
Journal of Mathematics

and System Science

Volume 5, Number 1, January 2015 (Serial Number 35)

David

David Publishing Company

www.davidpublishing.com

PublishingDavid



 

Publication Information: 
Journal of Mathematics and System Science is published monthly in hard copy and online (Print: ISSN 2159-5291; Online: 
ISSN 2159-5305) by David Publishing Company located at 240 Nagle Avenue #15C, New York, NY 10034, USA. 
 

Aims and Scope: 
Journal of Mathematics and System Science, a monthly professional academic and peer-reviewed journal, particularly 
emphasizes new research results in theory and methodology, in realm of pure mathematics, applied mathematics, 
computational mathematics, system theory, system control, system engineering, system biology, operations research 
and management, probability theory, statistics, information processing, etc.. Articles interpreting practical application 
of up-to-date technology are also welcome. 
 

Editorial Board Members: 
William P. Fox (USA) 
Wattanavadee Sriwattanapongse (Thailand) 
Zoubir Dahmani (Algeria) 
Claudio Cuevas (Brazil) 
Elisa Francomano (Italy) 

Baha ŞEN (Turkey) 
Assia Guezane-Lakoud (Algeria) 
Alexander Nikolaevich Raikov (Russia) 
Shelly SHEN (China)

 
 

Manuscripts and correspondence are invited for publication. You can submit your papers via web submission, or 
E-mail to mathematics@davidpublishing.org, jmss.mathematics@hotmail.com, jmss.mathematics@yahoo.com. 
Submission guidelines and web submission system are available at http://www.davidpublishing.org or 
http://www.davidpublishing.com. 
 

Editorial Office: 
240 Nagle Avenue #15C, New York, NY 10034, USA 
Tel: 1-323-984-7526, 323-410-1082 
Fax: 1-323-984-7374, 323-908-0457 
E-mail: mathematics@davidpublishing.org, jmss.mathematics@hotmail.com, jmss.mathematics@yahoo.com 
 

Copyright©2014 by David Publishing Company and individual contributors. All rights reserved. David Publishing 
Company holds the exclusive copyright of all the contents of this journal. In accordance with the international 
convention, no part of this journal may be reproduced or transmitted by any media or publishing organs (including 
various websites) without the written permission of the copyright holder. Otherwise, any conduct would be considered 
as the violation of the copyright. The contents of this journal are available for any citation. However, all the citations 
should be clearly indicated with the title of this journal, serial number and the name of the author. 
 

Abstracted / Indexed in: 
Database of EBSCO, Massachusetts, USA 
Index Copernicus, Poland 
CiteFactor, USA 
Google Scholar 
J-GATE database, India 
CSA Technology Research Database  
Ulrich’s Periodicals Directory 
Electronic Journals Library (EZB)  
Public Affairs Information Service 
Universe Digital Library S/B, Proquest 

Norwegian Social Science Data Services (NSD), 
Database for Statistics on Higher Education (DBH), 
Norway 
Summon Serials Solutions   
Academic Keys    
Chinese Electronic Periodicals Service, Airiti Inc, 
Taiwan 
Online Computer Library Center, Inc., USA 
Chinese Scientific Journals Database, VIP Corporation, 
Chongqing, P. R. China 

 

Subscription Information: 
Price (per year): Print $520; Online $300; Print and Online $560  
 

David Publishing Company 
240 Nagle Avenue #15C, New York, NY 10034, USA 
Tel: 1-323-984-7526, 323-410-1082; Fax: 1-323-984-7374, 323-908-0457 
E-mail: order@davidpublishing.com 
Digital Cooperative Company: www.bookan.com.cn 
 

 

David Publishing Company 
www.davidpublishing.com 

DAVID PUBLISHING 

D 

 

http://www.davidpublishing.org/


 

 

 

Journal of Mathematics  
and System Science 

 

 
Volume 5, Number 1, January 2015 (Serial Number 35) 

 

Contents 

1 Some Mathematical Properties of the Dynamically Inconsistent Bellman Equation: A Note on the 

Two-Sided Altruism Dynamics 

Aoki Takaaki 

17 Approximation Properties For Modified Kantorovich-Type Operators 

Müzeyyen Özhavzalı, Ali Olgun 

26 On Maximal, Discrete, and Area Operators 

Chunping Xie 

32 Volterra Integral Equations and Some Nonlinear Integral Equations with Variable Limit of 

Integration as Generalized Moment Problems 

María B. Pintarelli 

39 Differential Groupoids 

Małgorzata Burzyńska and Zbigniew Pasternak-Winiarski 

46 Determining Bookkeeping Cash Maximum of Serbian Army Units by Using Multicriteria 

Optimization 

Ivan Milojević, Milan Mihajlović and Vladan Vladisavljević 



Journal of Mathematics and System Science 5 (2015) 1-16 
doi: 10.17265/2159-5291/2015.01.001 

Some Mathematical Properties of the Dynamically 

Inconsistent Bellman Equation: A Note on the 

Two-Sided Altruism Dynamics 

Aoki Takaaki 
Institute of Economics Research, Kyoto University  
 
Received: September 27, 2014 / Accepted: October 21, 2014 / Published: January 25, 2015. 
 
Abstract: This article describes some dynamic aspects on dynastic utility incorporating two-sided altruism with an OLG setting. The 
special case is analyzed where the weights of two-sided altruism are dynamically inconsistent. The Bellman equation for two-sided 
altruism proves to be reduced to one-sided dynamic problem, but the effective discount factor is different only in the current 
generation. It is shown that a contraction mapping result of value function cannot be achieved in general, and that there can locally 
exist an infinite number of self-consistent policy functions of the class nC  with distinct steady states (indeterminacy of 
self-consistent, differentiable policy functions).  
 
Keywords: Bellman equation, Two-sided altruism, Dynamic inconsistency, Self-consistent policy functions, Indeterminacy, 
Overlapping generations model.  
 

1. Introduction    

This paper analyzes some mathematical aspects of 
two sided altruism dynamics especially under 
dynamic inconsistency, with constant fertility and no 
saving. The model is based on so-called 
Buiter-Carmichael-Burbidge (BCB) type two-sided 
utility, which we modify for the three stage OLG 
model, so that each generation might hold, in general, 
two chances of intergenerational linkage, firstly 
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through fertility and capital investment decision 
planned by middle age parent during young adulthood, 
and secondly through transfer (compensation/bequest) 
during old stage. As explained later, this modification 
proves to induce some interesting, but puzzling 
behaviors in macro-dynamics, especially under 
dynamic inconsistency.  

As references, two-sided altruism dynamics are 
treated, for example, in Abel (1987), Kimball (1987), 
Hori and Kanaya (1989), Altig and Davis (1993), Hori 
(1997), Aoki (2011). Furthermore, the differentiability 
of value functions is discussed in Benveniste and 
Scheinkman (1979), Santos (1991), Araujo (1991), 
Montrucchio (1987). Mathematical treatments regarding 
the principle of optimality appear, for example, in 
Bellman (1957), Pontryagin (1962), Blackwell (1965), 
Stokey and Lucas (1989), and Mitra (2000). Boldrin 
and Montrucchio (1986), and Geanakoplos and Brown 
(1985) are located at the earlier stage among the 
“indeterminacy of equilibrium” literature. 
Furthermore, Krusell P., Kuruşçu B. and Smith A. A. 
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(2002), and Krusell P. and Smith A. A. (2003, 2008) 
analyze the quasi-geometric discounting model.  

The organization of this paper is as follows. We 
describe the model in section 2, and theoretical  
results in section 3, and finally concluding remarks in 
section 4.  

2. Model 

We assume a typical OLG model consisting of 
three life stages, C , Y , O  (childhood, young 
adulthood (working age) and old adulthood 
(retirement stage)). Generation t , who spends its 
young adulthood (stage Y ) at period t , shares the 
adjacent life stages with generation 1t +  and 1t − . 
(For example, stage O  of old parents and stage Y  
of young children are shared simultaneously.) The 
whole life utility of generation t  is defined as 

( ) ( )
1

y o
t t tu u uδ += + , where ( )y

tu  and ( )
1

o
tu +  are the 

young and old adulthood utility of generation t , 
respectively, and δ  is a time preference discount 
factor for old (retirement) stage. At period t , 
generation t decides some of its life strategies, fertility 
( tn ) and capital investment for children ( 1tk + ) and 
saving for forthcoming retirement stage O  ( ts ), and 
gift for old parents ( tb ). Just for simplicity, we 
assume that fertility is constant ( 1tn = ) and there is 
no saving ( 0ts = ), and that only the gift for old 
parents is controllable.  

2.1 Representative Agent Problem 

Now we consider the following type of two sided 
altruism, where tu  and tV  and is an individual life 
utility and a (two-sided) dynastic utility of generation 
t , respectively. 

( ) ( ) ( ) ( )
1

0 0

( ) ( ) ( ) ( ) ( ) 2 ( ) ( )
1 1 2 2 3

o s o s y o
t t t s t t s t s

s s

o y o y o y o
t t t t t t t

V u u u u u

u u u u u u u

αδ β αδ β δ

αδ δ β δ β δ

∞ ∞
 
 + + + + 

= =

     
     + + + + +     

= + = + + =

+ + + + + + + .

∑ ∑



 

 

This representation is an OLG version of 
Buiter-Carmichael-Burbidge (BCG) type utility of the 

form, 1 1
s

t t t t ss
V u u uα β∞

− +=
= + + ∑ . (As for the 

BCG utility, see Abel (1987)). We assume 1β < .  

Now denote consumptions at stage Y  (period t ) 
and O  (period 1t + ) of generation t , by 1 tc ,  and 

2 1tc , + , respectively. Then 1 1( )t t t tc f k k b, += − −  
and 2 1 1t tc b, + += , where ( )f ⋅  is a production 
function, tk  is a human capital of generation t  
with a full depreciation in one period, and 1tb +  is a 
gift from young adult generation 1t +  to old adult 
generation t . Assuming the intertemporally separable 
utility form, 1( ) (1 )u c c σ σ−= / −  for 1σ ≠ , and 

ln c  for 1σ = , we have ( )
1( )y

t tu u c ,=  and 
( )

1 2 1( )o
t tu u c+ , += .  
If all the period t  and subsequent strategies 

{ }1t' t' t' t
b k ∞

+ =
,  are independently determined by 

generation t , then the generation solves the following 
representative agent problem. 

1{ , }
max
t' t' t' t

t
k b

V
∞

+ =

            (RA1) 

However, in this OLG linkage, the inconsistent 
motive for intergenerational transfer between young 
children and old parents makes each generation 
behave differently from RA1. To see why, we rewrite 

tV  as 
( ) ( ) ( ) ( ) 2 ( ) ( )

1 1 2 2

( ) ( ) ( ) ( )

1

( ) ( )

( )

y o y o y o
t t t t t t t

y o s y o
t t t s t s

s

V u u u u u u

u u u u

αδ β δ β β δ β

αδ β δ β

     
     + + + +     

∞
   
   + +   

=

= + + + / + + / +

= + + + / .∑



 
 

Maximizing tV  in RA1 necessarily assures that 
the ratio of marginal utility in consumption between 

young and old adults be 1 αδ:  at period t , while 
1 δ β: /  at period t'  ( 1 2 )t' t t= + , + , . As a 
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matter of fact, however, all generations ( )t' t≥  are 
to adjust their gifts and allocate their consumptions 
with old parents by 1 αδ:  in the ratio of marginal 
utility. Therefore, the corresponding representative 
agent problem should be rather the following 
sequential problem. 

1
ˆ{ , }

max
t' t' t' t

t
k b

V
∞

+ =

            (RA2) 

( ) ( )ˆ argmax{ }y o
t' t' t' t's t b b u uαδ. . = +  given  

t'k and 1t'k + , 1 2t' t t t= , + , + , .   

A solution of the constraint, ˆt'b  
( 1 2 )t' t t t= , + , + , ,  can be derived explicitly as 

{ }1
1

11 ( )
ˆ ( )t' t't' f k kb σαδ − / ++

= − , so defining 

{ }1
1

1 1 11 ( )
ˆ( ) ( )ˆ t' t' t' t' t't'f k k f k kc b σαδ /, + ++

≡ − − = −  

and { }1

1
( )

2 11 ( )
ˆ ( )ˆ t' t' t't' f k kc b

σ

σ
αδ
αδ

/

/, ++
≡ = − , we have 

1 2( ) ( ) ( )ˆ ˆt' t' t'u u Auc c Cαδ, ,+ ≡   and 

1 ' 2 ' '( ) ( ) ( ) ( )ˆ ˆt t tu u Buc c Cδ β, ,+ / ≡  , where 

11 ( )A
σσαδ / 

 
 

≡ + , 
{ }

{ }

1 1

11

1 ( ) ( )

1 ( )
B

σ

σσ

αδ αβ

αδ

/ −

−/

+

+
≡

, and 

1( )t' t't' f k kC +≡ − .  
Thus defining tV



, which internalizes the old age 
support by each generation according to the 1 αδ:  

rule, ( ) ( )ˆ argmax y o
t' t' t' t'b b u uαδ 

 
 

= + , 

2
1 2

3
3 1

2 3
2 3

( ) ( ) ( )

( ) { ( ) ( )

( ) ( ) }

t t t t

t t t

t t

Au Bu BuV C C C
Bu A u uC C C

u uC C

β β

β βµ

β µ β µ

+ +

+ +

+ +

= + + +

+ = +

+ + + ,



  

  



 



 

where B Aµ = / . Here 1µ =  if 1αβ =  
(dynamically consistent). Thus the effective discount 
factor is βµ  at the present period t , but β  from 
the next period 1t + . Therefore the objective 
function proves to hold a sort of the quasi-geometric 
discounting time structure, as discussed in Krusell et 
al. (2002, 2003 and 2008).  

Finally RA2 can be simply rewritten as 

' 1 '{ }
max

t t t
t

k
V∞

+ =

.            (RA2’) 

It is obvious that RA2’ or RA2 are equivalent with 

RA1 if and only if 1µ =  ( 1)i e αβ. ., = . We call 
this case ( 1)µ =  dynamic consistency, and otherwise 
inconsistency. From time consistency requirement 

1 1 4 1 1 4
2 2

ab ab
b aα β− − − −= , =  ( 1 4)ab ≤ / , we have 

1αβ < , therefore 1µ > , that is, the model is 
dynamically inconsistent. See Kimball (1987), Hori et 
al. (1989) and Hori (1997).  

2.2 Functional Bellman Equation 

Now we try to rewrite the representative agent 
problem represented in RA2’, in the form of recursive 
functional Bellman equation.  

At first, we define another objective function tV , 
2

1 2
3

3 1
2 3

2 3

( ) ( ) ( )

( ) { ( ) ( )

( ) ( ) }

t t t t

t t t

t t

Bu Bu BuV C C C
Bu B u uC C C
u uC C

β β

β β

β β

+ +

+ +

+ +

= + + +

+ = + +

+ + ,

  

  



 



 

where 

( ) ( )t t tB A uV V C= + − .



 

Then two sided altruism dynamics is described as 
the following one sided functional equation, where 
dual value functions, ( )tW ⋅

 and ( )tW ⋅ , correspond 
with objective functions tV



 and tV , respectively. 

( )
1

11 10 ( )

( )

max ( ( ) ) ( )
t t

t t

tt t tk f k

kW

Au f k k kWβ
+

++ +≤ ≤

=

− + ,





 (BE1) 

where 

ˆ( ) ( ) ( ) ( )t tt t tk k B A uW W C= + −

  

and 1ˆˆ ( )tt tf kC k += − ,  

where 

( )
1

11 11
0 ( )

ˆ arg max ( ( ) ) ( )
t t

tt t tt
k f k

Au f k k kWk β
+

++ ++
≤ ≤

= − +  . 

