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Abstract: Authors have conducted experiments to measure blast induced rock mass damage at L&T-(Singoli-Bhatwari Hydro-Power 
Project SBHP) Rudraprayag. Repetitive NX size rock core up to 5.0 m depth were taken from side wall and face with triple tube core 
barrel drill. CR (core recovery) and RQD (rock quality designation) of the rock cores is computed to evaluate effect of blasting on the 
surrounding rock mass. RQD and CR values for the initial one meter from the line of excavation in each case reflect maximum 
damage due to blast. RQD for initial one meter reduced to as high as 40% of the average RQD. The rock samples were also tested 
using ultrasonic techniques. Ultrasonic tests on NX size core reveal that the 2.0 m of the zone surrounding the opening are adversely 
affected by the tunnel excavation blasting process. The ultrasonic velocities reduce to approx. 80% of the average values in the initial 
0.5 m from the excavation line. 
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1. Introduction 

In spite of various problems associated with system, 

drilling and blasting method of rock excavation is 

predominantly used worldwide due to inherent 

flexibility in the system, lower capital investment, etc.. 

Drilling and Blasting method gives good progress in 

favourable rock mass condition. Compatibility and 

feasibility to any sudden required alteration in 

dimension of excavation profile and/or geological 

constraints also adds to the popularity and suitability 

of the drilling and blasting method over other methods 

of excavation [1, 2].  

Drilling and blasting invariably causes damage to 

the surrounding rock mass during excavation 

threatening the safety of structures. Blast induced rock 

mass damage is a matter of concern for the practicing 

engineer and researchers. Perimeter control and 

smoothwall blasting techniques have long been used 
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to control BID (blast induced damage) in excavation 

works. In spite of these precautionary measures, blast 

damage is still inevitable and the consequences are 

clearly evidenced in the form of increased support cost 

and requirements, slow tunnel advance, unforeseen 

stability problems originating from blast damage, 

conduit for water flow, reduction in tunnel life leading 

to performance, and functionality problem of the 

underground structures. Rock mass damage leads to 

deterioration of rock mass strength due to newly 

generated or extended fractures, or the opening of; and 

shearing along, cracks and joints due to mining 

induced stress or blasting. Blasting, one of the reasons 

for the rock mass damage, dynamically loads a rock 

mass that in turn may result in deterioration of the 

rock mass quality and in situ strength [3]. Any 

damage inflicted upon the rock by blasting is 

designated as BID. The damage problems of 

surrounding rock caused by blasting have caught 

worldwide attention for a long time [4]. Researchers 

have carried out a great deal of theoretical, numerical 

and experimental works to precisely determine BID in 
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underground excavation on the basis explosive 

mechanics, fracture mechanics and damage mechanics. 

Research and development works in various aspects of 

drilling and blasting technology have presently 

facilitated the excavation engineers to have scientific 

implementation of this technology in excavation 

engineering design works [5]. 

Authors have carried out experiment at 

L&T-SBHPP (Singoli-Bhatwari Hydro-Electric Power 

Project) site, Rudraprayag, Uttarakhand state, India to 

measure BID in the surrounding rock mass using 

ultrasonic techniques. Results of the ultrasonic 

measurement of rock core samples and a brief review 

on BID mechanics suggested by various researchers 

are presented in this paper. 

2. Blast Induced Damage—A Review 

Rock mass damage can ascribed to different 

processes such as inherent damage arising from 

tectonics or presence of discontinuities, fractures and 

faults of various dimensions; mining induced, i.e., 

from stress redistribution due to excavation and 

blasting [6]. Any damage inflicted upon the rock by 

blasting is designated as BID. The process of rock 

breakage by blasting, takes place by opening of tight, 

and loose joints and generation of new cracks. This 

generally occurs when the pressure pulse exceeds the 

dynamic compressive strength of rock. Generation of 

cracks takes place when the gas pressure exceeds the 

horizontal stress across the plane of discontinuities 

and extension of cracks depend on the tangential 

pressure induced by shock wave; reflection of shock 

wave from free face or joint planes; wedging action at 

the crack tip due to high temperature and pressure of 

gas energy entering the narrow radial crack tips  

[7-10]. 

Uncontrollable geo-technical parameters such as 

uniaxial compressive strength, joint plane spacing, 

joint plane orientation, joint plane aperture and filling 

material between joints contribute towards damage [10]. 

Optimization of shock and gas energy as a part blast 

design with proper charge parameters and initiation 

sequence is essential to restrict and prevent wide 

opening of joints. Shock wave, in general, is present 

only up to a distance where non-reversible energy 

dissipation is observed, i.e., the zone where rock 

medium behaves like plastic rather than elastic [11]. 

