Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

1. EDF R&D-EDF Lab Les Renardières, Moret sur Loing cedex 77818, France
2. GPM Rouen, Avenue de l'Université, Saint-Étienne-du-Rouvray 76800, France
3. CSNSM IN2P3, Université de Paris Sud, Orsay 91400, France
4. Institut PPrime Université de Poitiers, ISAE-ENSMA, UPR 3346 BP 30179 F86962 Futuroscope Chasseneuil, France
5. INP Grenoble, SIMAP, Saint-Martin-d'Hères 38402, France

ABSTRACT

Even if temperature, pressure and chemistry of the cooling water are not very high and aggressive, materials used in PWRs (Pressurized Water Reactors) are exposed to different degradation mechanisms. One of the main goals of the research programs in this field is to develop physical model of the mechanisms down to the atomic scale. Such approach needs a clear description and understanding of the degradation mechanisms at the same small scale. This paper illustrates the benefits of different microscopies and of their last improvements up to the promising possibilities of monochromated and aberrations corrected TEM/STEM. A specific focus is placed on four different degradation mechanisms observed in austenitic stainless steel: irradiation ageing, corrosion fatigue, stress corrosion cracking and corrosion.

KEYWORDS

PWR, TEM, APT, 3D SEM, irradiation ageing, corrosion fatigue, stress corrosion cracking, corrosion.

Cite this paper

References

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]