1ˆ ( )t tt g kk + =  is a policy function of generation t , 
given next generation 1t + ’s value functions 

1( )tW + ⋅

 and 1( )tW + ⋅ . BE1 is a simpler version of 
two sided altruism model examined by Hori (1997), 
eqs. (4.2)-(4.6).  
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Under dynamic inconsistency ( 1)µ ≠ , the 
maximization problem of representative agent’s utility 
(RA2’ or RA2) is not equivalent with the 
corresponding Bellman equation (BE1) with the same 
objective function tV



, even though some 
transversality conditions are appropriately assumed. 
As a matter of fact, there exist two effects caused by 
dynamic inconsistency: A. intra-temporal direct effect 
on intergenerational transfer, and B. inter-temporal 
indirect effect on preceding generations’ policy 
functions. And Bellman equation proves to internalize 
both effects A and B, while representative agent utility 
maximization does only effect A. In addition, the 
principle of optimality does not hold in general under 
dynamic inconsistency, so that Blackwell’s 
contraction mapping theorem (Stokey & Lucas (1989) 
Theorem 3.3) cannot be applied. However, this 
complete internalization induces some perplexing 
aspects in BE1, which does not appear in case of 
dynamic consistency.   

To see this, we now rewrite BE1 in a backwardly 
recursive fashion. 

( )1 ( )
( ) max ( ( ) ) ( )n ny Y k
k Au f k y yW Wβ+ ∈

= − + ,

  

(BE1’) 
where 

1 1
ˆ( ) ( ) ( ) ( )n nk k B A u CW W+ += + − .

  

n  is a time distance from the future terminal 

period 0n = . Here ˆ ˆ( )C f k y= − , where 

( ) 1ˆ arg max ( ( ) ) ( ) ( )n n
y

y Au f k y y g kWβ += − + ≡

. 
( )Y k  is a feasible correspondence defined as 
( ) {Y k = y | 0 ( )}y f k≤ ≤ . 

In case of dynamic consistency ( 1)B Aµ = / = , 
the above equation reduces to a regular Bellman 
equation, 

( )1 ( )
( ) max ( ( ) ) ( )n ny Y k

W k Au f k y W yβ+ ∈
= − + ,  

where ( ) ( ) ( )n nnW W W⋅ = ⋅ = ⋅

 . 
Then, under quite general conditions, the principle 

of optimality is known to assure a uniform 
convergence of ( )nW ⋅  to time-independent value 
function ( )W ⋅ , which satisfies 

( )
( )

( ) max ( ( ) ) ( )
y Y k

W k Au f k y W yβ
∈

= − + .  

In case of dynamic inconsistency ( 1)µ ≠ , such a 
contraction mapping result, for example, by Blackwell 
(1965), cannot be automatically expected. However 
roughly dare to consider, at any events, the following 
time-independent functional equation. 

( )
( )

( ) max ( ( ) ) ( )
y Y k

W k Au f k y W yβ
∈

= − + ,


  (BE2) 

where 

ˆ( ) ( ) ( ) ( )W k W k B A u C= + − ,


  

and ˆ ˆ( )C f k y= −  and 

( )
( )

ˆ arg max ( ( ) ) ( ) ( )
y Y k

y Au f k y W y g kβ
∈

= − + ≡

.  

So far we assume a priori the existence of policy 
function ( )ng k  instead of policy correspondence, 
implicitly its differentiability, the uniform 
convergence of convergence of ( )ng k  to ( )g k , 
and so on. See, for example, Stokey et al. (1989). 
Some of these conditions prove to hold even under 
dynamic inconsistency, but some do not. In the next 
section, we will investigate the analytical properties of 
BE2 and BE1’ from various viewpoints.  

3. Results 

Let be { }0R x R x+ = ∈ | ≥  and define K R+⊂ , 
the domain of capital k , so that k K∈ . Also 
assume that f R R+ +: →  and u R R+ +: →  are 
differentiable and satisfy the following properties:  

Assumptions:  
F0: Production function ( )f k  is C∞ , i.e., 

infinitely continuously differentiable.  
F1: (0) 0f = .  
F2: f  is strictly concave.  
F3: ( ) 0f' k > .  
F4: 

0
lim ( )
k

f' k
→

= ∞ , lim ( ) 0
k

f' k
→∞

= .  
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U0: Utility function ( )u c  is C∞ , i.e., infinitely 
continuously differentiable. Specifically 

1( ) (1 )u c c σ σ−= / −  for 1σ ≠ , where σ  is a 
relative risk aversion or an inverse of elasticity of 
intertemporal substitution.  

U1: (0) 0u = .  
U2: u  is strictly concave.  
U3: ( ) 0u' c >  for 0c > .  

U4: 
0

lim ( )
c

u' c
→

= ∞ , lim ( ) 0
c

u' c
→∞

= .  

Theorem 1 derives a modified Euler equation 
corresponding with two-sided altruism.  

Theorem 1: In BE2 assume that value function 
( )W k  and policy function ˆ ( )y g k=  are 1C , i.e., 

once continuously differentiable, and that ˆ ( )y g k=  
is an interior of the feasible correspondence ( )Y k . 
Then BE2 satisfies the following Euler equation EE1, 
modified for case of dynamic inconsistency. 

[ ]
( ( ) )
( ( ) ( )) ( ) ( 1) ( ) 0

u' f k y
u' f y g y f' y g' yβ µ µ

− − +

− − − = ,
 

(EE1) 
where ˆ ( )y g k=  is a solution of EE1.  

Proof is trivial and left for Appendix. EE1 (Euler 
equation under dynamic inconsistency) is equivalent 
with the “generalized Euler equation”, as derived in 
Krusell et al. (2002). This is plausible, because the 
OLG model under dynamic inconsistency proves to be 
equivalent with a sort of the quasi-geometric 
discounting model. Then time consistency requires 
that it happens to be ˆ ( ) ( )g k g k= . Therefore EE1 
can be rewritten as 

[ ]
(( )( )) (( ) ( ))

( ( 1) ) ( ) 0
u' f g k u' f g g k

f' g' g k
β

µ µ
− − + − ×

− − = ,





 (EE2) 

where ( ) ( ( ))a b x a b x≡  denotes a composite 
function of x , and ( )( ) ( ) ( )a b x a x b x± ≡ ± . 

If ( )g k  satisfies EE2, then we say ( )g k  is 
self-consistent, in the sense that if next generation’s 
policy function is ( )g k , then the current generation 
necessarily takes the same policy.  

At a fixed point, k k∗= , ( )g k k∗ ∗=  and 
( ) ( )[ ( ) ( 1) ( )] 0u' c u' c f' k g' kβ µ µ∗ ∗ ∗ ∗− + − − = , 

where ( )c f k k∗ ∗ ∗= − . Thus 
[ ( ) ( 1) ( )] 1f' k g' kβ µ µ∗ ∗− − =  (★ ) holds. Note 

that ( ) 1f' kβ ∗ =  implies ( ) 1g' k β∗ = / , and that 
( ) 1f' kβµ ∗ =  implies ( ) 0g' k∗ = .  

3.1 Indeterminacy of self-consistent policy functions 

Next theorem relates dynamic inconsistency with 
indeterminacy of self-consistent policy functions.  

Theorem 2: Assume 1µ ≠ . Let k  be a point 
such that ( ) 1f' kβµ = , and take any point such that 
k k∗ ≠ . Then, there exists uniquely a self-consistent 
policy function ( )g k  satisfying EE2, such that it has 
a fixed point at k k∗= , and is nC , i.e., infinitely 
continuously differentiable, for any positive integer 
n  on some open ball around k∗ , ( )k B k ε∗∈ , , i.e., 
k k kε ε∗ ∗− < < + , with 0ε > .  

Proof is given in Appendix. This theorem says that 
if a fixed point k∗  is determined, then a 
corresponding self-consistent policy function is also 
uniquely determined and nC  in an open ball around 

k∗ . Since there exists a trade-off and degree of 
freedom between the values of ( )g k∗  and ( )g' k∗ , 
it is possible to construct an infinite number of distinct 
self-consistent policy functions for distinct k∗ . While 
Krusell et al. (2003) find out the indeterminacy of 
saving rules (policy functions), which is a step 
function, non-differentiable at and converging to some 
arbitrary stationary point, this theorem provides a 
rigorous proof that an infinite number of distinct nC  
self-consistent policy functions exist with distinct 
stationary points.  

3.2 Existence of nC  Self-Consistent Value 
Functions with Uniform Convergence  

Given a self-consistent policy function ( )g k  
satisfying EE2, self-consistent value functions ( )Z k  
and ( )Z k



 in duality, which correspond with ( )W k  
and ( )W k



, respectively, are defined as the following 
infinite functional series. 
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2

( ) { (( )( ))

( ) ( ))

(( ) ( )) }

Z k B u f g k

u f g g k

u f g g g k

β

β

= − +

− +

− +





  

   (SV1) 

0
(( ) ( ))s

s
s

B u f g s g g kβ∞

=
= − ⋅⋅⋅∑   



 

( )0
(( ) ( ))s

ss
B u f g g kβ∞

=
= −∑   

and 

( ) ( ) ( ) (( )( ))Z k Z k B A u f g k= − − − .


  

Here we define ( ) ( ) ( )s

s

g k s g g k≡ ⋅⋅⋅ 



. It is 

easy to verify ( ) ( (1 )) ( ( ) )Z k B u f k kβ∗ ∗ ∗= / − − . 
Now we claim the following theorem.  

Theorem 3: Assume 1µ ≠ . Let S  be a set such 
that 

{ }( ( ) 1 ) ( 1) 1S k f' kµ β µ= | | − / / − |< ,  

and take any point such that k S∗ ∈  and k k∗ ≠ . 
Then:  

(i) Self-consistent value functions ( )Z k  and 
( )Z k


, which are represented as an infinite series SV1, 
where ( )g k  satisfies EE2, uniformly converges and 
once continuously differentiable 1C  on some open 
ball around k∗ , ( )k B k 'ε∗∈ , , with 0'ε > .  

(ii) In BE2, replace ( )W ⋅  and ( )W ⋅


 with y and 
( )Z ⋅


, respectively. Then ( )Z ⋅  and ( )Z ⋅


 satisfy 
BE2 with a unique self-consistent policy function 

( )g k .  
(iii) Let S'  be a set such that 

{ }0 ( ( ) 1 ) ( 1) 1S' k f' kµ β µ= | < − / / − < , and 
take any point such that k S'∗ ∈ , instead of S . 
Then ( )Z k  is strictly concave at k∗ .  

Proof is given in Appendix. By the proof ( )Z k  
and ( )Z k



 are also shown to be nC . Thus BE2 is 
now formally justified as the following Bellman 
equation.  

( )
( )

( ) max ( ( ) ) ( )
y Y k

Z k Au f k y Z yβ
∈

= − + ,


   (BE3) 

where 

ˆ( ) ( ) ( ) ( )Z k Z k B A u C= + − ,


  

and ˆ ˆ( )C f k y= −  and 

( )
( )

ˆ arg max ( ( ) ) ( )
Y k

y y Au f k y Z yβ= ∈ − +  .  

Theorem 3 says that ŷ  in BE3 must be the same 
as ( )g k , if c and ( )Z k



 are defined as SV1.  

3.3 Instability Against Perturbation of 
Self-Consistent Policy/Value Functions  

In section 3.2, at first we searched out the policy 
functions, which satisfies Euler equation EE2 locally 
around a fixed point k∗ , and then calculate the 
corresponding value functions. Therefore it is not still 
verified if deviated policy functions would necessarily 
converges to some of self-consistent ones in a global 
sense. So we go back to a recursive Bellman equation 
BE1’. At the terminal stage 0n = , 

( )1 0( )
( ) max ( ( ) ) ( )

y Y k
k Au f k y yW Wβ

∈
= − + ,

  

where 

1 1
ˆ( ) ( ) ( ) ( )k k B A u CW W= + − .

  

Assume a log utility ( ) lnu c c=  and a 
Cobb-Douglus form production function  

( ) bf k ak= , although this utility does not satisfy 
condition U1. Assuming 0( ) 0kW =  (therefore 

0 ( ) 0g k = ), it is easy to verify, by recursive 
calculation, that ( ) ( )n ng k f kγ= , where 

{ }
{ }

1 ( )

(1 ) 1 ( )

n

n

b b
n b b b

βµ β

β βµ β
γ

−

− + −
= , and 

( ) ( ) ( )n k
g k g k f kγ

→∞
→ = , where 1 (1 )

b
b
βµ

β µγ − −= . 

( ( ) ( )g k f kγ=  satisfies self-consistent Euler 
equation EE2.) As a matter of fact, if 0 ( )g k  belongs 
to a family of functions of a Cobb-Douglus form, 

0 0( ) ( )g k f kγ=  0(0 1)γ≤ < , then it is proved that 
( ) ( ) ( )n k

g k g k f kγ
→∞
→ = , the same destination 

function. However, in general, every possible initial 
policy function 0 ( )g k  might not necessarily attain a 
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uniform convergence to ( )g k . This point is totally 
different from case of dynamic consistency 1µ = . 
(See Blackwell (1965) for a contraction result in case 
of 1µ = .) 

Here we limit our focus on the local stability 
against temporal perturbation of self-consistent policy 
and value functions.  

Theorem 4: Let ( )h k  be a C∞  function, which 
is bounded in an open ball around k∗ , and 

( ) 0h k∗ ≠ . Also let ( )g k  be a self-consistent 
policy function, which satisfies EE2, and let ( )Z k  
be a corresponding self-consistent value function 
generated by SV1. Assume both ( )g k  and ( )Z k  
are nC  in an open ball around k∗ .  

(i) Assume that the next generation’s policy 
function is subject to a perturbation of the form: 

( ) ( ) ( ) ( )g y g y g y h yη η→ , = + , and the current 
generation’s policy function changes 

ˆ( ) ( )g k g k η→ , .  
Then the condition for the policy function’s 

contraction in an open neighborhood around k∗ , 
( )k B k ''ε∗∈ ,  with some 0''ε > , is 

( ) ( ) ( )1 ( 1) 1
( ) ( ) ( )

g' k h' k u' c
f' k h k u'' c

β µ
∗ ∗ ∗

∗ ∗ ∗

 
+ − < . 

 
 

(ii) Assume that the next generation’s value 
function is subject to a perturbation of the form: 

( ) ( ) ( ) ( )Z y Z y Z y h yη η→ , = +   , and the current 
generation’s value function changes 

ˆ( ) ( )Z k Z k η→ , .  

Then the condition for the value functions’s 
contraction in an open neighborhood around k∗ , 

( )k B k ''ε∗∈ ,  with some 0''ε > , is 

( ) ( ) ( )1 ( 1) 1
( ) ( ) ( )

h' k g' k u' c
h k f' k u'' c

β µ
∗ ∗ ∗

∗ ∗ ∗

 
+ − < . 

 
 

Proof is given in Appendix. Both results (i) and (ii) 
are similar. In case of dynamic consistency 1µ = , 
the contraction can be achieved under quite general 
conditions, ( ) ( ) 1g' k f' k∗ ∗| / |<  or 1β < , in 
which the local convergence in sup norm 

0n K n
g g

→∞
− →  or 0n K n

Z Z
→∞

− →   are attained, 

whatever the first order or the higher orders of 
perturbation ( ( )h' k , ( )h'' k , ( ) )h''' k ⋅ ⋅  might be. 
However, in case of 1µ ≠ , the first order 
perturbation ( )h' k  or the first order 
nondifferentiability directly affects the possibility of 
0'th  order contraction (in sup norm), and so do the 
second or higher perturbation ( ( )h'' k , ( )h''' k , )⋅⋅ , 
or the nondifferentiability in these orders, indirectly. 
So finally in the next theorem we state the first order 
effect on ˆ ( )g k η,  of perturbation ( )h k  around 

k∗ , which is measured by 12ˆ ( 0)kg ∗, .  
Theorem 5: Under the same assumptions as in (i) 

of Theorem 4, the 12ˆ ( 0)kg ∗, , the first order effect of 
ˆ ( )g k η∗,  for a small change in ( )h yη , is given in 

the following formula. 

0 1 212ˆ ( 0) ( ) ( ) ( )k X h k X h k X h kg ∗ ∗ ′ ∗ ′′ ∗, = + + ,  

Where 
 

0
( ) ( ) ( ){ ( ) ( ) ( ) ( )} { ( ) ( )}{1 ( )}
( ) ( ) ( )

g' k g' k u'' cX f'' k g' k f' k g'' k f' k g' k g' k
f' k f' k u' c

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

 
= − − − − − , 

 

1

( ){ ( ) ( )}

( ) { ( ) ( ) ( ) ( )}( ) ( 1) ( ) ( )( ) ( ) ( )( ) ( ) { ( ) ( )}
( ) ( )

g' k f' k g' k

g' k f'' k g' k f' k g'' kX g' k u' c g' kf' k u''' c g' ku'' c f' k f' k g' k
u'' c f' k

β µ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗

  −
  

 −  = + − ,   −    + −      
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2

2
{ ( )} ( )( 1)

( ) ( )
g' k u' cX
f' k u'' c

β µ
∗ ∗

∗ ∗= − .  

