵𝑁𝑁(𝒰𝒰)� of 𝒱𝒱 such that 𝐴𝐴𝑖𝑖 ⊆ 𝐵𝐵𝑖𝑖  for 
𝑖𝑖 = 1, … ,𝑁𝑁(𝒰𝒰). Therefore 𝑁𝑁(𝒰𝒰) ≥ 𝑁𝑁(𝒱𝒱).  

(iii) Obviously by (i), 𝒰𝒰 ∨ 𝒱𝒱 ≺ 𝒰𝒰 ∨ {𝑋𝑋} = 𝒰𝒰  so 
that 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱) ≥ 𝑁𝑁(𝒰𝒰) by (ii). On the other hand, 
𝒰𝒰 ≺ 𝒱𝒱  and 𝒰𝒰 ≺ 𝒰𝒰 implies 𝒰𝒰 ≺ 𝒰𝒰 ∨ 𝒰𝒰 ≺ 𝒰𝒰 ∨ 𝒱𝒱 . 
Thus 𝑁𝑁(𝒰𝒰) ≥ 𝑁𝑁(𝒰𝒰 ∨ 𝒱𝒱). 

(iv) Let 𝐴𝐴 ∈ 𝑓𝑓−1(𝒰𝒰) , then 𝑓𝑓(𝐴𝐴) ∈ 𝒰𝒰 . Since 
𝒰𝒰 ≺ 𝒱𝒱, there exists 𝐵𝐵 ∈ 𝒱𝒱 such that 𝑓𝑓(𝐴𝐴) ⊆ 𝐵𝐵. This 
implies that 𝐴𝐴 ⊆ 𝑓𝑓−1�𝑓𝑓(𝐴𝐴)� ⊆ 𝑓𝑓−1(𝐵𝐵) ∈ 𝑓𝑓−1(𝒱𝒱) . 
Thus 𝑓𝑓−1(𝒰𝒰) ≺ 𝑓𝑓−1(𝒱𝒱). 

(v) By part (i) and (iv), it follows that 𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨
⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰 ≺ 𝒱𝒱 ∨ 𝑓𝑓−1𝒱𝒱 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒱𝒱  for all 
𝑛𝑛 ∈ ℕ. Therefore by (ii) 
𝐻𝐻(𝒰𝒰 ∨ 𝑓𝑓−1𝒰𝒰 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒰𝒰)

≥ 𝐻𝐻(𝒱𝒱 ∨ 𝑓𝑓−1𝒱𝒱 ∨⋯∨ 𝑓𝑓−𝑛𝑛+1𝒱𝒱). 
This yields the claim.∎ 

Theorem 3.3. For the topological entropy of 
iterates the following formula holds: 

ℎ(𝑓𝑓𝑘𝑘) = 𝑘𝑘ℎ(𝑓𝑓) for all 𝑘𝑘 ∈ ℕ.  
Proof. The proof of first part is similar to the proof 

of Theorem 2.3. The proof for the second part is as 
follow. Since for any open cover 𝒰𝒰, ⋁ 𝑓𝑓−𝑖𝑖𝒰𝒰𝑛𝑛𝑘𝑘−1

𝑖𝑖=0 ≺
⋁ (𝑓𝑓𝑘𝑘)−𝑖𝑖𝒰𝒰𝑛𝑛−1
𝑖𝑖=0 , we have 

ℎ(𝑓𝑓,𝒰𝒰) = lim𝑛𝑛→∞
1
𝑛𝑛𝑘𝑘
𝐻𝐻�⋁ 𝑓𝑓−𝑖𝑖(𝒰𝒰)𝑛𝑛𝑘𝑘−1

𝑖𝑖=0 �  

≥ lim𝑛𝑛→∞
1
𝑛𝑛𝑘𝑘
𝐻𝐻�⋁ (𝑓𝑓𝑘𝑘)−𝑖𝑖𝒰𝒰𝑛𝑛−1

𝑖𝑖=0 �  

= 1
𝑘𝑘

lim𝑛𝑛→∞
1
𝑛𝑛
𝐻𝐻�⋁ (𝑓𝑓𝑘𝑘)−𝑖𝑖𝒰𝒰𝑛𝑛−1

𝑖𝑖=0 �  

=
1
𝑘𝑘
ℎ(𝑓𝑓𝑘𝑘 ,𝒰𝒰) 

by Proposition 3.1(ii). Thus 𝑘𝑘ℎ(𝑓𝑓) ≥ ℎ(𝑓𝑓𝑘𝑘). ∎ 
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