![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
A Comparison of New General System Theory Philosophy With Einstein and Bohr
CUI Weicheng, LI Rong, PAN Lingli
Full-Text PDF
XML 1831 Views
DOI:10.17265/2159-5313/2023.01.001
Westlake University, Hangzhou, China
The New General System theory was developed to be a theory of everything for complex systems within the world we can observe. This theory was constructed by supplementing a new mind-ether ontology into Bertalanffy’s general system theory framework. This theory is basically a generalization of classical mechanics rather than a revolution to it taken both by Einstein and Bohr in developing their relativity theory and quantum mechanics. The purpose of this paper is to reveal the reasons why Einstein and many others fail to unify relativity theory with quantum mechanics through comparing the main differences in philosophical opinions among NGST, Einstein, and Bohr. It is the hope of the authors that this clarification could speed up the unification process.
complex system (CS), New General System Theory (NGST), theory of everything (TOE), classical mechanics (CM), relativity theory (RT), quantum mechanics (QM), Bohmian Mechanics (BM), active force, entanglement of minds
CUI Weicheng, LI Rong & PAN Lingli. (2023). A Comparison of New General System Theory Philosophy With Einstein and Bohr. Philosophy Study, January 2023, Vol. 13, No. 1, 1-22.
Alvarado, C. S. (2015). Telepathic emissions: Edwin J. Houston on “Cerebral Radiation”. Journal of Scientific Exploration, 29, 467-490.
Alvarado, C. S. (2019). Charles Richet: A Nobel prize winning scientist’s exploration of psychic phenomena. Hove, UK: White Crow Books.
Arun, K., Gudennavar, S. B., & Sivaram, C. (2017). Dark matter, dark energy, and alternate models: A review. Advances in Space Research, 60(1), 166-186. doi:10.1016/j.asr.2017.03.043
Bertalanffy, L. V. (1968). General system theory: Foundations, development, applications. New York, USA: George Braziller.
Bertalanffy, L. V. (1972). The history and status of general system theory. The Academy of Management Journal, 15(4), 407-426. doi:10.2307/255139
Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of “hidden” variables, I and II. Physical Review, 85(2), 166-193. doi:10.1103/PhysRev.85.166
Bohr, N. (1913a). Part I. On the constitution of atoms and molecules. Philosophical Magazine, 26, 1-25.
Bohr, N. (1913b). Part II. Systems containing only a single nucleus. Philosophical Magazine, 26, 476.
Bohr, N. (1913c). Part III. Systems containing several nuclei. Philosophical Magazine, 26, 857.
Bohr, N. (1934). Atomic theory and the description of nature. Cambridge: Cambridge University Press.
Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 48, 696-702.
Bunge, M. (1983). Understanding the world: In treatise on basic philosophy (Vol. 6). Dordrecht: Reidel.
Burago, S. G. (2017). About the theory of the Big Bang. In The General Science Journal. Astrophysics (pp. 1-7). Retrieved from https://doi:10.13140/RG.2.2.26288.35840
Capra, F. (1975). The Tao of physics. Boulder, Colorado: Shambhala Publications.
Capra, F. (1996). The web of life: A new scientific understanding of living systems. Garden City, NY: Anchor Books.
Chen, M. C., Wang, C., Liu, F. M., Wang, J. W., Ying, C., Shang, Z. X., ... Pan, W. (2022). Ruling out real-valued standard formalism of quantum theory. Physical Review Letters, 128(4), 040403. Retrieved from https://doi.org/10.1103/PhysRevLett.128.040403
Cheng, S. H., & Cui, W. C. (2023). Science of science. Beijing: CITIC Press Group. (in press)
Clark, M. (2007). Paradoxes from A to Z (2nd Ed.). UK: Taylor & Francis e-Library.
Cox, E. W. (1872). Spiritualism answered by science—With proofs of a psychic force. London: Longman and Co.
Crookes, W. (1874). Researches in the phenomena of spiritualism. Cambridge: Cambridge University Press.
Cui, W. C. (2021a). On an axiomatic foundation for a theory of everything. Philosophy Study, 11(4), 241-267. doi:10.17265/2159-5313/2021.04.001
Cui, W. C. (2021b). On the philosophical ontology for a general system theory. Philosophy Study, 11(6), 443-458. doi:10.17265/2159-5313/2021.06.002
Cui, W. C. (2022). On the trajectory prediction of a throwing object using new general system theory. Philosophy Study, 12(2), 53-64. doi:10.17265/2159-5313/2022.02.00
Cui, W. C., & Blockley, D. I. (1990). Interval probability theory for evidential support. International Journal of Intelligent Systems, 5(2), 183-192.
Cui, W. C., & Kang, L. L. (2020). On the construction of a theory of everything based on Buddhist cosmological model. Trends in Technical & Scientific Research, 3(5), 99-110. doi:10.19080/TTSR.2020.03.555624
Cui, W. C., & Pan, L. L. (2022). Can one really disprove a real quantum theory? International Journal of Theoretical and Mathematical Physics, 12(1), 1-6. doi:10.5923/j.ijtmp.20221201.01
Curiel, E. (2014). Classical mechanics is Lagrangian; It is not Hamiltonian. British Journal for the Philosophy of Science, 65(2), 269-321.