Proof is given in Appendix. Let ( )nh kη  denote a 
functional deviation from self-consistent policy 
function ( )g k  at stage n . In case of dynamic 

consistency 1µ = , then 
2{ ( )}

1 ( )
g k
f k

X
′ ∗

′ ∗=  and 

2 0X = . From Theorem 4, ( ) 0nh k∗ → , as 

n → ∞ . Since 
2{ ( )}

( )
1g k

f k

′ ∗

′ ∗ < , ( )nh k′ ∗  proves to 

converge to zero. That is, qualitatively speaking, the 
order-by-order derivative contraction operates in 
general. However, in case of dynamic inconsistency 

1µ ≠ , the higher order derivative coefficient affects 
the lower one, and the lower one, if failing in 
contraction, remains an obstacle for contraction in the 
higher one, as n → ∞ .  

4. Concluding Remarks 

Thus this paper describes a dynamics of one-sector 
growth model under two sided altruism. Here we 
derived a modified Euler equation for dynamic 
inconsistency.  

From viewpoints of macrodynamics & game theory, 
one important implication of this paper is that even 
under this perfect foresight setting with a perfectly 
rational representative agent (in the sense that each 
generation takes account of and internalizes all the 
predictable reaction by the subsequent generations), 
dynamic inconsistency still induces indeterminacy of 
self-consistent policy functions, and possibly cause 
some dynamic fluctuation of policy function generated 
in recursive fashion.  

This aspect is crucial not only in this two-sided 
altruism dynamics, but also in other models 
incorporating irregular structures of variable effective 
discount factors, as in hyperbolic discount factor 
model, endogenized (so variable) discount factor 
model, or fertility endogenized model.  

This paper focused on self-consistency, 

differentiability, and fragility against recursive 
perturbation of policy/value functions, in a local area 

around any arbitrary fixed point k∗ . Investigation on 

global transition in BE1 or BE1’, characterized by 
dynamic fluctuation, will be left for future work.  
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Appendix 

Proof of Theorem 1 

From the assumption, ŷ  is an interior of ( )Y k . Differentiating BE2 with k , we have 

ˆ ˆ( ( ) ) ( ) 0Au f k y yWβ ′′− − + =  (♠ ). Then, since ˆ ( )y g k=  and ( )g k  is once continuously differentiable, 

ˆˆ ˆ ˆ( ) ( ( ) ) ( ) ( ( ) ) ( )

0
( ( ) ( )) ( )

dyW' k Au' f k y f' k Au' f k y W' y
dk

Au' f k g k f' k

β   = − + − − +    
=

= − .





  

Then, from ( ) ( ) ( ) ( ( ) ( ))W k W k B A u f k g k= + − −


 ,  

( ) { }
( )

( )

( ) ( ( ) ( )) ( ) ( ( ) ( )) ( ) ( )

( ( ) ( ))[ ( ) ( )]

( ( ) ( ))[ ( ) 1 ( )]

W' k Au' f k g k f' k B A u' f k g k f' k g' k

u' f k g k Bf' k B A g' k

Au' f k g k f' k g' kµ µ

= − + − − −

= − − −

= − − − .



 

Plugging this into (♠ ),  

[ ]( ( ) ) ( ( ) ( )) ( ) ( 1) ( ) 0Au' f k y Au' f y g y f' y g' yβ µ µ− − + − − − = . Divide this by A , finally we get EE1. 

 
Proof of Theorem 2  

At a fixed point ( )g k k∗ ∗= , [ ( ) ( 1) ( )] 1f' k g' kβ µ µ∗ ∗− − =  holds. In case of 1µ ≠ ,  there exist an infinite number 

of combination of ( )g k∗  and ( )g' k∗ . Take any arbitrary point such that k k∗ ≠ . Then ( ) 0g' k∗ ≠ , and since ( )g k  is 

1C , there exists an open neighborhood around k∗ , ( )B k ε∗, , such that ε  is enough small, and ( ) 0g' k >  or ( ) 0g' k <  

for all ( )k B k ε∗∈ , . ( )u ⋅  and ( )f ⋅  are C∞ , then applying the implicit function theorem to EE2, ( )g' k  is 1C  on 

( )B k ε∗,  (that is, ( )g k  is 2C  (twice continuously differentiable)). Differentiating EE2 with k , we get 

[ ]
[ ]

( ( ) ( )){ ( ) ( )}

( ( ) ( )) ( ) ( 1) ( ) { ( ) ( )}
( )

+ ( ( ) ( )) ( ) ( 1) ( )

0

u'' f k g k f' k g' k

u'' f y g y f' y g' y f' y g' y
g' k

u' f y g y f'' y g'' y
µ µ

β
µ µ

− − −

 − − − − +  − − −  
= .

          (EE2-2) 

Here ( )y g k= . Then at a fixed point k∗  with ( )c f k k∗ ∗ ∗= − , 

( ){ ( ) ( )}

( ) ( ) ( 1) ( ) { ( ) ( )}
( )

+ ( ) ( ) ( 1) ( )

0

u'' c f' k g' k

u'' c f' k g' k f' k g' k
g' k

u' c f'' k g'' k

µ µ
β

µ µ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗

∗ ∗ ∗

− −

  − − −   +  
 − −   

= .

 

Arranging this with [ ( ) ( 1) ( )] 1f' k g' kβ µ µ∗ ∗− − =  (★), we have the following equality. 
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{ }1 ( ) ( ){ ( ) ( )} ( ) ( ) ( ) ( 1) ( )g' k u'' c f' k g' k g' k u' c f'' k g'' kβ µ µ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − − = − −   
(◆) 

Thus, considering 1µ ≠ , ( ) 0u' c∗ ≠  and ( ) 0g' k∗ ≠ , ( )g'' k∗  is uniquely determined.  

Again applying the implicit function theorem to EE2-2, ( )g'' k  is 1C  on ( )B k ε∗,  (that is, ( )g k  is 3C (three times 

continuously differentiable). Differentiating EE2-2 with k , and setting at a fixed point k∗ , 

2( ){ ( ) ( )} ( ){ ( ) ( )}u'' c f'' k g'' k u''' c f' k g' k∗ ∗ ∗ ∗ ∗ ∗− − − −
                          

(▼) 

2( ) ( ) ( 1) ( ) { ( ) ( )}

2 ( ) ( ) ( 1) ( ) { ( ) ( )}
{

( ) ( ) ( 1) ( ) { ( ) ( )}

( ) ( ) ( 1) ( )

u''' c f' k g' k f' k g' k

u'' c f'' k g'' k f' k g' k
g'

u'' c f' k g' k f'' k g'' k

u' c f''' k g''' k

µ µ

µ µ
β

µ µ

µ µ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

  − − −  
  + − − −   
 

 + − − −  
 

 + − −   

2( )}

( ) ( ) ( 1) ( ) { ( ) ( )}
( )

( ) ( ) ( 1) ( )

0

k

u'' c f' k g' k f' k g' k
g'' k

u' c f'' k g'' k

µ µ
β

µ µ

∗

∗ ∗ ∗ ∗ ∗

∗
∗ ∗ ∗

  − − −  +  
 + − −   

= .

 

Similarly, ( )g''' k∗  is uniquely determined. Thus, by induction, ( )g k  is nC  for any positive integer n , and the n ’th 

order coefficient of derivative at k∗ , ( ) ( )ng k∗ , say, is uniquely determined at any positive integer n . 

 

Proof of Theorem 3 

(i) It is easy to verify that k k∗ ≠  and k S∗ ∈  imply ( ) 0g' k∗ ≠  and ( ) 1g' k∗| |< . Then there exists an open 

neighborhood around k∗ , ( )B k 'ε∗, , such that 'ε  is enough small, and 1 ( ) 0g' k> >  or 1 ( ) 0g' k− < <  for all 

( )k B k 'ε∗∈ , . Then obviously, 

( ) ( 1)( ( )) ( ( )) ( ( )) ( )s sg B k ' g B k ' g B k ' B k 'ε ε ε ε∗ ∗ ∗ ∗
−, ⊂ , ⊂ ⋅⋅⋅ ⊂ , ⊂ , .               (♣) 

Since (( )( ))u f g k−  is positive and upper bounded on ( )B k 'ε∗, , it holds that ( ) 0( )
(( ) ( ))s B k '

u f g g k M
ε∗ ,

− ≤  

for all 0s ≥ , where sup ( )
K

k K
f f k

∈
≡ | | . In addition, 00

s
s

Mβ∞

=∑  converges, therefore, from Weierstrass’s M test, an 

infinite functional series ( )0
(( ) ( ))s

ss
B u f g g kβ∞

=
−∑   uniformly converges to ( )Z k  on ( )B k 'ε∗, . Each term 

( )(( ) ( ))s
su f g g kβ −   is continuous on ( )B k 'ε∗, , so is ( )Z k  on ( )B k 'ε∗, .  

Next, differentiating ( )(( ) ( ))su f g g k−   with k , 

( ) ( ) ( ) ( 1)( (( ) ( ))) (( ) ( ))[( ) ( ( ))][ ( ( ))] [ ( ( ))][ ( )]s s s su f g g k ' u' f g g k f' g' g k g' g k g' g k g' k−− = − − ⋅⋅ .  

( )(( ) ( ))su f g g k−   is 1C , so ( )( (( ) ( )))su f g g k '−   is continuous on ( )B k 'ε∗, . Considering ( ♣ ), 

( ) 1( )
(( ) ( ))s B k '

u' f g g k M
ε∗ ,

− ≤ , ( ) 2( )
( ) ( ( ))s B k '

f' g' g k M
ε∗ ,

− ≤  and ( 1) ( )
( ( )) 1u B k '

g' g k
ε∗− ,

≤  
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(0 )u s≤ ≤ . Therefore, ( ) 1 2( )
( (( ) ( )))s B k '
u f g g k ' M M

ε∗ ,
− ≤ . Furthermore 1 20

s
s

M Mβ∞

=∑  converges, so 

( )0
( (( ) ( )))s

ss
B u f g g k 'β∞

=
−∑   uniformly converges and is continuous on ( )B k 'ε∗, .  

Summarizing the above, (1) ( )0
(( ) ( ))s

ss
B u f g g kβ∞

=
−∑   converges to ( )Z k , (2) ( )(( ) ( ))su f g g k−   is 1C , 

(3) ( )0
( (( ) ( )))s

ss
B u f g g k 'β∞

=
−∑   uniformly converges. From (1), (2) and (3), the conditions for the term-by-term 

differentiability, ( )Z k  is 1C , and ( )0
( ) ( (( ) ( )))s

ss
Z' k B u f g g k 'β∞

=
= −∑

 . The proof of the uniform convergence 

and 1C  (once differentiability) of ( )Z k


 is now straightforward.  

(ii) By the proof of (i), ( )0
( ) ( (( ) ( )))s

ss
Z' k B u f g g k 'β∞

=
= −∑

 . Then at a fixed point k k∗= ,  

0

0

( ) [ ( ) ( ) ( ) { ( )} ]

( ) ( ) ( ) { ( )}

1( ) ( ) ( )
1 ( )

s s
s

s
s

Z' k B u' c f g ' k g' k

Bu' c f g ' k g' k

Bu' c f g ' k
g' k

β∞∗ ∗ ∗ ∗
=

∞∗ ∗ ∗
=

∗ ∗
∗

= ⋅ − ⋅

= ⋅ − ⋅

= ⋅ − ⋅ ,
−

∑
∑



 

where ( )c f k k∗ ∗ ∗= − . ( )g k  is, by definition, a solution of EE2 with a fixed point ( )g k k∗ ∗=  and (★). Then  

1[ ( ) ( 1) ( )] 1 ( ) ( ) ( ) ( ) 0
1 ( )

f' k g' k Au' c Bu' c f g ' k
g' k

β µ µ β∗ ∗ ∗ ∗ ∗− − = ⇐⇒ − + ⋅ − ⋅ =
∗−

 

( ) ( ) 0Au' c Z' kβ∗ ∗⇐⇒ − + =                                 (▲). 

Now define ( )( ) argmax ( ( ( ) ) ( ))y Y kg k Au f k y Z yβ∈≡ − +  . Then ( )g k  is the only candidate solution of BE3. 

Since 
( )

( ) argmax ( ( ( ) ) ( ))
y Y k

g k Au f k y Z yβ∗
∗ ∗

∈
≡ − +  , and by (▲), we have ( )g k k∗ ∗= . If ( )g k  is a solution 

of BE3, then by similar calculation as in Theorem 1, ( )g k  proves to be a solution of EE2. Since ( )g k  has a fixed point at k∗ , 

by Theorem 2, ( )g k  is uniquely determined at the neighborhood around k∗ , therefore it must be that ( ) ( )g k g k=  on 

( )B k ε∗, . It is obvious that if ( ) ( )g k g k= , then ( )Z k


, generated as ( ) ( ) ( ) ( ( ) ( ))Z k Z k B A u f k g k= + − −


  in 

BE3, coincides with ( )Z k


, as defined in SV1. Now we have proved that ( )Z k  and ( )Z k


 satisfy BE3 with a unique 

self-consistent policy function ( )g k .  

(iii) Next we prove a strict concavity of ( )Z k  at k k∗= . From the proof of Theorem 1, 

( )( ) ( ) ( ( ) ( ))[ ( ) 1 ( )]Z' k W' k Au' f k g k f' k g' kµ µ= = − − −  . (It is easy to verify that 

( ) ( ) ( ) 0Z' k A u' cβ∗ ∗= / > , where ( )c f k k∗ ∗ ∗= − .) As ( )g k  is nC  on ( )B k 'ε∗, , so ( )Z k  and ( )Z k


 are 

also nC  on it. Again differentiating ( )Z' k  with k , 

( )
( )

( ( ) ( )){ ( ) ( )}{ ( ) 1 ( )}
( )

( ( ) ( )){ ( ) 1 ( )}
u'' f k g k f' k g' k f' k g' k

Z'' k A
u' f k g k f'' k g'' k

µ µ
µ µ

− − − − 
= . + − − − 
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At k k∗= , using (★), 

( )
( )

( )

( ){ ( ) ( )}{ ( ) 1 ( )}
( )

( ){ ( ) 1 ( )}

( ){ ( ) ( )} ( ){ ( ) 1 ( )}

(1 ( ))( ){ ( ) ( )} ( ){ ( )
( )

u'' c f' k g' k f' k g' k
Z'' k A

u' c f'' k g'' k

A u'' c f' k g' k u' c f'' k g'' k

A g' ku'' c f' k g' k u'' c f' k
g' k

µ µ
µ µ

β µ µ
β

β

∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗
∗ ∗ ∗ ∗ ∗

∗

 − − −
=  + − − 

 = − + − − 

−
= − + −



( )}

( ){ ( ) ( )}
( )

g' k

A u'' c f' k g' k
g' kβ

∗

∗ ∗ ∗
∗

 
 
 

= − .

 

Here we used the equality ( ◆ ). From conditions U0 and U2, ( ) 0u'' c∗ < . The assumption k S'∗ ∈  assures 

0 ( ) 1g' k β∗< < / , which implies ( ) ( ) 0f' k g' k∗ ∗− > . Therefore now we have ( ) 0Z'' k∗ < , a desired result. 

 

Proof of Theorem 4  

(i) In EE1 replace ( )g y  with ( )g y η, , and ˆ ( )g k  with ˆ ( )g k η, , respectively, then we have:  

[ ]1( ( ) ) ( ( ) ( )) ( ) ( 1) ( ) 0u' f k y u' f y g y f' y ygβ η µ µ η− − + − , − − , =               (EE3) 

where ˆ ( )y g k η= ,  and ˆ ( 0) ( 0) ( )g k g k g k, = , = . 

