Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

Faculté des Sciences et Techniques de Tanger, Laboratoire de Mécanique et Génie Civil, BP. 416 Tangier, Morocco

ABSTRACT

The present work is devoted to the development of the extension of FRT (Finite Radon Transform) to the tridimensional case. One simple formulation is proposed and it is shown that it is the exact discretization of the continuous Discrete Radon Transform. More precisely this is the case when the sampling is given on a regular grid i.e. the continuous function is filtered by the mean of the box function. Relation of this transform with the Discrete Fourier one is given and is for some help in numerical implementation.

KEYWORDS

Radon transform, discrete radon transform, FRT, discrete Fourier, numerical computing.

Cite this paper

Mustapha, B. 2019. “A 3D Finite Radon Transform” Journal of Mathematics and System Science 9: 64-9.

References

[1]    Beylkin, G. 1984. “The Inversion Problem and Applications of the Generalized Radon Transform. Commun. Pure Appl. Math. 37: 579-99.

[2]    Beylkin, G. 1987. Discrete Radon Transform.” IEEE Trans. Acoustics, Speech, Signal Process 35: 162-72.

[3]    Natterer, F. 1989. The Mathematics of Computerized Tomography. Wiley.

[4]    Deans, S. R. 1993. The Radon Transform and Some of Its Applications, revised ed. Melbourne, FL: Krieger Publishing Company.

[5]    Matus, F., and Flusser, J. 1993. Image Representation via a Finite Radon Transform. IEEE Trans. Pattern Anal. Machine Intell. 15: 996-1006.

[6]    Kelley, B. T., and Madisetti, V. K. 1993. The Fast Discrete Radon Transform. I. Theory.” IEEE Trans. Image Process 2: 382-400.

[7]    Gotz, W. A., and Druckmuller, H. J. 1995. “A Fast Digital Radon Transform: An Efficient Means for Evaluating the Hough Transform. Pattern Recognition 28: 1985-92.

[8]    Hsung, T. C., Lun, D. P. K., and Siu, W. C. 1996. The Discrete Periodic Radon Transform.IEEE Trans. Signal Process 44: 2651-7.

[9]    Brady, M. L. 1998. “A Fast Discrete Approximation Algorithm for the Radon Transform. SIAM J. Comput. 27: 107-19.

[10]    Averbuch, A., and Shkolnisky, Y. 2003. 3D Fourier Based Discrete Radon Transform.” Appl. Comput. Harmon. Anal. 15: 33-69.

[11]    Gelfand, I. M., Gindikin, S. G., and Graev, M. I. 2003. Selected Topics in Integral Geometry. AMS Providence, Rhode Island.

[12]    Averbuch, A., Coifman, R. R., Donohos, D. L., Israeli, M., Shkolnisky, Y., and Sedelnikov, I. 2008. “A Framework for Discrete Integral Transformations II, The 2D Discrete Radon Transform.” SIAM J. Sci. Comput. 30 (2): 785-803.

[13]    Boukour, M., and Omri, A. “Solving the Problems of the Conductivity of Heterogeneous Media by the Method of the Discrete Radon Transform.” Presented at Communication in 3rd Spring School on Numerical Methods for Partial  Differential Equations, 17-21 April 2018, Morocco.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]