Paper Status Tracking

Article
Affiliation(s)

Link Campus University, Rome, Italy

ABSTRACT

This paper focuses on how big data guide the construction of the interpretative schemata we use to understand the world and act in it. To this end, the essay describes the most significant new research elements and frontiers that sociology is obliged to address at present. While the prevailing literature advocates the need to promote data literacy, the idea we wish to advance is that it is necessary to foster the comprehension of data along with an understanding of the role and the responsibility which sociology has intrepidly assumed since its foundation, that is, the study and explication of the complexity of the relationships characterising social life always and everywhere. Our intent is to make a proactive contribution to the study of the digitality to bring to light perverse, unexpected and/or unwanted effects associated with naive use of big data for research purposes.

KEYWORDS

sociology, big data, framing, social research, mix methods

Cite this paper

Sociology Study, Nov.-Dec. 2021, Vol. 11, No. 6, 276-289

References

Adorno, T. W. (1956). Lezioni di sociologia. Turin: Einaudi.

Adorno, T. W. (1966). Dialettica negativa (trad. id.). Turin: Einaudi.

Adorno, T. W., & Horkheimer, M. (1949). Dialettica dell’illuminismo. Turin: Einaudi.

Bandura, A. (2000). Self-efficacy: The foundation of agency. In W. J. Perrig and A. Grob (Eds.), Control of human behavior, mental processes, and consciousness: Essays in honor of the 60th birthday of August Flammer (pp. 17-34). Mahwah, NJ, USA: Lawrence Erlbaum Associates.

Berger, P. L., & Luckmann, T. (1966). La realtà come costruzione sociale. Milano: Il Mulino.

Boudon, R. (1977). Effects pervers et ordre social. Paris: Presses Universitaires de France.

Bourdieu, P. (2003). Sul potere simbolico. In Boschetti, A. (2003). La rivoluzione simbolica di Pierre Bourdieu (pp. 119-129). Venice: Marsilio [Sur le pouvoir symbolique, Annales, n. 3, maggio-giugno 1977, pp. 405-411].

Bourdieu, P., & Passeron, J.-C. (1977). Reproduction in education, society and culture. London: Sage.

Bowker, G. C., & Star, S. L. (2000). Sorting things out. Classification and its consequences. Cambridge: MIT Press.

Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information, Communication and Society, 15(5), 662-679.

Castillo de Mesa, J., & Gòmez Jacinto, L. (2021). Digital competences and skills as key factors between connectedness and tolerance to diversity on social networking sites: Case study of social work graduates on Facebook. Current Sociology, pp. 1-17.

Cipriani, R. (1987). The sociology of legitimation: An introduction. Current Sociology, 35(2), 1-20.

Cipriani, R. (2021). The other, altruism and empathy. Variety of prosocial behaviour. The American Sociologist, 09 June 2021.

Collins, R. (1998). The sociology of philosophies. Cambridge, MA: Harvard University Press.

Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research. Los Angeles: Sage Publications.

Desrosières, A. (2016). The quantification of the social sciences. An historical comparison. In I. Bruno, F. Jany-Catrice, and B. Touchelay (Eds.), The social sciences of quantification (pp. 183-204). Cham: Springer.

Diaz-Bone, R., & Didier, E. (2016). The sociology of quantification—Perspectives on an emerging field in the social sciences. Historical Social Research, 41(2), 7-26.

Diaz-Bone, R., Horvath, K., & Cappel, V. (2020). Social research in times of big data. The challenges of new data worlds and the need for a sociology of social research. Historical Social Research, 45(3), 314-341.

DiMaggio, P. (2015). Adapting computational text analysis to social science (and vice versa). Big Data & Society, 2(2), 1-5.

Dodge, M., & Kitchin, R. (2005). Codes of life: Identification codes and the machine-readable world. Environment and Planning D: Society and Space, 23(6), 851-881.

Durkheim, E. (1895). Le regole del metodo sociologico. Turin: Einaudi (2008).

Durkheim, E. (1897). Il suicidio. Studio di sociologia. Milano: Rizzoli (2009).