Differentiating with η , 

[ ]
[ ]

[ ]{ }
[ ]

2

1 2

12

1 1
2

11

ˆ( ( ) ) ( )

( ( ) ( )) ( ) ( 1) ( ) ( )

( ( ) ( )) ( 1) ( )

( ( ) ( )) ( ) ( 1) ( ) ( ) ( )
+ ( ( ) ( )) ( ) ( 1) ( )

u'' f k y kg

u'' f y g y f' y y yg g

u' f y g y yg

u'' f y g y f' y y f' y yg g
u' f y g y f'' y yg

η

η µ µ η η

η µ η
β

η µ µ η η
η µ µ η

− ,

− − , − − , ,

− − , − ,
+

 − , − − , − , +  − , − − ,  

  

 

  

 

ˆ ( )

0

kg η

 
 
 
 
 , 
 

= .

          (◎) 

Arranging this equation: 

[ ]{ }
[ ]

[ ]

2 1 1

11

1 2

( ( ) )

ˆ ( ) ( ( ) ( )) ( ) ( 1) ( ) ( ) ( )
+ ( ( ) ( )) ( ) ( 1) ( )

( ( ) ( )) ( ) ( 1) ( ) ( )
( ( ) ( )) ( 1)

u'' f k y

k u'' f y g y f' y y f' y yg g g
u' f y g y f'' y yg

u'' f y g y f' y y yg g
u' f y g y

η η µ µ η η
β

η µ µ η

η µ µ η η
β

η µ

− 
 

 , − , − − , − ,  +   − , − − ,   
− , − − , ,

=
+ − , −

  

 

  

 [ ]12( )yg η
 
 , 

 

Evaluating 0η =  and k k∗=  ( ( )f k k c∗ ∗ ∗− = , ( ))k g k∗ ∗= , with (★): 
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{ }
2

2 12

( ) ( ) ( ) ( )
ˆ ( 0)

( ) ( ) ( 1) ( )

( ) ( 0) ( 1) ( ) ( 0)

u'' c u'' c f' k g' k
kg

u' c f'' k g'' k

u'' c k u' c kg g

β µ µ

β µ

∗ ∗ ∗ ∗

∗

∗ ∗ ∗

∗ ∗ ∗ ∗

 + −
 ,
  + − −  

= , + − , 

 

From equality (◆), 

{ } ( )( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )
( )

f' ku'' c u'' c f' k g' k u' c f'' k g'' k u'' c
g' k

β µ µ
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

 + − + − − = .   

So we obtain 

2 2 12
( ) ( )ˆ ( 0) ( 0) ( 1) ( 0)
( ) ( )

g' k u' ck k kg g g
f' k u'' c

β µ
∗ ∗

∗ ∗ ∗
∗ ∗

 
, = , + − , . 

 
   

Evaluating at k k∗=  and 0η = , with ( ) ( ) ( )g k g k h kη η, = + , 2( 0) ( )k h kg ∗ ∗, =  and 12( 0) ( )k h kg ∗ ′ ∗, = , 

2

2

ˆ ( 0) ( ) ( ) ( )1 ( 1)
( 0) ( ) ( ) ( )
kg g' k u' c h' k
k f' k u'' c h kg

β µ
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 ,
= + − . ,  

 

2ˆ ( 0)kg ∗,  and 2( 0)kg ∗,  are the slopes of changes of the current and next generation’s policy functions in a small change of 

η , evaluated at k k∗=  and 0η = , respectively. So this is a desired result.  

(ii) The F.O.C. (Euler eq.) of BE3 is ( ( ) ) ( ) 0Au' f k y Z' yβ− − + = . Replacing y  with ˆ ( )g k η, , and ( )Z y  with 

( )Z y η, , then 1ˆ ˆ( ( ) ( )) ( ( ) ) 0Au' f k g k g kZη β η η− − , + , , =  (  ). Differentiating with η , 

( )11 122 2ˆ ˆ ˆˆ ˆ( ( ) ( )) ( ) ( ( ) ) ( ) ( ( ) ) 0Au'' f k g k k g k k g kg gZ Zη η β η η η η η− , , + , , , + , , = .   

Then we have 

12
2

11

ˆ( ( ) )ˆ ( )
ˆ ˆ( ( ) ( )) ( ( ) )

g kZkg
Au'' f k g k g kZ

β η ηη
η β η η

− , ,
, = .

− , + , ,




                        (†) 

The current generation’s value function ˆ ( )Z k η,  is calculated as ˆ ˆ ˆ( ) ( ( ) ( )) ( ( ) )Z k Bu f k g k Z g kη η β η η, = − , + , , . 

Then 

( )1 22 2 2

22

ˆ ˆ ˆˆ ˆ ˆ( ) ( ( ) ( )) ( ) ( ( ) ) ( ) ( ( ) )
ˆ ˆˆ( ) ( ( ) ( )) ( ) ( ( ) )

k Bu' f k g k k g k k g kg gZ ZZ
A B u' f k g k k g kg Z

η η η β η η η η η

η η β η η

, = − − , , + , , , + , ,

= − − , , + , , .

 



       
(‡) 

Here we used the equality ( ) . Also 2 ˆ ˆ( ( ) ) ( ( ))g k h g kZ η η η, , = ,  and 12 ˆ ˆ( ( ) ) ( ( ))g k h' g kZ η η η, , = , . Then 

plugging (†) into (‡ ),  

2
11

ˆ ˆ( ( )) ( ) ( ( ) ( ))ˆˆ ( ) ( ( )) 1
ˆ ˆ ˆ( ( )) ( ( ) ( )) ( ( ) )

h' g k A B u' f k g kk h g kZ h g k Au'' f k g k g kZ
η ηη β η
η η β η η

 , − − ,
, = , − ⋅ . , − , + , , 

 

Evaluating at k k∗=  and 0η = , with ˆ ( 0) ( )g k g k k∗ ∗ ∗, = = , ( )c f k k∗ ∗ ∗≡ −  and 
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11 ˆ( ( 0) 0) ( ) ( ){ ( ) ( )}
( )
AZ g k Z'' k u'' c f k g' k

g' kβ
∗ ∗ ∗ ′ ∗ ∗, , = = −

∗
  , 

2

2 ( )

1
( )

ˆ ( 0) ( ) ( ) ( )1
( 0) ( ) ( ) ( ){ ( ) ( )}

( ) (1 ) ( )1
( ) ( ) ( ){ ( ) ( )}

( ) ( )1 ( 1)
( ) ( )

A
g' k

g' k

k h' k A B u' cZ
k h k Au'' c u'' c f' k g' kZ

h' k u' c
h k u'' c u'' c f' k g' k

h' k g' k u
h k f' k

β

µβ

β µ

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗

∗ ∗ ∗ ∗ ∗
∗

∗ ∗

∗ ∗

 , − = − ⋅ , + −  
 − = − ⋅ + −  

= + −



( )
( )

' c
u'' c

∗

∗

 
. 

 

 

2ˆ ( 0)kZ
∗,  and 2( 0)( ( ))k h kZ ∗ ∗, =  are the slopes of changes of the current and next generation’s value functions in a 

small change of η , evaluated at k k∗=  and 0η = , respectively. This is also a desired result.  

 

Proof of Theorem 5  

Differentiating (◎) with k , 

[ ]
[ ]

12 1 2

1 1
2

11

ˆ ˆ ˆ( ( ) ) ( ) ( ( ) ){ ( ) ( )} ( )

ˆ( ( ) ( )){ ( ) ( )} ( ) ( 1) ( )
( )

( ( ) ( )) ( ) ( 1) ( )

( ( ) ( )) ( ) ( 1

u'' f k y k u''' f k y f' k k kg g g

u''' f y g y f' k k f' y yg g
yg

u'' f y g y f'' y yg

u'' f y g y f' y

η η η

η η µ µ η
η

η µ µ η

η µ µ

β

− , + − − , ,

 − − , − , − − ,
,  − − , − − , 

− − , − −
+

+

 



 

 [ ]

[ ]
[ ]{ }

11
12

1

112

2
1 1

ˆ ( )) ( )
( )

ˆ( 1) ( ( ) ( )){ ( ) ( )}

( ( ) ( )) ( 1) ( )

( ( ) ( )) ( ) ( 1) ( ) ( ) ( )
+2 ( ( ) ( )) (

kgyg
yg

u'' f y g y f' k kg

u' f y g y yg

u''' f y g y f' y y f' y yg g
u'' f y g y f'' y

ηη
η

µ η η

η µ η

η µ µ η η
η µ

 
 
 
  , , 

,  − − − , − ,  
 − − , − , 

− , − − , − ,
− ,

+







 

  

 [ ]{ }
[ ]{ }

[ ]
[ ]

11 1
1 2

1 11

111

1 1

) ( 1) ( ) ( ) ( ) ˆ ˆ( ) ( )
+ ( ( ) ( )) ( ) ( 1) ( ) ( ) ( )

+ ( ( ) ( )) ( ) ( 1) ( )

( ( ) ( )) ( ) ( 1) ( ) ( )

y f' y yg g k kg g
u'' f y g y f' y y f'' y yg g

u' f y g y f''' y yg

u'' f y g y f' y y f' yg

µ η η
η η

η µ µ η η
η µ µ η

η µ µ η

 
 

− − , − ,  , , 
− , − − , − , 

 − , − − , 
− , − − , −

+

 

  

 

  { }
[ ] 12

11

0

( )
ˆ ( )

+ ( ( ) ( )) ( ) ( 1) ( )
yg

kg
u' f y g y f'' y yg

η
η

η µ µ η

 
 
 
 
 
 
 
 
 

= . 
 
 
 
 
 
 

 ,   ,  − , − − ,    



 

 

Evaluating 0η =  and k k∗=  ( ( )f k k c∗ ∗ ∗− = , ( ))k g k∗ ∗= , 
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12 2

2

ˆ ˆ( ) ( 0) ( ){ ( ) ( )} ( 0)

( ){ ( ) ( )} ( ) ( 1) ( )
( 0)

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( 1) ( ){ (

u'' c k u''' c f' k g' k kg g

u''' c f' k g' k f' k g' k
kg

u'' c f'' k g'' k

u'' c f' k g' k

u'' c f' k

µ µ

µ µ

µ µ
β µ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

, + − ,

  − − − −   ,
  − − −  

 − − − ++ − −



12

112

2

12

( )
( 0) 0 ( )) ( )}

( ) ( 1) ( 0)

ˆ( ) ( 0)
ˆ ( 0)

g' k
kg

g' k

u' c kg

S g' k kg
T kg

µ

∗

∗

∗

∗ ∗

∗ ∗

∗

  
  
  
        ,   = ,  −      − − ,    
 + ⋅ ⋅ ,
 

+ ⋅ ,  





●
 

where 

{ }
{ }

{ }

2
( ) ( ) ( 1) ( ) ( ) ( )

2 ( ) ( ) ( 1) ( ) ( ) ( )

( ) ( ) ( 1) ( ) ( ) ( )

( ) ( ) ( 1) ( )

u''' c f' k g' k f' k g' k

u'' c f'' k g'' k f' k g' k
S

u'' c f' k g' k f'' k g'' k

u' c f''' k g''' k

µ µ

µ µ

µ µ

µ µ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

  − − −  
  + − − −  = , 

 + − − −  
 

 + − −   

 

and 

{ }( ) ( ) ( 1) ( )) ( ) ( )

+ ( ) ( ) ( 1) ( )

u'' c f' k g' k f' k g' k
T

u' c f'' k g'' k

µ µ

µ µ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

  − − −   = . 
 − −   

 

From (▼), (★) and (◆), S  and T  are respectively calculated as 

{ }2

2

1 ( )( ) ( ) ( ) ( ) ( ) ( )
{ ( )} ( )

g'' kS u'' c f'' k f' k u''' c f' k g' k
g' k g' kβ

∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

  
= − + − ,  

  
 

{ }1 ( ) ( ) ( )
( )

T u'' c f' k g' k
g' kβ

∗ ∗ ∗
∗= − .  

By Theorem 4, we already have 

2
( ) ( )ˆ ( 0) ( ) ( 1) ( )
( ) ( )

g' k u' ck h k h' kg
f' k u'' c

β µ
∗ ∗

∗ ∗ ∗
∗ ∗

 
, = + − . 

 
 

Obviously 2( 0) ( )k h kg ∗ ∗, = , 12( 0) ( )k h' kg ∗ ∗, = , 112( 0) ( )k h'' kg ∗ ∗, = . Then plugging all of these into (●), and 

arranging, again, with (★) and (◆), we derive desired results. 
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1. Introduction 

In 1930 Kantorovich operators 

   1 0 1 0 1nK L C     were introduced by the 

following operators:  

 

     
1

0

( )

1 1

k
n

k
n

n

n kk

k

K f x

n
n x x f s ds n N

k










 
    

 
 

 (1) 

(see [4]) where 1[0,1]f L  and [0,1]x . Clearly, 

Kantorovich operators are linear and positive. Note 

that Kantorovich operators are extension of classical 

Bernstein operators in order to study the 

approximation in the integrable function space 

1[0,1]L . Inspried by these operators many authors 

studied Kantorovich extensions of some linear 

positive operators, some are in [1,6,9,12] and 

references therein. In the last decade, these kinds of 

researches have been continuied. 

In 1978 Becker [2] studied some approximation 

problems of Szász-Mirakyan operators.  
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 0
0

( )
0

n

k
nx

k

S f x

nx k
e f x

k n








       
 R

 (2) 

for pf C   where pC  with fixed 

 0 0 1 2p N     denotes the polynomial 

weighted space generated by the weight function  

    1

0 1 1 1p
pw x w x x p

 
 
 

         (3) 

i.e. pC  is the set of all real-valued functions f  

continuous on 0R  and such that pw f  is uniformly 

continuos and bounded on 0R . The norm in pC  is 

defined by the formula  

     
0

sup pp p x R
f f w x f x


       (4) 

In [2,10], the degree of approximation of pf C  

by the operators (2) were proved. It was proved that  

    lim nn
S f x f x


         (5) 

for every 0pf C p N    and 0x R  Moreover, 

the convergence in 5 is uniform on every interval 

1 2 2 1 0x x x x 
        Then, Z.Walczak made some 

works. In [11] Walczak considered the space 

D 
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 1
p p pC x f C f' C 

 
 

     and defined the 

following modulus of continuity  1 pw f C t   for 

pf C  

   1 0
0
supp h ph t

w f C t f t
 

       R     (6) 

where      h f x f x h f x     for 0h x  R  

Therefore 

 1
0

lim 0p p
t

w f C t f C


       

Morever, if 1
pf C  then there exists a positive 

constant M  such that  1 1pw f C t M t    for 

0t R  He introduced the following operators: Let 

0p N r N    be fixed numbers. For pf C , 

 

     
2

2
0

1 ( 1)

1( 1)

n

k

k

A f r x

nx k r
f

k r n nxg nx r







  

  
       


 (7) 

where 

   0

k

k

t
g t r

k r





 
           (8) 

and  

   
1

0

1 1
0

jr
t

r
j

t
g r g t r e t

r t j





 
           

 R  (9) 

Szász-Mirakyan Kantorovich operators is defined 

as follow; 

   
1

0

( )
( )

k
n

k
n

k
nx k

n
k

n nx
T f x ne x f t dt

k k








 
    

   (10) 

for    0 0 11 2 3 0x p N f L          R
Some modification of the operators may be viewed in 

[3,4,5,8]. In this work, we consider a Kantorovich- 

type modification of the operators (7) and obtain the 

results of Walzack [11] for these operators. Also we 

study convergence properties of these operators for 

functions in pC  and 
1
pC  

2. Construction of the Operators 

Definition 1. Let 0p N  and r N  be fixed 

numbers and  na  be a positive sequence such that 

lim nn
a


 For functions pf C  we introduce the 

operators 

 

   

1
2

2
0

( 1)

1( 1)

k r
an

k r
an

n

k
n n

k nn

A f r x

a a x t
f dt

k r a xg a x r

 







  

 
      

 
 

(11) 

where (8)-(9) hold.  