This is also known as Hugoniot elastic limit or 

crushed zone [12]. It generally weakens the strength 

properties of in situ rock mass up to a restricted 

distance from the blast borehole and depending upon 

blast parameters it generally varies between 2 times 

and 8 times the diameter of blast hole. Gas energy, on 

the other hand, having the capability of extending 

cracks to about 10-100 times more than shock energy 

are more dominant for extending fractures and should 

be optimized to prevent damage of in situ peripheral 

rock mass [13, 14]. 

The phenomenon of damage according to Holmberg 

and Persson [15] is a result of the induced strain ε, 

which for an elastic medium, in the sine wave 

approximation, is given by the equation: 

ε > σ/E > Vmax/Cp             (1) 

where, ε = induced strain, σ = stress generated, E = 

Young’s modulus, Vmax = vibration velocity, Cp = 

wave propagation velocity of the rock. 

Various researchers have proposed different blast 

damage indices based on the field and laboratory 

experiments. The studies conducted by Swedish 

Detonic Foundation [16] resulted in a damage model, 

wherein damage to a rock mass is indicated if post 

blast cracks exceeds the pre-blast cracks. Holmberg [17] 

concluded that damage was inflicted mainly in the 

rock structural discontinuities and joints, cracks and 

other weak planes in the rock mass; rock mass was 

considered disturbed through the following 

mechanisms: 

 Near hole crushing due to high shock wave 

amplitudes; 

 Generation of radial cracks due to high-pressure 

gas in the drill hole; 

 Opening of the existing joints because of 
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high-pressure gases produced from detonation of 

explosive; 

 Fractures through spalling; 

 Reduction of shear strength due to blast induced 

rock movement;  

 Vibration induced displacement affecting the 

local slope stability or tunnel perimeter. 

A difference exists between the visible damage and 

the actual damage since cracks extend beyond the 

field of vision. The width of cracks in rock 

surrounding the opening may be in microns but this is 

enough to significantly reduce the rock mass strength. 

It is, therefore, necessary to identify both visible and 

invisible cracks. Despite several attempts to 

understand and quantify the damage, the near actual 

damage criterion is still lacking. There are no 

consistent methods to measure the blast-induced 

damage [18]. Moreover, different methods, techniques 

and indices are not universally acceptable due to 

cumbersome procedures, instrumental constraints or 

unsuitability to most of the rock mass conditions. 

Therefore, further researches to refine and simplify 

our understanding of the BIT and measurement 

techniques are required. 

3. Field Experiment  

Investigation of BIT in underground excavation is 

carried at SBHPP. Construction of 99 MW SBHPP 

run-of-river scheme is undertaken by L&T-ECC 

(L&T-Engineering Construction Company) at 

Rudraprayag district of Uttarakhand state. The project 

envisages construction of 11.2 km long, 4.9 m 

diameter, D-shaped HRT (head race tunnel) to divert 

water from river Mandakini. Rock cover above HRT 

varies from 100 m to 350 m. The tunnel is aligned in a 

general N200E-S200W direction.  

The geological map of the HRT depicts that the 

alignment runs through mostly colluvial terrain with 

intervening scanty and scattered outcrops.   

Full face drilling and blasting using burn-cut is used 

for excavation of HRT as well as adits in the 

Singoli-Bhatwari project site. Fig. 1 shows blasting 

pattern being followed in the HRT. Excavated area of 

the tunnel face is approximately 29 m2. Major portion 

of excavation in HRT pass through fair class of rock 

mass with compressive strength about 50 MPa and 

Barton’s rock mass quality “Q” value close to 5. Full 

face blasting is adopted with 3.2 m hole depth and  

45 mm hole diameter drilled using double-boom drill 

machine. Emulsion explosive, 80 per cent strength 

with non-electric initiation system is used to get 

average face advancement of 3.0 m in successive 

blast rounds. Total charge and MCD (maximum 

charge per delay) used in the optimized blast design 

is 140 kg and 20 kg, respectively. Specific charge 

achieved is 1.6 kg/m3. Over-break in tunnel 

periphery is controlled using smooth wall blasting 

techniques. Alternate holes are charged using low 

strength explosives. Burn-cut blast pattern using four 

76 mm of reamer holes in the centre give more than 

2.8 m of pull consistently. Use of shock tube 

initiation system assisted in controlling vibration and 

air overpressure.  

3.1 Experimental Set-up 

As sown in Fig. 2 (Section) and Fig. 3 (Plan), NX 

size rock core is obtained from boreholes drilled at 

face (A3 and A4) and side wall (A1 and A2) of HRT 
 

 
Fig. 1  Blast design for excavation of HRT.  
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Fig. 2  Sectio
 

Fig. 3  Plan o
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