De Aquino, F. (2012). Theory of everything. Retrieved from https://arxiv.org/ftp/gr-qc/papers/ 9910/ 9910036.pdf
Descartes, R. (1968). Discourse on method and the meditations. London: Penguin.
Dirac, P. A. M. (1927). The fundamental equations of quantum mechanics. Proceedings of the Royal Society, A 114, 243.
Duff, M. (1996). M-theory (The theory formerly known as strings). International Journal of Modern Physics A, 11(32), 6523-6541.Retrieved from https://doi:10.1142/S0217751X96002583
Dyson, F. (2006). The scientist as rebel. New York: New York Review Books.
Earwaker, J. (1871). The new psychic force. Nature, 4, 278-279. Retrieved from https://doi.org/10.1038/004278a0
Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 322(10), 891-921.
Einstein, A. (1916). Relativity: The special and general theory. Meneola, NY: Dover Publications.
Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47(10), 777-780.
Feferman, S. (2006). The nature and significance of Gödel’s incompleteness theorems. Institute for Advanced Study. Retrieved from https://math.stanford.edu/~feferman/papers/Godel-IAS.pdf
Fitzpatrick, R. (2015). Quantum mechanics. Hackensack: World Scientific.
Gaiseanu, F. (2021). Information in the universal triangle of reality for non-living/living structures: From philosophy to neuro/life sciences. Philosophy Study, 11(8), 607-621. doi:10.17265/2159-5313/2021.08.003
Gödel, K. (1931). About formally undecidable sentences of the principia mathematica and related systems I. Monthly Magazines for Mathematics and Physics, 38, 173-198.
Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics (3rd ed.). London: United Kingdom: Pearson.
Goleman, D. & Davidson, R. J. (2018). The Science of Meditation: How to Change Your Brain, Mind and Body. London: Penguin Books Ltd.
Gong, T. (J.-T.) (2016). The final TOE—Theory of everything. Retrieved from https://tienzengong.wordpress.com/2016/01/18/the-final-toe-theory-of-everything/
Harvey, P. (2013). An introduction to Buddhism, teachings, history and practices (2nd Ed.). Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City: Cambridge University Press.
Hawking, S. W. (2006). The theory of everything: The origin and fate of the universe. Phoenix: Phoenix Books.ISBN: 978-1-59777-508-3
Heisenberg, W. (1927). The physical content of quantum kinematics and mechanics. In J. A. Wheeler and W. H. Zurek (Eds.), Quantum theory and measurement (pp. 62-84). Princeton: Princeton University Press.
Heisenberg, W. (1930). The physical principles of the quantum theory. (C. Eckart & F. C. Hoyt, Trans.). Mineola, New York: Dover Publications, University of Chicago.
Heisenberg, W. (2007). Physics and philosophy: The revolution in modern science. London: Penguin Books Ltd.
Howard, D. (2007). Revisiting the Einstein-Bohr dialogue. Iyyun: The Jerusalem Philosophical Quarterly, 56, 57-90.
Huang, Y. K., & Cui, W. C. (2022). Effect of the earth movement on the measured moon trajectory. Philosophy Study, 12(12), 641-680. doi:10.17265/2159-5313/2022.12.001
Huterer, D. &Turner, M. (1998).Prospects for Probing the Dark Energy via Supernova Distance Measurements. Retrieved from https://arxiv.org/abs/astro-ph/9808133 in August 1998, published inPhysical Review D. 60(8): 081301, 1999.
Jaki, S. L. (1966). The relevance of physics. Chicago: University of Chicago Press.
Kelvin, L. (1931). Nineteenth century clouds over the dynamical theory of heat and light. In Philosophical Magazine Series. Cambridge: Cambridge University Press.
Ladyman, J., & Wiesner, K. (2020). What is a complex system? New Haven & London: Yale University Press.
Laumakis, S. J. (2008). An introduction to Buddhist philosophy. New York: Cambridge University Press.
Lee, S. C. (2019). Complex space-time and complex quantum mind—A unified platform to explain the large, medium, and small scaled mysteries of universe and consciousness. Philosophy Study, 9(5), 246-252. doi:10.17265/2159-5313/2019.05.003
Li, Z. D., Mao, Y. L., Weilenmann, M., Tavakoli, A., Chen, H., Feng, L. X., ... Fan, J, Y. (2022). Testing real quantum theory in an optical quantum network. Physical Review Letters, 128(4), 040402. Retrieved from https://doi.org/10.1103/PhysRevLett.128.040402
Lovelock, J. E. (1972). Gaia as seen through the atmosphere. Atmospheric Environment, 6(8), 579-580. doi:10.1016/0004-6981(72)90076-5
Lovelock, J. E., & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus. Series A. Stockholm: International Meteorological Institute, 26(1-2), 2-10. doi:10.1111/j.2153-3490.1974.tb01946.x. ISSN 1600-0870
Ma, Y., & Cui, W. C. (2021). A comprehensive overview on various mind-body models. Philosophy Study, 11(11), 810-819. doi:10.17265/2159-5313/2021.11.002
Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 459-512.