Linearity and positivity of the operator nA  are 

clear. Also, we see easily that the following holds;  

 
1

r
g t r

 


            (12) 

We shall prove that nA  is an operator from pC  

into pC  for every fixed 0p R  In this paper, we 

use notation  n rg x  instead of  2( 1)ng a x r    
The moments are obtained as follow:  

 1 1nA r x                (13) 

 

   

2

2

1
1

2( 1)1
1

( 1) 1

n

n

n

n n r

A t r x

a x
x

a
a x r g x

  

             

    (14) 

 2

2

2 4

2 2
,

1 2 1
1

( 1) 3( 1)

1 1
1

( 1) ( 1)! ( ) ( 1)

n

n n n

n n r n

A t r x

x
a a x a x

r

a x r g x a x

  

  
        

 
       

(15) 
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3

3
2 4 6

2

2 2 4
,

1 3 5 1
1

( 1) 3( 1) 4( 1)

1 2 7 2 3 2
1

( 1) ( 1)! ( ) 2( 1) 2( 1)

n
n n n n

n n r n n

A t r x x
a a x a x a x

r r r

a x r g x a x a x

  
             

   
        

            (16) 

 

for every fixed numbers r n N   and 0x R   

3. Main Results 

We can prove following the Lemmas by using 

(11)-(16).  

Lemma 1. Let n N  be fixed. Then for all 

0xR , we have 

  

,

1 1 1

2 ( 1) ( 1)( 1)! ( )

n

n n n n n n r

A t x r x

a a a x a a x r g x

   

  
  

(17) 

  
2

2 ,

2 2 2
,

3 2 2 2 4

2 2 2 2 2

( 1)! ( ) 3( 1) 3( 1)2

6 ( 1) ( 1)! ( )

( 1) ( 1)! ( 1) ( 1) ( 1)!

2 ( 1) ( 1) ( 1)! ( 1)

n r n
n

n n n n r

n n n n

n n n n n n

r g x r a x
A t x r x

a a a x r g x

x a x r a x a x a x rx

a a x a a x r a a x

    
    

 

      
   

   

       (18) 
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2 1 ( 1) 1 2 3 22
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n n n n n n
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a a a x r g x

a x r a x a x a a x x a x

a a x a a x a a x

x x r
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3
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3 2 3 2

12 1 3
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3 ( 1) 3 3 ( 1) 3
.

( 1) 1 ( 1) 1 ( 1) ( 1)
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n n n n r n n n n

a r g x xa

g x n r g x

x a x x a x a x x x

a a x r a x r g x a a x a a x



 



   


 

   
   

       

 (19) 

Lemma 2. Let r s N   be fixed Then there exist positive numbers s j   depending only jj s    and 

 s j r   1jr    depending only on j  and s  1 j s   such that 

   
 

   

1
1

1
2 22 1

1

1 1

( 1) ( 1) 1( 1)

s
s

j s js
n s jj

jn n n n rn

r
A t r x x

a a x a x r g xa x

 








 

                       
  (20) 

for all n N  and 0xR  where  1 1 11s s s s r          and s j j    are constants.  

Proof. We prove this lemma by using the methods and results of Lemma 2 in [11]   From (13) and (16) we see 

that (20) is obtained for 0 1 2s    . Let (20) holds for   1j
jf x x j s     with fixed s N   We shall 
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prove (20) for   1s
jf x x    From (7), (11) and (12) it follows that 
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Using results of Lemma 2 in [11] and taking the assumption into account, we get that  
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Hence we have the desired result of (20). 

Lemma 3. Let 0p N  and r N  be fixed. Then there exists positive constants  2 2M M p r   and 

 3 3M M p r   depending only on the parameters p  and r  such that 
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and for all pf C we have 

  3n pp
A f r M f n N                                (22) 

Proof. For 0p    we get 0( ) 1nA f x y   . Let p N  be fixed   From (11)-(16) we have 
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Thefore, we obtain 
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which gives the desired result. For (22) we have the following inequalities; 
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Therefore, using (21), we get (22). 
 

Lemma 4. Let 0p N  and r N  be fixed. 

Then there exists a positive constant 

 4 4M M p r   depending only on the parameters 
p  and r  such that  
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Proof. For 0p   the formulas given in Lemmas 

1-3 and (11) imply (23). By (3) and (13)-(16) we have 
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which by (4) and (12) yield (23) for p n N    

Let 2p    Applying Lemma 2, we get 
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which by (11) and (4) imply 
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for 0xR  and n r N    
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4. Approximation Behaviour of An 

In this section, we will investigate the 

approximation behaviour of An. 
Theorem 1. Let 0p N  and r N  be fixed 

numbers. Then there exists a positive constant 

 5 5M M p r   depending only on the parameters 

p  and r such that for every 
1
pf C  and 0rR  

we have 

    5
n pp

n

M
A f r f f' n N

a
          (24) 

Proof. Let 0xR  be a fixed point. Then for 
1
pf C  and 0t t x  R  we have 

     
t

x

f t f x f' u du         (25) 

By linearity of An, (24) and (5) we have 
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From (3) and (4) we obtain that 
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for n N   By the Hölders inequality and by 

Lemmas 1-4 and by (12) it follows that 
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Hence and by (28) and (29) we obtain (24). 

5. Rates of Convergence 

In this section, we compute the rate of convergence 

of  nA f r   to ( )f   by means of the weighted 

modulus of continuity given by (6). 
Theorem 2. Let 0p N  and r N  be fixed 

numbers. Then there exists a positive constant 

 8 8M M p r   depending only on the parameters 

p  and r  such that for every 
1
pf C  and n N  

we have 

   
18

1
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A f r f w f C n NM
a

 
          

 
 

(30) 

Proof. Let pf C   We use the Steklov function 
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1
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h

x

f x f x u du x h
h

       R  (31) 

From (31) we can write 

    0

1
0h tf ' x f x x h

h
     R  (32) 

which imply 
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for 0h    From this we deduce that 
1

h pf C  if 

pf C  and 0h    Hence for (32) we can write 
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for 0n N h    and 0xR . For  1L x   by 

using Lemma 3 and (33), we get 
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Similarly, by using Theorem 1 and (34) it follows 
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Now, for fixed n N   setting 
1
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a

  in the 

last equation we obtain 
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From Theorems 1 and 2 we will give the followings 

corollaries:  

Corollary 1. For every fixed r N  and 

0pf C p N    we have 

   lim 0n pn
A f r f


           (35) 

Corollary 2. For every fixed r N  and 
1

0pf C p N    then 

    1
n p

n

A f r f o
a

 
      

 
     (36) 

as n     
Theorem 1 and Corollaries in our paper show that 

the operator nA , n N  give better degree of 

approximation of functions 
1

p pf C f C    than 

classical Szász-Kantorovich operators. Because 

degree of our operators convergence is 
1

na
 but 

classical Szász- Kantorovich operators’s degree of 

convergence is 
1

n
  

Theorem 3. Let r N  be fixed number. Then for 

all 1
pf C  and r N  we have 

      lim n n
n

a A f r x f x f' x


      (37) 

for every 0x     

Proof. Let 0x   be a fixed point. Then by Taylor 

Formula we get 

         f t f x f' x t x t x t x       

for 0t R  where    t t x    is a function 

belonging to pC  and   0x    Hence by (11) and 

(13)-(16) we have 
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A f r x f x

f' x A t x r x t t x r xA 

   

     
 

(38) 

By the Hölders inequality and (38) we have 

   

       
11
22 22

n

n n

A t x t x r x

A t x r x A t x r x





    

      
 

By Corollary 1 we deduce that 

    2 2lim 0nn
A t r x x 


      

From above equation and Lemma 1 we get 
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   lim 0n n
n

a A t t x r x


      

Theorem 2 show that rate of our operators for 

pointwise convergence is more fast than classical 

Szász-Kantorovich operators. Because our operators 

rate of convergence is 
1

na
 but classical 

Szász-Kantorovich operators rate of convergence is 

1

n
 pointwisely. 
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1. Introduction 

Let { 1}z z    denote the unit disk in the 

complex plane and { 1}z z       its 

boundary, the unit circle. Littlewood-Paley operators 

have been well known, studied by a lot of people, and 

used to characterize function spaces, such as Hardy 

spaces, etc. In this paper, we mainly consider the 

characterizations of classical Bergman spaces by these 

operators. Here are two Littlewood-Paley operators 

we have studied:  

1 2
1 2

0
( )( ) (1 )sup ( )

r

g f z r f z dr








     
   

1 2

2 2

0

( )( ) 2 ( )n
d n

n

g f z f r z dr






    
 
  

where 1 2 n
nr

   and z   .  

A Luzin area function is defined to be  

2( )( ) ( ) ( )
zD

A f z f w dm w    

where 

1
2the convex hull of{ } { }zD w z z      .  

For 0 p   , ( )pH   is the usual Hardy 
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space of functions analytic on the unit disk and the 

norm of f  in pH  is as follows  

1
2

00 1

sup (
2

p

p
i p

H
r

d
f f re

  




 

      
   

It is standard that for pf H , its nontangential 

limit exists almost everywhere on  ,  

1
lim ( ) ( )i i

r
f re f e 


  

and  

( )
( )p P

i

H L
f f e  


 

we refer readers to [11] for Hardy space theory.  

For 0 p   , the Bergman space ( )p A  is 

defined as the set of all functions f  analytic in   

with the following norm  

 1( )
( ) ( )p

p
p

D
f f z dm z


    A

 

where z x iy   and ( ) dxdydm z   in  , the 

normalized area measure on  . It is well known that 

( )p A  is a Bnach space when 1 p    and 

when 0 1p  , the space ( )p A  is a 

quasi-Banach space with p -norm 
( )p

p
f A

.  

The main results of this note are to prove that for 

f  is analytic, f  in the Bergman space ( )pf A
 

if and only if ( )g f  or ( )dg f  is in ( )pL   and 

the similar results also obtained for the area operator 

A .  
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Throughout this paper, for two nonnegative 
expressions P  and Q , P Q  means that there 

exists a positive constant C , not depending on the 

main factors, such that P CQ , and P Q  means 

that P Q  and Q P .  

2. Main Results and Their Proofs 

For our convenience and reference, all main results 

and useful results are stated in this section and proofs 

are also given with some remarks.  

When we prove Theorem 4 and 5 we need the 

following results on Hardy spaces due to Miroslav 

Pavlović , see Theorem 1 in [10].  

Lemma 1. Let 0 p   . For an analytic 

function, the following conditions are mutually 

equivalent:  

(a) pf H ;  

(b) ( ) ( )pg f L   ;  

(c) ( ) ( )p
dg f L  .  

Furthermore, there are constants 1 2 3C C C   

independent of f  such that  

1 ( )

2 3( )

( )

( )

p p

p p

H L

d L H

f C g f

C g f C f

 

 





 

In order to prove the second inequality of Theorem 

4, we need a Theorem in [11] with 0   (Theorem 

2.30 on page 69). We state it as a lemma here. 

Lemma 2. Suppose 0 1p  . Then there exists a 

sequence { }ka  in   such that ( )p A  consists 

of functions of the form  

2

2

1
1

1
( )

(1 ) p

k
k

k k

a
f z c z

za






  
  


   

where { }kc  belongs to the sequence space pl  and 
the series converges in the norm topology of 

( )p A .  

Moreover,  

( ) ( )
1

p p

p pp
k kA D

k

f c f




    A   

where 

2

2

1

1
( )

(1 ) p

k
k

k

a
f z

za


  



 

and there is a constant C  such that  

1 1

1

( )
1 1

p

p p

k k
k k

C c f C c
     

   
   
   

    

   A
 

A relationship between Littlewood-Paley operators 

is listed here and we will need it in the proof of 

Theorem 5.  

Lemma 3. For any ( )pf  A , 

( ) ( )dg f g f .  

1

1

12 2
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Theorem 4.  For 0 p    and ( )pf  A  

with (0) 0f  , the following are true  

  

( ) ( ) ( )
( )p p pp pL

C f g f C f 
   A A

 

where pC 
 and pC 

 are constants depending only on 

p .  

Moreover  

( ) ( )
(0) ( ) 1p pL

f f g f p       A  

and  

( ) ( )
(0) ( ) 0 1p p

p pp

L
f f g f p      A  

The basic idea of the proof of this theorem is due to 

Chen and Ouyang in [5] and based on some original 

results by Littlewood-Paley, Zygmund, and Lemma 1. 

Proof of Theorem 4 For 0 p   , let 

( ) ( )rf z f rz  for 0 1r   and z , 

iz re  , 0 2   , we have 
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By (1), it follows that  
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The first inequality of Theorem 4 is proved.  

For 0 1p  , by Lemma 2, we get  

1

( ) ( )k k
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f z c f z




 
 

Standard calculations give us  
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At this point we are in need of a very useful fact 

which is easy to check. For 0 1t  , z , we 

have  

1 (1 ) 1 3 1tz t z tz                (1) 

Now we have  
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Therefore, for k kk
f c f  with 

p
kk

c    , we have  
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Note that  

2 2

1 1
( )

1 (1 )p pD
k k

dm z
z aa

  
       

Next for the case of 1 p   , if ( )pf  A , 

then f  has the integral representation [11] 

(Theorem 2.2 on page 40), 
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By (1), we have the following estimate  

3 1 1 1wz rwz
r

           
 

 

Therefore, we obtain  

2
12

5 20

( )
( ) ( ) ( )

1D

f w
g f z dm w dr

rwz 

  
    

   

By Minkowski’s integral inequality, we have  
2

21 2
1

50

21 2
1

50

2

2

( ) ( )

1
( ) ( )

1

1
( ) ( )

[(1 ) 1 ]

( )
( )

1

D

D

D

g f z

f w dm w
rwz

f w dm w
r wz

f w
dm w

wz







  
        

  
          

  
    

 

 









 

But,  

2

( )
( )

1D

f w
f dm w

wz

 
  

 

is bounded on ( )pL   for 1 p   . The proof of 

Theorem 4 is completed.  

The next theorem is regarding the characterization 

of analytic function f  in Bergman space   

( )p A  by the discrete Littlewood-Paley operator 

( )dg f .  

Theorem 5.  For 0 p    and ( )pf  A  

with (0) 0f  , there exist constants 
 
pC 

 and pC 
 

depending only on p  such that  

  

( ) ( ) ( )
( )p p pp d pL

C f g f C f     A A
 

Moreover  

( ) ( )
(0) ( ) 1p pd L

f f g f p       A
 

and 
 

( ) ( )
(0) ( ) 0 1p p

p pp
d L

f f g f p      A
 

The proof of the first half of the inequality of 

Theorem 5 is similar to that of Theorem 4 but we have 

to be careful with the change from continuous case to 

discrete case.  
Proof of Theorem 5 For 0 p    and 

( ) ( )rf z f rz  0 1r   and z , iz re  , 
by (1) and standard calculations, we have  

2 1

0 0

1 2

0 0

1

0

( )

( ) ( ) ( )

2 ( )
2

( )

( ) p

p i p

D

i p
r

p

d r

p

d L

drd
f z dm z r f re

drd
r f e

g f rdr

g f

 

 







    

  





  

 





 

The last inequality holds because  

1 2
22

0

( )( ) 2 ( ( )( )i n i
d r n d

n

g f e f rr e g f z 
 

 
 
 

 

    

The second half of Theorem 5 follows immediately 

from Theorem 4 and Lemma 3. This completes the 

proof of Theorem 5.  

In the next part, we are going to consider the 

classical area integral operator, also called the Luzin 

area operator on Bergman space. To state our results 

we need the following due to Calder ó n. In fact it is a 

special case of Calder ó n’s theorem. See Theorem 1.3 

in [10].  

Lemma 6. Let 0 p   . Then ( )pf H   if 

and only if ( ) ( )pA f L  .  

Theorem 7. For 0 p   , ( )pf  A  with 

(0) 0f  , there exists a constant C  such that  

( ) ( )
( )p pL

f C A f  A
 

Proof For 0 p   , let ( ) ( )rf z f rz , 

0 1r  . By Lemma 6, we have 



On maximal, Discrete, and Area Operators 

 

30

1 2

0 0

1 2

0 0

( )

( ) ( )

2 ( )
2

2 ( )( )
2

( ) p

p

D

i p

i p
r

L

f z dm z

d
f re rdr

d
A f e rdr

C A f

 

 







 
  

 
  

 

  

  

 



 

 



 

Here in the last step we used the fact that  

( )( ) ( )( )rA f z A f z   

The converse of Theorem 7 is not as good as those 

of Theorem 4 and 5 when 1 p   .  