Edwards, P. N., Mayernik, M. S., Batcheller, A. L., Bowker, G. C., & Borgman, C. L. (2011). Science friction: Data, metadata and collaboration. Social Studies of Science, 41(5), 667-690.

Frade, C. (2016). Social theory and the politics of big data and method. Sociology, 50(5), 863-877.

Gallino, L. (2002). Dizionario di sociologia (XI edizione). Turin: UTET.

Gehl, R. (2015). Critical reverse engineering: The case of Twitter and TalkOpen. In G. Langlois, J. Redden and G. Elmer (Eds.), Compromised data: From social media to big data. London: Bloomsbury.

Goffman, E. (1974). Frame analysis. An essay on the organization of experience. New York: Harper and Row.

Goldthorpe, J. (2016). Sociology as a population science. Cambridge: Cambridge University Press.

Gray, H., & Gómez-Barris, M. (2010). Toward a sociology of the trace. Minneapolis: University of Minnesota Press.

Gray, J., Gerlitz, C., & Bounegru, L. (2018). Data infrastructure literacy. Big Data & Society, 5(2), 1-13.

Halford, S., & Savage, M. (2017). Speaking sociologically with big data: Symphonic social science and the future for big data research. Sociology, 51(6), 1132-1148.

Hamberg, K., Johansson, E., Lindgren, G., & Westman, G. (1994). Scientific rigour in qualitative research: Examples from a study of women’s health in family practice. Family Practice, 11(2), 176-181.

Horkheimer, M. (1947). Eclisse della ragione. Turin: Einaudi.

Iliadis, A., & Russo, F. (2016). Critical data studies: An introduction. Big Data & Society, 3(2), 1-7.

Jedlowski, P. (2005). Un giorno dopo l’altro. La vita quotidiana tra esperienza e routine. Milan: Il Mulino.

Kim, Y. (2019). New opportunities for sociological research: A discussion of the usefulness of mixed methods with data science. Journal of Asian Sociology, 48(3), 343-358.

King, G. (2016). Preface: Big data is not about the data! In R. M. Alvarez (Ed.), Computational social science: Discovery and prediction (pp. 1-4). Cambridge: Cambridge University Press.

Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their consequences. London: SAGE.

Kitchin, R., & McArdle, G. (2016). What makes big data, big data? Exploring the ontological characteristics of 26 datasets. Big Data & Society, 3(1) 1-10.

Laney, D. (2001). 3D data management: Controlling data volume, velocity, and variety. META Group Research Note, 6.

Lee, M., & Martin, J. L. (2015). Surfeit and surface. Big Data & Society, 2(2), 1-3.

Lewin, K. (1951). Field theory in social science. New York: Harper & Brothers.

Lukács, G. (1967). Storia e coscienza di classe. Milan: Sugar.

Lupton, D. (2015). Digital sociology. London: Routledge.

Lyle, K. (2017). Shaping the future of sociology: The challenge of interdisciplinarity beyond the social sciences. Sociology, 51(6), 1169-1185.

Marr, B. (2014). Big data: The 5 Vs everyone must know. Retrieved from https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know

Marres, N., & Gerlitz, C. (2016). Interface methods: Renegotiating relations between digital social research, STS and the sociology of innovation. Sociological Review, 64(1), 21-46.

Marx, K. (1867). Das Kapital. Moscow, USSR: Progress Publishers.

Marz, N., & Warren, J. (2012). Big data: Principles and best practices of scalable realtime data systems (MEAP edition). Westhampton, NJ: Manning.

McKinsey Global Institute. (2011). Technologies, jobs and the future of work. McKinsey & Company. Retrieved from http://www.eyesreg.it/2016/big-data-e-scienze-regionali-una-relazione-inesplorata/

McNulty, E. (2014). Understanding big data: The seven V’s. Retrieved from http://dataconomy.com/seven-vs-big-data/

Mead, G. H. (1934). Mind, self and society. Chicago: University of Chicago Press.

Mills, C. W. (1959). Immaginazione sociologica. Milano: Il Saggiatore.

