![]() |
[email protected] |
![]() |
3275638434 |
![]() |
![]() |
Paper Publishing WeChat |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
María B. Pintarelli
Full-Text PDF
XML 461 Views
DOI:10.17265/2159-5291/2015.01.004
Grupo de Aplicaciones Matematicas y Estadisticas de la Facultad de Ingenieria (GAMEFI), UNLP, and Departamento de Matematica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata.
In this paper we will see that, under certain conditions, the techniques
of generalized moment problem will apply to numerically solve an Volterra integral
equation of first kind or second kind. Volterra integral equation is transformed into a one-dimensional generalized
moment problem, and shall apply the moment problem techniques to find a numerical
approximation of the solution. Specifically you will see that solving the Volterra
integral equation of first kindft=atKt,sxsdsa≤t≤b or solve the Volterra
integral equation of the second kind xt=ft+atKt,sxsdsa≤t≤b
is equivalent to solving
a generalized moment problem of the form μn=abgn(s)xsdsn=0,1,2,….
This shall apply for to
find the solution of an integrodifferential equation of the form x't=ft+atKt,sxsds
fora≤t≤b
andxa=a0
Also considering the nonlinear
integral equation:fx=axyx-tytdt
This integral equation
is transformed a two-dimensional generalized moment problem. In all cases, we will
find an approximated solution and bounds for the error of the estimated solution
using the techniques ofgeneralized moment problem.
Generalized moment problems, solution stability, Volterra integral equations, nonlinear integral equations.
[1] M.L. Krasnov, A.I. Kiseliov, G.I. Makarenko, Ecuaciones Integrales, Editorial Mir, 1982.
[2] J.A. Shohat and J.D. Tamarkin, The problem of Moments, Mathematic Surveys, Am. Math. Soc., Providence, RI, 1943
[3] G. Talenti, Recovering a function from a finite number of moments, Inverse Problems 3 (1987), pp.501- 517.
[4] M.B. Pintarelli and F. Vericat, Bi-dimensional inverse moment problems, Far East Journal of Mathematical Sciences 54 (2011), pp. 1-23.
[5] M.B. Pintarelli and F. Vericat, Stability theorem and inversion algorithm for a generalized mo-ment problem, Far East Journal of Mathematical Sciences 30 (2008), pp. 253-274.
[6] Akheizer N I, The classical moment problem, Olivier and Boyd, Edinburgh, 1965.
[7] Akheizer N I and Krein M G, Some questions in the theory of moment, Am. Math. Soc. Providence, RI, 1962.
[8] D.D. Ang, R. Goreno, V.K. Le and D.D.Trong, Moment theory and some inverse problems in potential theory and heat conduction, Lectures.
[9] P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.
[10] A. Tahmasbi; A New Approach to the Numerical Solution of Linear Volterra Integral Equations of the Second Kind; Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 32, 1607 - 1610
[11] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press (2004).
[12] Mostefa Nadir; Modified Method for Solving Linear Volterra Integral Equations of the Second Kind Using Simpsons Rule, International Journal:Mathematical Manuscripts.Volume 1 Number 1 (2007), pp.141146.