Theorem 8. For 0 1p  , ( )pf  A  with 

(0) 0f  , there exists a constant C  such that 

( ) ( )
( ) p pL

A f C f  A
 

By Lemma 2, for 0 1p  ,  

1

( ) ( )k k
k

f z c f z




   

where 

2

2

1

1
( )

(1 ) p

k
k

k

a
f z

za


  
 


 

So we have  

2

1 2

2

2( 2)

( )( )

1
(1 ) ( )

1 pz

k

k D
k

A f z

a dm w
wa





 
    

    


 

and  

2

2

2

2( 2)
1

( )( ) ( )

1
(1 ) ( )

1 pz

p

D

p

p p
k k D

k k

A f z dm z

c a dm w
wa







  

 
      

    



 
 

To get through our proof, we need to estimate the 

inner integral in the last line by variable changes.  

2

2

2

2

2( 2)

2( 2)

22( 2)

2 2( 1)2

1
( )

1

1
( )

1

1 1
( )

1

1 1

(1 )

pz

p

p

p

D
k

w z
k

D
k

k

dm w
wa

dm w
wa

dm w
zz wa

z a z



  





  


  


     

 
    






 

Therefore we have  

2 2

2 2 2

2 2 2

2 1 1
2 2 0 0

2 2

( )( ) ( )

1 1
( )

(1 )

1 1 1
( )

(1 ) (1 )

1 1 1
( )

(1 ) (1 )

1
(1 )

(1 )

1
(2 1 )

(1 )

p

D

p pD
k

p pD
k k

p pD
k

p p

k

k

A f z dm z

dm z
z a z

dm z
a z a z

dm z
a z z

r r drd
a

B p p
a






 

 


    


       


       


  

   
  









 



 

where 
1 1 1

0
( ) (1 )a bB a b t t dt     is the Beta 

function. Hence  

( )( ) ( )p p
kD

k

A f z dm z c       

We are done with the proof of Theorem 8. 
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Abstract: In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to 
numerically solve an Volterra integral equation of first kind or second kind. Volterra integral equation is transformed into a 
one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of 

the solution. Specifically you will see that solving the Volterra integral equation of first kind ݂ሺݐሻ ൌ  ,ݐሺܭ ݏሻ݀ݏሺݔሻݏ
௧

  ܽ  ݐ  ܾ or 

solve the Volterra integral equation of the second kind  ݔሺݐሻ ൌ ݂ሺݐሻ   ,ݐሺܭ ݏሻ݀ݏሺݔሻݏ
௧

  ܽ  ݐ  ܾ is equivalent to solving a 

generalized moment problem of the form  ߤ ൌ  ݃ሺݏሻݔሺݏሻ݀ݏ


  ݊ ൌ 0,1,2, …. This shall apply for to find the solution of an 

integrodifferential equation of the form  ݔ ′ሺݐሻ ൌ ݂ሺݐሻ   ,ݐሺܭ ݏሻ݀ݏሺݔሻݏ
௧

  for ܽ  ݐ  ܾ  and ݔሺܽሻ ൌ ܽ  Also considering the 

nonlinear integral equation: ݂ሺݔሻ ൌ  ݔሺݕ െ ݐሻ݀ݐሺݕሻݐ
௫

  This integral equation is transformed a two-dimensional generalized 

moment problem. In all cases, we will find an approximated solution and bounds for the error of the estimated solution using the 
techniques ofgeneralized moment problem.  

 
Key words: Generalized moment problems, solution stability, Volterra integral equations, nonlinear integral equations. 
 

1. Introduction 

An equation of the form 

ሻ࢚ሺ࢞ ൌ ሻ࢚ሺࢌ  ࣅ න ,࢚ሺࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙

࢚

ࢇ

ࢇ   ࢚   ࢈

where ࢌሺ࢚ሻ y ࡷሺ࢚,  ሻ are known functions, ૃ is a࢙

numerical parameter and ࢞ሺ࢚ሻ is a unknown function, 

is a Volterra integral equation of second kind. The 

function ࡷሺ࢚,  ሻ is the kernel of the Volterra integral࢙

equation. If ࢌሺ࢚ሻ ൌ  then the integral equation is 

said homogeneous.  

                                                           
Corresponding author: Maria Beatriz Pintarelli, Grupo de 

Aplicaciones Matematicas y Estadisticas de la Facultad de 
Ingenieria (GAMEFI), UNLP, and Departamento de 
Matematica, Facultad de Ciencias Exactas, Universidad 
Nacional de La Plata, Argentina. E-mail: 
mariabeatriz.pintarelli@ing.unlp.edu.ar. 

The equation  

ሻ࢚ሺࢌ ൌ න ,࢚ሺࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙

࢚

ࢇ

ࢇ   ࢚   ࢈

where ࢞ሺ࢚ሻ is the unknown function, is a Volterra 

integral equation of first kind. In many scientific and 

engineering problems of Volterra integral equations 

are present and have attracted much attention to find 

analytical and numerical methods for their solution. 

Some applications of Volterra integral equations are: 

population dynamics, spread of epidemics, 

semiconductor devices, inverse problems, etc. 

One of the fundamental methods of solving Volterra 

integral equations of second kind is the method of 

resolvents [1], [9] where the solution is given by 

D 
DAVID PUBLISHING 
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ሻݐሺݔ ൌ ݂ሺݐሻ  ߣ න ܴሺݐ, ,ݏ ݏሻ݀ݏሻ݂ሺߣ

௧



 

The ܴሺݐ, ,ݏ ሻߣ  is the resolvent function of the 

integral equation and is defined as the sum of the series 

ܴሺݐ, ,ݏ ሻߣ ൌ  ߣ

ஶ

ୀ

,ݐାଵሺܭ  ሻݏ

wherein the cores iterated ܭାଵሺݐ, ሻݏ  satisfy a 

recurrence relation. 

Another fundamental method it is the method of 

successive approximations [1], where the solution is 

determined as the limit of the sequence ሼݔሺݐሻሽ ݊ ൌ

0,1,2, … whose general term is found by the recurrence 

formula  

ሻݐሺݔ ൌ ݂ሺݐሻ  ߣ න ,ݐሺܭ ݏሻ݀ݏିଵሺݔሻݏ

௧



 

Other methods of resolution [10], [11], [12], 

involving the Laplace transform, are used to solve 

Volterra integral equations of convolution 

ሻݐሺݔ ൌ ݂ሺݐሻ  ߣ න ݐሺܭ െ ݏሻ݀ݏሺݔሻݏ

௧



 

Volterra integral equations of first kind, under 

certain conditions, can be reduced to a Volterra integral 

equation of second kind. 

2. The Generalized Moment Problem 

The generalized moment problem [2], [6], [7], [8] is 

defined as finding the function ࢌሺ࢞ሻ on a domain 

ષ ؿ  satisfying the equations ࢊࡾ

 

ࣆ ൌ  ષࢍ
ሺ࢞ሻࢌሺ࢞ሻ(1)       ࡺ ࣕ  ࢞ࢊ 

where ሺࢍሻ  is a given sequence of functions in 

 ሺષሻ linearly independent. The moment problem isࡸ

an ill-conditioned problem. There are several methods 

for constructing regularized solutions. One is the 

method of truncated expansion. 

The truncated expansion method consists in 

approximating (1) by finite moment problem  

ߤ ൌ  ݃Ω ሺݔሻ݂ሺݔሻ݀ݔ ݅ ൌ 1,2, … , ݊      (2) 

 

In the subspace generated by  ݃ଵ,݃ଶ, … . , ݃ the 

solution is stable. In the case where the data 

μଵ, μଶ, … , μ୬  are inexact convergence theorems and 

error estimates for the regularized solutions must be 

applied. 

It can be proved that [8] a necessary and   

sufficient condition for the existence of a solution of (1) 

is that 

 ቌ ܥ



ୀଵ

ቍߤ

ଶ
ஶ

ୀଵ

൏ ∞ 

where ܥ are given by (13). 

3. Volterra Linear Integral Equation of 
Second Kind 

We want to find a function ࢞ሺ࢚ሻ א  ,ࢇሺࡸ   ሻ such࢈

that 

ሻ࢚ሺ࢞ ൌ ሻ࢚ሺࢌ   ,࢚ሺࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙
࢚

ࢇ ࢇ   ࢚   (3)  ࢈

where 

ሻ࢚ሺࢌ א ,ࢇሺࡸ ,࢚ሺࡷ ሻ and࢈ ሻ࢙ א  ሻࡾሺࡸ

ࡾ  ൌ ሺࢇ, ሻ࢈ ൈ ሺࢇ,  .ሻ are known functions࢈

Theorem 1: If ࢌሺ࢚ሻ א  ,ࢇሺࡸ  ሻ࢈  and ࡷሺ࢚, ሻ࢙ א 

ࡾ ሻࡾሺࡸ  ൌ ሺࢇ, ሻ࢈ ൈ ሺࢇ,  ሻ then (3) has a unique࢈

solution in ࡸሺࢇ,  .ሻ [1]࢈

To write (3) as a moment problems: 

െࢌሺ࢚ሻ ൌ െ࢞ሺ࢚ሻ   ,࢚ሺࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙
࢚

ࢇ      (4) 

We take a basis ሼ࣒ሺ࢚ሻሽ in ࡸሺࢇ,  ሻ and both࢈

sides of (4) are multiplied by ࣒ሺ࢚ሻ and integrated 

between a and b 

න െࢌሺ࢚ሻ࣒ሺ࢚ሻ

࢈

ࢇ

࢚ࢊ

ൌ න െ࢞ሺ࢚ሻ࣒ሺ࢚ሻ࢚ࢊ

࢈

ࢇ

 න න ,࢚ሺࡷ ሻ࢚ሺ࣒ሻ࢙ሺ࢞ሻ࢙

࢚

ࢇ

࢙ࢊ

࢈

ࢇ

 ࢚ࢊ

We call  െࢌሺ࢚ሻ࣒ሺ࢚ሻ
࢈

ࢇ ࢚ࢊ ൌ  ࣆ
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In addition 

න න ,࢚ሺࡷ ሻ࢚ሺ࣒ሻ࢙ሺ࢞ሻ࢙

࢚

ࢇ

࢙ࢊ

࢈

ࢇ

࢚ࢊ

ൌ න ሻ࢙ሺ࢞ න ,࢚ሺࡷ ሻ࢚ሺ࣒ሻ࢙

࢈

࢙

࢚ࢊ

࢈

ࢇ

࢙ࢊ

ൌ න ࢍሻ࢙ሺ࢞
כ

࢈

ࢇ

ሺ࢙ሻ࢙ࢊ 

Hence 

ߤ ൌ න െݔሺݐሻ߰





ሺݐሻ݀ݐ  න ሻ݃ݏሺݔ
כ





ሺݏሻ݀ݏ

ൌ න െݔሺݐሻ߰ሺݐሻ





ݐ݀

 න ሻ݃ݐሺݔ
כ





ሺݐሻ݀ݐ

ൌ න ሻݐሻሾെ߰ሺݐሺݔ  ݃
כ ሺݐሻሿ





ݐ݀

ൌ න ܩሻݐሺݔ
כ





ሺݐሻ݀ݐ 

 ܡܔܜܖ܍ܝܙ܍ܛܖܗ۱

ࣆ  ൌ  ࡳሻ࢚ሺ࢞
࢈כ

ࢇ
ሺ࢚ሻ(5)      ࡺ ࣕ  ࢚ࢊ 

If ሼࡳ
כ ሺ࢚ሻሽ are linearly independent is solved (5) 

as a generalized moment problem. 

Let us see under what conditions ሼܩ
ሻሽݐሺכ  are 

linearly independent. 

We have ݃
כ ሺݏሻ ൌ  ,ݐሺܭ ሻݐሻ߰ሺݏ


௦   . ݐ݀

Further  െ߰ሺݏሻ  ݃
כ ሺݏሻ ൌ ܩ 

 ሻݏሺכ

We consider the operator  

ሺ߮ሻܮ ൌ െ߮  න ,ݐሺܭ ሻݐሻ߮ሺݏ



௦

 ݐ݀

Then ܮሺ߮ሻ  is linear. If L is nonsingular, that is 

ሺ߮ሻܮ ൌ 0 ฺ  ߮ ൌ 0  , then L preserves the linear 

independence.  

In this case ሼܮሺ߰ሻሽ ൌ ሼܩ
ሽכ  would be linearly 

independent. 

But ܮሺ߮ሻ ൌ 0 can be viewed as a Volterra integral 

equation of second kind with ݂ሺݏሻ ൌ 0 

  ൌ  െ࣐ሺ࢙ሻ  න ,࢚ሺࡷ ሻ࢚ሺ࣐ሻ࢙

࢈

࢙

 ฺ ࢚ࢊ

ሻ࢙ሺ࣐  ൌ න ,࢚ሺࡷ ሻ࢚ሺ࣐ሻ࢙

࢈

࢙

 ࢚ࢊ

ሻ࢙ሺ࣐  ൌ  ሺെࡷሺ࢚, ࢙ሻ࢚ሺ࣐ሻሻ࢙
࢈  (6)      ࢚ࢊ

If we assume that 

,࢚ሺࡷ ሻ࢙ א  ࡾ ሻࡾሺࡸ  ൌ ሺࢇ, ሻ࢈ ൈ ሺࢇ,   ሻ࢈
then as ࣐ሺ࢙ሻ ൌ  is solution of (6) by the previous 

theorem is the only solution of (6) in ࡸሺࢇ,  .ሻ࢈

Consequently L is nonsingular. 

4. Volterra Linear Integral Equation of First 
Kind. 

We want to find a function ࢞ሺ࢚ሻ א  ,ࢇሺࡸ   ሻ such࢈

that 

ሻ࢚ሺࢌ ൌ  ,࢚ሺࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙
࢚

ࢇ ࢇ   ࢚   (7)    ࢈

with ࢌሺ࢚ሻ א  ,ࢇሺࡸ  ሻ and࢈ ,࢚ሺࡷ  ሻ࢙ א  ࡾ ሻࡾሺࡸ  ൌ
ሺࢇ, ሻ࢈ ൈ ሺࢇ,  .ሻ known functions࢈

The following result can be seen in [1]: 

Given a Volterra integral equation of first kind, it 

can be written as a Volterra integral equation of 

second kind by applying derivation in (7) with respect 

to t 

ሻ࢚ሺ′ࢌ  ൌ  ,࢚ሺ࢚ࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙
࢚

ࢇ  ,࢚ሺࡷ  (8)   (࢚ሺ࢞ሻ࢚

we write כࡷሺ࢚, ሻ࢙ ൌ
ሻ࢙,࢚ሺ࢚ࡷ

ሻ࢚,࢚ሺࡷ
 and כࢌሺ࢚ሻ ൌ

ሻ࢚ሺ′ࢌ

ሻ࢚,࢚ሺࡷ
 then 

ሻݐሺכ݂  ൌ  ,ݐሺכܭ ݏሻ݀ݏሺݔሻݏ
௧

   ሻ     (9)ݐሺݔ

from here (9) is a Volterra integral equation of second 

kind. 
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In the case of ܭሺݐ, ሻݐ ൌ 0  then remains (8) an 

equation of first kind. It derives again until that 

௧ܭ
ሺሻሺݐ, ሻݐ ് 0.  

We must have ܭሺݐ, ሻݏ  and ݔሺݐሻ  continuous 

functions in their respective domains, ܭሺݐ, ሻݏ  and 

݂ሺݐሻ differentiables functions with respect to t, and it 

must also be continuous ܭ௧ሺݐ,  .ሻݏ

Thus if ܭሺݐ, ሻݐ ് 0 on (a,b) and taking into account 

that it must be ݂ሺܽሻ ൌ 0 , (7) is equivalent to (9). 

If כܭሺݐ, ሻݏ א ሻݐሺכ݂  ଶሺܴሻ andܮ  א ,ଶሺܽܮ  ܾሻ then (9) 

(and (7)) has a unique solution in ܮଶሺܽ, ܾሻ. 

If we have  

݂ሺݐሻ ൌ  ,ݐሺܭ ݏሻሻ݀ݏሺݔሻ݃ሺݏ
௧

  ܽ  ݐ  ܾ   (10) 

so with the above arguments we arrive at  

ሻݐሺכ݂  ൌ  ,ݐሺכܭ ݏሻሻ݀ݏሺݔሻ݃ሺݏ
௧

  ݃ሺݔሺݐሻሻ  (11)  

In this case (11) is analogous to the generalized 

moment problem 

ߤ ൌ  ݃ሺݔሺݐሻሻܩ
כ


ሺݐሻ݀(12)     ܰ ߳ ݊ ݐ 

To solve numerically (5) as a generalized moments 

problem, truncated expansion method detailed in [3] 

and generalized in [5] is applied for the corresponding 
finite problem with Ni ,...,2,1,0 . We write ேሺݐሻ 
to approximate ݔሺݐሻ . 