Morin, E. (2001). Per uscire dal ventesimo secolo. Bergamo: Lubrina, 1989 (ed. orig. Pour sortir du XX siècle. Paris: Seuil, 1981).

Parsons, T. (1969). Structure and process in modern societies. Glencoe, Illinois: The Free Press.

Popper, K. R. (2002). The logic of scientific discovery. London: Routledge.

Qi, X. (2021). Social networks as contexts for engagement and initiative: An empirical investigation. Current Sociology, pp. 1-8.

Ruppert, E. (2015). Doing the transparent state: Open government data as performance indicators. In R. Rottenburg, S. E. Merry, S.-J. Park, and J. Mugler (Eds.), A world of indicators: The making of governmental knowledge through quantification (pp. 1-18). Cambridge: Cambridge University Press.

Russell, B. (1927). The analysis of matter. London: Routledge.

Salais, R. (2016). Quantification and objectivity. From statistical conventions to social conventions. Historical Social Research, 41(2), 118-134.

Salganik, M. J. (2018). Bit by bit. Social research in the digital age. Princeton: Princeton University Press.

Savage, M., & Burrows, R. (2007). The coming crisis of empirical sociology. Sociology, 41(5), 885-899.

Simon, H. (1969). Designing organizations for an information-rich world. Pittsburg, Pennsylvania: Carnegie Mellon University.

Srnicek, N. (2017). Platform capitalism. Cambridge: Polity Press.

Stein, E. (1958). Il problema dell’empatia (tr. it. di E. Costantini, E. S. Costantini). Rome: Studium.

Strathern, M. (2000). The tyranny of transparency. British Educational Research Journal, 26(3), 309-321.

Thévenot, L. (1983). L’économie du codage social. Critique de l’économie politique, 23/24, 188-222.

Thomas, W. I., & Znaniecki, F. (1927). Il contadino polacco in Europa e in America (Vol. 5, Chicago e Boston 1918-1920). Milan: Edizioni di Comunità 1968, vol. II. Spec. Introduzione.

Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42(1), 35-67.

Van Dijck, J. (2014). Datafication, dataism and dataveillance. Big data between scientific paradigm an ideology. Surveillance & Society, 12(2), 197-208.

Van Dijck, J., Poell, T., & de Waal, M. (2018). The platform society: Public values in a connective world. New York, NY: Oxford University Press.

Weber, M. (1922). (postuma; trad. it. 1961). Economia e società (Vol. 2). Milan: Edizioni di Comunità.

Weber, M. (1964). Engisch, K., Pfister, B., & Winckelmann, J. (Eds.). Max Weber. Gedächtnisschrift der Ludwig-Maximilians-Universität München zur 100. Wiederkehr seines Geburttages 1964 [in honour of the centenary of his birth]. Berlin: Duncker und Humblot.

Williams, M. L., Burnap, P., & Sloan, L. (2017). Crime sensing with big data. The affordances and limitations of using open-source communications to estimate crime patterns. British Journal of Criminology, 57(2), 320-340.

Wynn, J. R. (2009). Digital sociology: Emergent technologies in the field and the classroom. Sociological Forum, 24(2), 448-456.

Zhu, J., Ni, P., Tong, G., Wang, G., & Huang, J. (2021). Influence maximization problem with echo chamber effect in social network. IEEE Transactions on Computational Social Systems, 8(5), 1163-1171.

Zincke, C. R. (2014). Local and global communications in Chilean social science: Inequality and relative autonomy. Current Sociology, 62(5), 704-722.

Zuboff, S. (2015). Big other: Surveillance capitalism and the prospects of an information civilization. Journal of Information Technology, 30(1), 75-89.

About | Terms & Conditions | Issue | Privacy | Contact us
Coryright © 2022 David Publishing Company All rights reserved, 3 Germay Dr., Unit 4 #4651, Wilmington DE 19804
Tel: 1-323-984-7526, 323-410-1082; Fax: 1-323-984-7374, 323-908-0457 , www.davidpublisher.com, Email: order@davidpublishing.com