Paper Status Tracking
Contact us
[email protected]
Click here to send a message to me 3275638434
Paper Publishing WeChat

Article
Affiliation(s)

Grupo de Aplicaciones Matematicas y Estadisticas de la Facultad de Ingenieria (GAMEFI), UNLP, and Departamento de Matematica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata.

ABSTRACT

In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution. Specifically you will see that solving the Volterra integral equation of first kindft=atKt,sxsdsatb or solve the Volterra integral equation of the second kind  xt=ft+atKt,sxsdsatb is equivalent to solving a generalized moment problem of the form μn=abgn(s)xsdsn=0,1,2,. This shall apply for to find the solution of an integrodifferential equation of the form  x't=ft+atKt,sxsds foratb andxa=a0 Also considering the nonlinear integral equation:fx=axyx-tytdt This integral equation is transformed a two-dimensional generalized moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the techniques ofgeneralized moment problem.

KEYWORDS

Generalized moment problems, solution stability, Volterra integral equations, nonlinear integral equations.

Cite this paper

References

[1]       M.L. Krasnov, A.I. Kiseliov, G.I. Makarenko, Ecuaciones Integrales, Editorial Mir, 1982.

[2]       J.A. Shohat and J.D. Tamarkin, The problem of Moments, Mathematic Surveys, Am. Math. Soc., Providence, RI, 1943

[3]       G. Talenti, Recovering a function from a finite number of moments, Inverse Problems 3 (1987), pp.501- 517.

[4]       M.B. Pintarelli and F. Vericat, Bi-dimensional inverse moment problems, Far East Journal of Mathematical Sciences 54 (2011), pp. 1-23.

[5]       M.B. Pintarelli and F. Vericat, Stability theorem and inversion algorithm for a generalized mo-ment problem, Far East Journal of Mathematical Sciences 30 (2008), pp. 253-274.

[6]       Akheizer N I, The classical moment problem, Olivier and Boyd, Edinburgh, 1965.

[7]       Akheizer N I and Krein M G, Some questions in the theory of moment, Am. Math. Soc. Providence, RI, 1962.

[8]       D.D. Ang, R. Goreno, V.K. Le and D.D.Trong, Moment theory and some inverse problems in potential theory and heat conduction, Lectures.

[9]       P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.

[10]    A. Tahmasbi; A New Approach to the Numerical Solution of Linear Volterra Integral Equations of the Second Kind; Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 32, 1607 - 1610

[11]    H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press (2004).

[12]    Mostefa Nadir; Modified Method for Solving Linear Volterra Integral Equations of the Second Kind Using Simpsons Rule, International Journal:Mathematical Manuscripts.Volume 1 Number 1 (2007), pp.141146.

About | Terms & Conditions | Issue | Privacy | Contact us
Copyright © 2001 - David Publishing Company All rights reserved, www.davidpublisher.com
3 Germay Dr., Unit 4 #4651, Wilmington DE 19804; Tel: 001-302-3943358 Email: [email protected]