Is taken a base ߮ሺݐሻ ݅ ൌ 0,1,2, . ..  of ܮଶሺܽ, ܾሻ 

obtained from the sequence ܩ
݅ ሻݐሺכ ൌ 0,1,2, … , ܰ by 

Gram-Schmidt method and necessary functions are 

added in order to have an orthonormal basis.. 

We then approximate the solution x(t) with [5]: 

ሻݐேሺ ൌ  ߣ

ே

ୀ

߮ሺݐሻ  

where ߣ ൌ  ܥ



ୀ

݅  ߤ  ൌ 0,1, … , ܰ 

And the coefficients Cij  verifies  

*1 1

2

( ) | ( )
( 1) .       1    ;     1( )

( )

i
i k

ij kj
k j

k

G t t
i N j iC C ti

t






 



 
        
 


 

NitiCii ,...,1,0          )(
1




        (13) 

It can be seen in [5] the following theorem 

Theorem 2: Let  k
N

k 0
 be a set of real numbers 

and suppose that x(t) א ,ଶሺܽܮ ܾሻ verifies for some N 

E  and       (two positive numbers) 

∑ ቚ ܩ
כ


ሺݐሻݔሺݐሻ݀ݐ െ ቚߤ

ଶ
 ଶ ேߝ

ୀ  and  

  หݔ ′ሺݐሻห
ଶ

 ݐ݀   ଶ thenܧ

න|ேሺݐሻ െ ሻ|ଶݐሺݔ





ݐ݀  ԡܥ்ܥԡߝଶ 
ሺܾ െ ܽሻଶ

4ሺܰ  1ሻଶ  ଶܧ

where C is the matrix with coefficients given       

by (13) 

If we apply the truncated expansion method to solve 

the equation (11) would obtain an approximation 

 .ሻሻݐሺݔሻ for ݃ሺݐேሺ

Thus if ݃ିଵ is continuous, then ݃ିଵሺேሺݐሻሻ is an 

estimate of ݔሺݐሻ 

And if ݃ିଵ is Lipschitz in a domain D that includes 

the image of ݔሺݐሻ , ie if  

ԡ݃ିଵሺݔሻ െ ݃ିଵሺݕሻԡ  ݔԡߣ െ  ԡݕ

for some   and Dyx  ,  then 

නห݃ିଵ൫ேሺݐሻ൯ െ ሻหݐሺݔ
ଶ





ݔ݀

 ߣ ቆԡܥ்ܥԡߝଶ 
ሺܾ െ ܽሻଶ

4ሺܰ  1ሻଶ  ଶቇܧ

5. Application 

Suppose the integrodifferential equation 

ݔ ′ሺݐሻ ൌ ݂ሺݐሻ   ,ݐሺܭ ݏሻ݀ݏሺݔሻݏ
௧

  ܽ  ݐ  ܾ (14) 

with initial condition ݔሺܽሻ ൌ ܽ. 

We integrate from a to t 

න ݔ ′
௧



ሺݐሻ݀ݐ ൌ න ݂ሺݐሻ݀ݐ

௧



  න න ,ݐሺܭ ݏሻ݀ݏሺݔሻݏ

௧



ݐ݀

௧
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Thus  

ሻݐሺݔ െ ሺܽሻݔ ൌ ሻݐሺܨ െ ሺܽሻܨ  න න ,ݐሺܭ ݏ݀ݐሻ݀ݏሺݔሻݏ

௧

௦

௧



 

where ܨሺݐሻ is the primitive of ݂ሺݐሻ. 

If we write ܭሺݐ, ,ݐሺܭ ሻ the primitive ofݏ   ሻݏ

with respect to t, then  

ሻݐሺݔ െ ሺܽሻݔ ൌ ሻݐሺܨ െ ሺܽሻܨ  නሾܭ

௧



ሺݐ, ሻݏ

െ ,ݏሺܭ  ݏሻ݀ݏሺݔሻሿݏ

If we replace ܨሺݐሻ െ ሺܽሻܨ  ሺܽሻݔ ൌ   ሻ andݐሺܩ

,ݐሺܭ ሻݏ െ ,ݏሺܭ ሻݏ ൌ ,ݐሺכܭ  ሻ thenݏ

ሻݐሺݔ  ൌ ሻݐሺܩ   ,ݐሺכܭ ݏሻ݀ݏሺݔሻݏ
௧

      (15) 

That is to say leads to a Volterra integral equation of 

second kind. Therefore resolver (14) is equivalent to 

solving (15). 

6. Nonlinear Integral Equation with 
Variable Limit of Integration 

Suppose we want to find ࢟ሺ࢚ሻ ࣕ ࡸሺࢇ,   ሻ such that࢈

 ࢞ሺ࢟ሻ࢚ሺ࢟ െ ࢚ࢊሻ࢚ ൌ ሻ࢞ሺࢌ
࢞

ࢇ ࢇ   ࢞   (16)  ࢈

with ࢌሺ࢞ሻ א ,ࢇሺࡸ    .ሻ known࢈

We take a basis of ࡸሺࢇ,  ሻ . We multiply both࢈

sides of (16) and integrate between a and b: 

ࣆ ൌ න ࣒ሻ࢞ሺࢌ

࢈

ࢇ

ሺ࢞ሻ࢞ࢊ

ൌ න න ࢞ሺ࢟ሻ࢚ሺ࢟ െ ࢞ࢊ࢚ࢊሻ࢞ሺ࣒ሻ࢚

࢞

ࢇ

࢈

ࢇ

 

Then  

න න ࢞ሺ࢟ሻ࢚ሺ࢟ െ ࢞ࢊ࢚ࢊሻ࢞ሺ࣒ሻ࢚

࢞

ࢇ

࢈

ࢇ

ൌ න න ሻ࢙ሺ࢟ሻ࢚ሺ࢟

࢚ି࢈

ࢇ

࢈

ࢇ

࢚ሺ࣒   ࢚ࢊ࢙ࢊሻ࢙

Consequently 

  ࢚ି࢈ሻ࢙ሺ࢟ሻ࢚ሺ࢟
ࢇ

࢈
ࢇ ࢚ሺ࣒  ࢚ࢊ࢙ࢊሻ࢙ ൌ  (17) ࡺࣕ ࣆ

It can be considered (17) as a two-dimensional 

generalized moments problem over a region 

ષ ൌ ሼሺ࢚, ;ሻ࢙ ࢇ   ࢙  ࢈ െ ; ࢚ ࢇ   ࢚   ሽ࢈

with  ݃ሺݐ, ሻݏ ൌ ߰ሺݐ   ሻ and the unknown functionݏ

is ݔሺݐ, ሻݏ ൌ  ሻݏሺݕሻݐሺݕ

It is chosen ሼ߰ሺݐሻሽ such that ሼ߰ሺݐ   ሻሽ areݏ

linearly independent. 

By solving the corresponding finite problem 

න න ሻ࢙ሺ࢟ሻ࢚ሺ࢟

࢚ି࢈

ࢇ

࢈

ࢇ

࢚ሺ࣒  ࢚ࢊ࢙ࢊሻ࢙ ൌ  ࣆ ൌ , , … ,  ࡺ

applying the truncated expansion method we find the 

approximation ேሺݐ,  .ሻݏሺݕሻݐሺݕ ሻ forݏ

Thus ேሺݐ,  .ሻݐଶሺݕ ሻ will be an approximation ofݐ

Consequently ඥேሺݐ,  ሻݐሺݕ ሻ will be an estimate ofݐ

Theorem 2 can be adapted to the case of a 

two-dimensional moments problem [4] considering a 

rectangular region R such that Ω ؿ ܴ . 

Note that if ݂ሺݔሻ א ,ଶሺܽܮ  ܾሻ  then (17) , and 

therefore (16), has a solution in ܮଶሺܽ, ܾሻ because 

 ቌ ܥ



ୀଵ

ቍߤ

ଶ
∞

ୀଵ

ൌ  ቌ ܥ



ୀଵ

න ݂ሺݔሻ߰





ሺݔሻቍ

ଶ
∞

ୀଵ

ൌ 

 ቌන ݂ሺݔሻ





 ܥ



ୀଵ

߰ሺݔሻቍ

ଶ
∞

ୀଵ

ൌ ԡ݂ሺݔሻԡଶ ൏ ∞ 

7. Numerical Examples 

7.1 We Consider the Volterra Integral Equation of 

Second Kind 

ሻ࢚ሺ࢞ ൌ  െ ࢚ െ



࢚ 
࢚


 න ൬

  ࢚
  ࢙

൰ ࢙ࢊሻ࢙ሺ࢞

࢚



  ൏ ݐ

൏ 1 

The solution is ݔሺݐሻ ൌ 1 െ ଶݐ . Was taken ܰ ൌ 6 

and 

߰ሺݐሻ ൌ ݊ ݐ ൌ 0,1,2, … , ܰ 

The approximate solution is 
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ሻݐሺ ൌ
1

1  ݐ
ሺ0.9999147621585023ԝ

 ݐ1.0049081485367966

െ ଶݐ1.0672475817558449

െ ଷݐ0.6253280251875469

െ ସݐ1.0184797250168018

 ହݐ1.4149009386296558

െ ݐ0.9279894745774144

 ݐ0.17611185238095847

  ሻ଼ݐ0.04332685368242366

Theorem 2 provides an estimate of the "accuracy" of 

the approximate solution. Is calculated for the example 

given 

 ԡሺݐሻ െ ሻԡݐሺݔ ൌ 0.0000182523 

7.2 We Consider the Volterra Integral Equation of 

First Kind 

࢚ ൌ න ࢙ା࢚ࢋ

࢚



 ࢙ࢊሻ࢙ሺ࢞ ൏ ݐ ൏ 1 

The solution is ݔሺݐሻ ൌ ݁ିଶ௧ሺ2ݐ െ   .ଶሻݐ

Was taken ܰ ൌ 6 and  

߰ሺݐሻ ൌ ݊ ݐ ൌ 0,1,2, … , ܰ 

The approximate solution is 

ሻݐሺ  ൌ െ83.95739831942318

 83.95743097212348݁௧

െ ݐ81.95933679986479

െ ଶݐ46.95163623263498

െ ଷݐ8.153902721602144

െ ସݐ7.676928797912827

 ହݐ1.1473834615675322

െ  ݐ0.5328318171899457

and ԡሺݐሻ െ ሻԡݐሺݔ ൌ 7.74288 ൈ 10ି 

7.3 We Consider the Integrodifferential Equation 

ሻ࢚ሺ′࢞ ൌ ࢚ െ
࢚


െ ࢚  න  ࢙ࢊሻ࢙ሺ࢞ ࢚࢙ ൏ ݐ ൏ 1

࢚



 

The solution is ሺ࢚ሻ ൌ ࢚   .  

Was taken ܰ ൌ 6  and ࣒ሺ࢚ሻ ൌ ݊ ࢚ ൌ

0,1,2, … , ܰ 

The approximate solution is 

ሻݐሺ ൌ 2.000011350675333ԝ

െ ݐ0.0006000805526966135

 ଶݐ1.0074722441931296

െ ଷݐ0.036727180247674074 

 ସݐ0.08179727671799264

െ ହݐ0.07332085167364494

െ ݐ0.008280528273741879 

 ݐ0.05157218926604704

െ ଼ݐ0.02138479219837439

 ଽݐ0.0003789028271436808 

െ  ଵݐ0.000934671238187303

and ԡሺݐሻ െ ሻԡݐሺݔ ൌ 3.57206 ൈ 10ି 

7.4 We Consider the Integral Equation 

1
2

ሻݔሺ݊݁ݏ ൌ න ݔሺݕሻݐሺݕ െ 0 ݐሻ݀ݐ ൏ ݔ ൏ 1

௫



 

The solution is ࢟ሺ࢞ሻ ൌ ට


  ሻ where࢞ሺࡶ 

ሻݔሺܬ ൌ ,ሺ0ܬ݈݁ݏݏ݁ܤ  ሻݔ

Was taken ࡺ ൌ  and  

߰ሺݐሻ ൌ ݊ ݐ ൌ 0,1,2, … , ܰ 

The approximate solution is 

ሻݔସሺ ൌ 0.4596976941318603ԝ െ 0.09533610866670236 ൬െ
2
3

 ൰ݔ2

െ 0.07464930125266528 ቆെ
1
2

 ଶݔ4 െ
6
5

൬െ
2
3

 ൰ቇݔ2 

 0.008845907552301498 ൭െ
2
5

 ଷݔ8 െ
6
5

൬െ
2
3

 ൰ݔ2 െ
12
7

ቆെ
1
2

 ଶݔ4 െ
6
5

൬െ
2
3

 ൰ቇ൱൩ݔ2

భ
మ

 

and ԡሺ࢞ሻ െ ሻԡ࢞ሺ࢟ ൌ . ૢૢૡ 
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8. Conclusions 

Given a Volterra integral equation of second kind of 

the form 

ሻ࢚ሺ࢞ ൌ ሻ࢚ሺࢌ  න ,࢚ሺࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙

࢚

ࢇ

ࢇ   ࢚   ࢈

withࢌሺ࢚ሻ א  ,ࢇሺࡸ  ሻ࢈ ,࢚ሺࡷ, ሻ࢙ א  ࡾ ሻࡾሺࡸ  ൌ ሺࢇ, ሻ࢈ ൈ
ሺࢇ,  ሻ known functions, it can be written as a࢈

one-dimensional generalized moments problem, and 

can apply the techniques of moments problem to find 

a numerical approximation of the solution. 

The Volterra integral equation of first kind 

ሻ࢚ሺࢌ ൌ න ,࢚ሺࡷ ࢙ࢊሻ࢙ሺ࢞ሻ࢙

࢚

ࢇ

ࢇ   ࢚   ࢈

where ݂ሺݐሻ א  ,ଶሺܽܮ  ܾሻ , ܭሺݐ, ሻݏ א  ܴ ଶሺܴሻܮ  ൌ

ሺܽ, ܾሻ ൈ ሺܽ, ܾሻ known functions, can be written as a 

Volterra integral equation of second kind if ܭሺݐ, ሻݐ ്

0  on ሺܽ, ܾሻ  , ݂ሺܽሻ ൌ 0 ,ݐ௧ሺܭ , ሻݏ  and ݂ ′ሺݐሻ 

continuous functions in their respective domains. 

The nonlinear integral equation  

න ݔሺݕሻݐሺݕ െ ݐሻ݀ݐ ൌ ݂ሺݔሻ

௫



 ܽ  ݔ  ܾ 

with ݂ሺݔሻ א ,ଶሺܽܮ  ܾሻ  known function, can be  

written as a two-dimensional generalized moments 

problem. 

In all cases the moments problem techniques can be 

applied to find a numerical approximation of the solution.  
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Abstract: The basic properties and some examples of the differential groupoids are studied. 
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1. Introduction 

In 1981 the notion of differential group and the 

notion of group differential structure (based on the 

notion of Sikorski's differential space – see [9]) was 

introduced and investigated by the second author in 

his PhD thesis [4]. Independently, in the same time, an 

analogous notions was investigated by P. 

Multarzyński in his PhD thesis (prepared in the 

Jagiellonian University in Krakov). Some results of 

this works have been published in [5], [6], [7], and [3] 

however most of them have never been presented in in 

the form of an article. Meanwhile, during last ten 

years, an interest in the theory of differential groups 

and groupoids appeared, concerned in applications of 

them in general relativity and cosmology (see 

references in [8]). This article is the first of the series 

of papers concerning differential groupoids and 

describing main results and many details of the theory 

of differential groups. 

Section 2 of the paper contains basic definitions 

concerning theory of groupoids and theory of 

differential spaces. Basic definition and facts 

concerning groupoids can be find in [10] and [11] 

whereas foundations of theory of differential spaces 

                                                           
Corresponding author: Zbigniew Pasternak-Winiarski, 

Ph.D., Research field: differential geometry, Faculty of 
Mathematics and Information Science, Warsaw University of 
Technology. E-mail: Z.Pasternak-Winiarski@mini.pw.edu.pl. 

can be find in [9]. In Section 3 we give the definition 

of a differential groupoid which is illustrated by an 

elementary example. Section 4 contains two another 

examples of topological and differential groupoids. 