Mayants, L. (1984). The Enigma of probability and physics. Dordrecht, Holland, Boston: D. Reidel Publishing Company.
Minev, Z. K. (2018). Catching and reversing a quantum jump mid-flight (PhD thesis, Yale University, 2018).
Minev, Z., Mundhada, S., Shankar, S., Reinhold, P., Gutiérrez-Jáuregui, R., Schoelkopf, R. J., ... Devoret, M. H. (2019). To catch and reverse a quantum jump mid-flight. Nature, 570, 200-204. Retrieved from https://doi.org/10.1038/s41586-019-1287-z
Moreno, A., & Mossio, M. (2015). Biological autonomy. A philosophical and theoretical enquiry. Dordrecht: Springer.
Neumann, V. J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer Verlag.
Newcomb, S. (1884). Psychic force. Science, 4(89), 372-374. doi:10.1126/science.ns-4.89.372
Newton, I. (1846). Newton’s principia: The mathematical principles of natural philosophy. (A. Motte, Trans.). New York: Daniel Adee. (Originally published in 1687)
Oriols, X., & Mompart, J. (2019). Applied Bohmian mechanics from nanoscale systems to cosmology (2nd ed.). Singapore: Jenny Stanford Publishing Pte. Ltd.
Pan, L. L., & Cui, W. C. (2021a). Clarification of the field concept for a new general system theory. Philosophy Study, 11(10), 737-747. doi:10.17265/2159-5313/2021.10.001
Pan, L. L., & Cui, W. C. (2021b). Re-examination of the two-body problem using our new general system theory. Philosophy Study, 11(12), 891-913. doi:10.17265/2159-5313/2021.12.00
Pan, L. L., & Cui, W. C. (2022). Re-examination of fundamental concepts of heat, work, energy, entropy and information based on NGST. Philosophy Study, 12(1), 1-17. doi:10.17265/2159-5313/2022.01.00
Phipps, T. E. (2014). Invariant physics. Physics Essays, 27(4), 591-597.
Planck, M. (1901). On the law of distribution of energy in the normal spectrum. Annalen der Physik, 4(3), 553-563.
Qian, X. S., Yu, J. Y., & Dai, R. W. (1990). A new discipline of science: The study of open complex giant system and its methodology. Nature Journal, 13(1), 2-10. (in Chinese)
Robertson, D. S. (2000). Goedel’s theorem, the theory of everything, and the future of science and mathematics. Complexity, 5(5), 22-27.
Sarfati, J. D. (1998). If God created the universe, then who created God? CEN Technical Journal, 12(1), 20-22.
Sato, M. (2018). Comment on “invariant physics” [Physics essays, 27, 591 (2014)]: Invalidation of the spacetime symmetry. Physics Essays, 31(4), 403-408.
Schmidhuber, J. (1997). A computer scientist’s view of life, the universe, and everything. In C. Freksa, M. Jantzen, and R. Valk (Eds.), Foundations of computer science: Potential-theory-cognition (pp. 201-208). New York, USA: Springer. doi:10.1007/BFb0052088
Schrödinger, E. (1944). What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.
Shen, Z.-Y. (2013). Stochastic quantum space theory on particle physics and cosmology—A new version of unified field theory. Journal of Modern Physics, 4(10), 1213-1380. Retrieved from http://dx.doi.org/10.4236/jmp.2013.410165
Trnka, R., & Lorencova, R. (2016). Quantum anthropology: Man, cultures, and groups in a quantum perspective. Prague: Karolinum Press.
Uzan, J.-P. (2015). The Big-Bang theory: Construction, evolution and status. In L’Univers, S´eminaire Poincar´e XX (pp. 1-69). Retrieved from http://www.bourbaphy.fr/Uzan.pdf
Vanderlinde, J. (2004). Classical electromagnetic theory (2nd Ed.). New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers.
Venkatesh, S. (2012). The theory of probability: Explorations and applications. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139169325
Weinberg, S. (2011). Dreams of a final theory: The scientist’s search for the ultimate laws of nature. New York: Knopf Doubleday Publishing Group. ISBN: 978-0-307-78786-6
Whitaker, A (2006). Einstein, Bohr and the quantum dilemma—From quantum theory to quantum information (2nd Ed.). Cambridge: Cambridge University Press.
Yang, W., Zhao, P., & Wang, H. T. (2020). An overview of mechanics. Beijing: Science Press. (in Chinese)
Young, T. (1804). The Bakerian lecture. Experiments and calculation relative to physical optics. Philosophical Transactions of the Royal Society of London. 94, 1–16. doi:10.1098/rstl.1804.0001. S2CID 110408369. Retrieved 14 July 2021.
Yu, J. Y., & Zhou, X. J. (2002). Implementation and application of comprehensive integration method from qualitative to quantitative. System Engineering Theory and Practice, 22(10), 26-32. (in Chinese)
Zwiebach, B. (2004). A first course in string theory. Cambridge: Cambridge University Press.