Without any other explanation we use the following 

symbols: Գ-the set of natural numbers; Ժ-the set of 

integers; Թ-the set of reals. 

2. Preliminaries 

Definition 1. The sequence ሺܩ, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬ሻ  is 

called a groupoid ܩ over the base ܺ if ܩ and ܺ are 

arbitrary nonempty sets and: (i) the map ߙ: ܩ ՜ ܺ 

called a target and the map  ߚ: ܩ ՜ ܺ called a source 

are surjections; (ii) the map ݉: ሺଶሻܩ ՜   where ,ܩ

ሺଶሻܩ ؔ ሼሺ݃, ݄ሻ א ܩ ൈ :ܩ ሺ݃ሻߚ ൌ  ,ሺ݄ሻሽߙ

called a multiplication satisfies the following 

conditions: 

• ሺ݄݃ሻ݇ ൌ ݃ሺ݄݇ሻ - associativity, 

ሺ݄݃ሻߙ • ൌ ሺ݄݃ሻߚ ሺ݃ሻ andߙ ൌ  ሺ݄ሻߚ

for each ݃, ݄, ݇ א ,instead of ݉ሺ݃) ܩ ݄ሻ we write ݄݃); 

(iii) the embedding ߝ: ܺ ՜ ܩ  called the identity 

section is such that: 

ሺ݃ሻ൯݃ߙ൫ߝ ൌ ݃ ൌ  ,ሺ݃ሻ൯ߚ൫ߝ݃

ሻ൯ݔሺߝ൫ߙ ൌ ݔ ൌ  ሻ൯ݔሺߝ൫ߚ

for each ݃ א ݔ and ܩ א ܺ; 

(iv) the map ߬: ܩ ՜ ܩ  (denote by  ݃ିଵ ൌ ߬ሺ݃ሻ ) 

called the inverce map is such that 

D 
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݃߬ሺ݃ሻ ൌ ሺ݃ሻ൯ and ߬ሺ݃ሻ݃ߙ൫ߝ ൌ  ሺ݃ሻ൯ߚ൫ߝ

for each ݃ א  .ܩ

For the definition, basic properties and applications 

of groupoids see [10] or [11].  

Definition 2. A subgroupoid of the groupoid 

ሺܩ, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬ሻ is a sequence 

൫ܪ, ,ሻܪሺߙ ,ு|ߙ ,ு|ߚ ݉|ுሺమሻ, ,ఈሺுሻߝ ߬|ு൯ , where ܪ is 

nonempty subset of ܩ which is closed under the 

multiplication and the inverse i. e. (i) if ݃, ݄ א  and ܪ

ሺ݃, ݄ሻ א ሺଶሻܩ , then ݄݃ א ܪ ; (ii) if ݄ א ܪ , then 

݄ିଵ א  .ܪ

Definition 3. The groupoid ሺܩ, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬ሻ 

over the set ܺ is called a topological groupoid, if ܩ 

and ܺ  are topological spaces, ܺ  is a Hausdorff 

space and the mappings ߙ, ,ߚ ݉, ߝ  and ߬ are 

continuous. Then ߬ is a homeomorphism. 

We recall now the definition of a (Sikorski’s) 

differential space. Let  ܯ be a nonempty set and let ࣝ 

be a family of real valued functions on ܯ. Denote by 

߬ࣝ the weakest topology on ܯ with respect to which 

all functions of ࣝ are continuous. A subbase of the 

topology ߬ࣝ consists of sets of the form 

ሼ: ݂ሺሻ ൏ ܽሽ and ሼ: ݂ሺሻ  ܽሽ, 

where ܽ א Թ  and ݂ א ࣝ . A function ݂:ܯ ՜ Թ  is 

called a local ࣝ-function on ܯ if for every ݉ א  ܯ

there is a neighborhood ܸ  of ݉  and ߙ א ࣝ such 

that |݂ ൌ  ܯ . The set of all local ࣝ-functions on|ߙ

is denoted by ࣝெ. Note that any function ݂ א ࣝெ is 

continuous with respect to the topology  ߬ࣝ . Then 

߬ࣝಾ
ൌ ߬ࣝ (see [1], [2]). 

A function ݂:ܯ ՜ Թ is called ࣝ -smooth function 

on ܯ  if there exist ݊ א Գ, ߱ א ሺԹሻ∞ܥ  and 

ߙ,ڮ,ଵߙ א ࣝ such that  

݂ ൌ ߱ ל ൫ߙଵ,ߙ,ڮ൯. 

The set of all ࣝ - smooth functions on ܯ   is 

denoted by ࣝܿݏ . Since  ࣝ ؿ  and any  ࣝܿݏ

superposition ߱ ל ൫ߙଵ,ߙ,ڮ൯  is continuous with 

respect to ߬ࣝ we obtain ߬௦ࣝ ൌ ߬ࣝ  (see [1], [2]). 

Definition 4. A set ࣝ of real functions on ܯ is 

said to be a (Sikorski’s) differential structure if: (i) ࣝ 

is closed with respect to localization i.e. ࣝ=ࣝெ; (ii) ࣝ 

is closed with respect to superposition with smooth 

functions i.e. ࣝ ൌ   .ࣝܿݏ

In this case a pair ሺܯ, ࣝሻ is said to be a (Sikorski’s) 

differential space (see [9]). Any element of ࣝ  is 

called a smooth function on ܯ (with respect to ࣝ).  

It is easy to prove that the intersection of any family 

of differential structures defined on a set ܯ ്  is a 

differential structure on ܯ (see [1], [2], Proposition 

2.1). 

Let ࣠ be a set of real functions on ܯ. Then the 

intersection ࣝ  of all differential structures on ܯ 

containing ࣠ is a differential structure on ܯ. It is the 

smallest differential structure on ܯ containing ࣠. One 

can easy prove that ࣝ ൌ  ሺsc࣠ሻM. This structure is 

called the differential structure generated by ࣠ and is 

denoted by ݃݁݊ሺ࣠ሻ . Functions of ࣠ are called 

generators of the differential structure ࣝ. We have 

also ߬ሺ௦࣠ሻಾ
=߬௦࣠ ൌ ߬࣠. 

Let ሺܯ, ࣝሻ and ሺܰ, ࣞሻ be differential spaces. A 

map ܨ: ܯ ՜ ܰ is said to be smooth if for any ߚ א

ࣞ the superposition ߚ ל ܨ א ࣝ . We will denote the 

fact that ࣠ is smooth writing  

:ܨ ሺܯ, ࣝሻ ՜ ሺܰ, ࣞሻ. 

If ܨ: ሺܯ, ࣝሻ ՜ ሺܰ, ࣞሻ  is a bijection and 

:ଵିܨ ሺܰ, ࣞሻ ՜ ሺܯ, ࣝሻ then ܨ is called a 

diffeomorphism. 

If ܣ  is a nonempty subset of ܯ  and ࣝ is a 

differential structure on ܯ  then ࣝ  denotes the 

differential structure on ܣ generated by the family of 

restrictions ൛ߙ|: ߙ א ࣝൟ.  The differential space 

ሺܣ, ࣝሻ  is called a differential subspace of ሺܯ, ࣝሻ. 

One can easy prove that if ሺܯ, ࣝሻ and ሺܰ, ࣞሻ are 

differential spaces and ܨ: ܯ ՜ ܰ  then  

:ܨ ሺܯ, ࣝሻ ՜ ሺܰ, ࣞሻ iff ܨ: ሺܯ, ࣝሻ ՜ ሺܨሺܯሻ,  .ሻࣞሻܯሺܨ

If the map ܨ: ሺܯ, ࣝሻ ՜ ሺܨሺܯሻ, ሻࣞሻܯሺܨ  is a 

diffeomorphism then we say that ܨ: ܯ ՜ ܰ  is a 

diffeomorphism onto its range (in ሺܰ, ࣞሻ ). In 

particular the natural embedding  

ܣ ד ݉ հ ݅ሺ݉ሻ ؔ ݉ א   ܯ
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is a diffeomorphism of ሺܣ, ࣝሻ onto its range in 

ሺܯ, ࣝሻ. 

If ሼሺܯ, ࣝሻሽאூ  is an arbitrary family of 

differential spaces then we consider the Cartesian 

product  

ෑ ܯ

אூ

 

as a differential space with the differential structure 

۪
אூ

ࣝ 

generated by the family of functions 

࣠ ൌ ሼߙ ל :ݎ ݅ א ,ܫ ߙ א ࣝሽ, 

where  

ෑ ܯ ד ሺ݉ሻ հ ൫ሺ݉ሻ൯ݎ ؕ ݉ א ܯ

אூ

 

for any ݆ א  The topology .ܫ

߬ ۪
אூ

ࣝ 

coincides with the standard product topology on 

ෑ .ܯ
אூ

 

We will denote the differential structure 

۪
אூ

ࣝ∞ሺԹሻ 

on Թூ by ࣝ∞ሺԹூሻ . In the case when ܫ  is an 

݊-element finite set the differential structure ࣝ∞ሺԹூሻ  

coincides with the ordinary differential structure 

ࣝ∞ሺԹሻ of all real-valued functions on Թ which 

posses partial derivatives of any order (see [9]). In any 

case a function ߙ: Թூ ՜ Թ is an element of 

ࣝ∞ሺԹூሻ iff for any ܽ ൌ ሺܽሻ א Թூ  there are ݊ א Գ, 

elements ݅ଵ, ݅ଶ, ڮ , ݅ א  a set ܷ open in Թand a ,ܫ

function ߱ א ࣝ∞ሺԹሻ such that  

ܽ א ܷሾ݅ଵ, ݅ଶ, ڮ , ݅ሿ

ൌ ൛ሺݔሻ א Թூ: ൫ݔభ
, భݔ

, ڮ , ݔ
൯

א ܷൟ  

and for any ݔ ൌ ሺݔሻ א ܷሾ݅ଵ, ݅ଶ, ڮ , ݅ሿ  we have 

ሻݔሺߙ ൌ ߱൫ݔభ
, భݔ

, ڮ , ݔ
൯. 

Let ࣠ be a family of generators of a differential 

structure ࣝ on a set ܯ. The generator embedding of 

the differential space ሺܯ, ࣝሻ into the Cartesian space 

defined by ࣠ is a mapping  

߶࣠: ሺܯ, ࣝሻ ՜ ቀԹ࣠,  ሺԹ࣠ሻቁ∞ܥ

given by the formula 

߶࣠ሺ݉ሻ ൌ ൫ߙሺ݉ሻ൯
ఈ࣠א

 

(for example if ࣠ ൌ ሼߙଵ, ,ଶߙ ଷሽߙ  then ߶࣠ሺ݉ሻ ൌ

൫ߙଵሺ݉ሻ, ,ଶሺ݉ሻߙ ଷሺ݉ሻ൯ߙ א Թଷ ؆ Թ࣠). If ࣠ separates 

points of ܯ  the generator embedding is a 

diffeomorphism onto its image. On that image we 

consider a differential structure of a subspace of 

ቀԹ࣠,  .ሺԹ࣠ሻቁ (see [2], Proposition 2.3)∞ܥ

3. Basic Properties of Differential Groupoids 

Definition 5. Let ሺܩ, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬ሻ  be a groupoid. 

A differential structure ࣝ on ܩ is called a groupoid 

differential structure, if the following conditions are 

satisfied: (i) the multiplication map ݉: ሺଶሻܩ ՜ ܩ  is 

smooth with respect to the differential structure of the 

differential subspace on ܩሺଶሻ ؿ ܩ ൈ  the inverse (ii) ;ܩ

map ߬: ܩ ՜ ܩ  and the mappings ߝ ל :ߙ ܩ ՜ ܩ  and 

߳ ל :ߚ ܩ ՜   ..are smooth ܩ

A groupoid ܩ equipped with a groupoid differential 

structure ࣝ is called a differential groupoid. 
On ܩ ൈ ܩ  we consider natural differential 

structure of the Cartesian product which we denote by 

ࣝ ۪ ࣝ.  

Example 1. Let ሺܺ, ࣞሻ be a differential space. Then 

the groupoid of pairs (ܩ ൌ ܺ ൈ ܺ – see [11]) with the 

differential structure ࣝؔࣞ ۪ ࣞ is a differential 

groupoid. 

Let ࣝ be a groupoid differential structure on a 

groupoid ሺܩ, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬ሻ. We know that ߝሺܺሻ ؿ  .ܩ

On the set ߝሺܺሻ  there exists the structure of 

differential subspace of ܩ, i. e. ࣝఌሺሻ. Then we will 



Differential Groupoids 

 

42

consider ܺ  as a support of the differential space 

ሺܺ, ࣞሻ , where the differential structure ࣞ ൌ

൛݂ ל :ߝ ݂ א ࣝఌሺሻൟ  is said to be induced from the 

differential structure ࣝఌሺሻ (or ࣝ) by the map ߝ. One 

can easy show that the identity section  ߝ, the target 

map ߙ  and the source map ߚ are smooth with respect 

to ࣞ i. e. ߝ: ሺܺ, ࣞሻ ՜ ሺܩ, ࣝሻ  and ߙ, :ߚ ሺܩ, ࣝሻ ՜

ሺܺ, ࣞሻ. 

Let ܪ  be a subgroupoid of a groupoid ܩ   

endowed with a groupoid differential structure ࣝ.    

It is easy to show that the set ࣝு  is a groupoid 

differential structure on ܪ . Then the pair ሺܪ, ࣝுሻ    

is called a differential subgroupoid of the   

differential groupoid ሺܩ, ࣝሻ. We will write shortly then 

ܪ  is a differential subgroupoid of a differential 

groupoid ܩ. 

4. Examples of Topological and Differential 
Groupoids 

Example 2. Let ܩ be a set of all diffemorphisms 

between compact subsets of Թ . For arbitrary 

element ݃  of the set ܩ we have: 

݃: ൫ܭଵ, ࣝ∞ሺԹሻభ
൯ ՜ ൫ܭଶ, ࣝ∞ሺԹሻమ

൯ , where ܭଵ i 

:݃ ଶ are compact subsets in Թ or shortlyܭ ଵܭ ՜  .ଶܭ

We denote by ܺ  the family of all non-empty 

compact subsets in Թ . Let the value of the 

:ߙ ܩ ՜ ܺ at the element ݃ א ܩ  be the image of   

the map ݃: ଵܭ ՜ ሺ݃ሻߙ .ଶ, i. eܭ ൌ   ଶ, and the valueܭ

of the map :ߚ  ܩ ՜ ܺ at ݃ be the domain of the 

diffeomorphism ݃ , i. e. ߚሺ݃ሻ ൌ ଵܭ . The value of  

the embedding ߝ: ܺ ՜  for each compact set ܩ

ܭ א ܺ is the identity map i. e. ሻܭሺߝ ൌ ݅݀ . The   

value of the map ߬: ܩ ՜ ݃ at ܩ א  is equal to the ܩ

inverse map i. e. ߬ሺ݃ሻ ൌ ݃ିଵ . As before we 

put ሺଶሻܩ  ൌ ሼሺ݃ଵ, ݃ଶሻ א :ଶܩ ሺ݃ଵሻߚ ൌ ሺ݃ଶሻሽߙ . The 

multiplication ݉: ሺଶሻܩ  ՜  :is defined by equation ܩ

݉ሺ݃ଵ, ݃ଶሻ ൌ ݃ଵ ל ݃ଶ, where ל is an ordinary mappings 

composition. Then the sequence 

ሺܩ, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬ሻ is a groupoid.  

Let for any two compact sets ܭଵ, ଶܭ א ܺ and any 

two diffeomorphisms ݃ଵ, ݃ଶ א   ܩ

݀ሺܭଵ, ଶሻܭ ൌ sup
௫אభ

൬ inf
௬אమ

ԡݔ െ ԡ൰ݕ

ൌ sup
௬אమ

൬ inf
௫אభ

ԡݔ െ  ԡ൰ݕ

and 

ሚ݀
ሺ݃ଵ, ݃ଶሻ ൌ ݀ଶሺ݂݃ܽݎ ݃ଵ,  .ଶሻ݃ ݂ܽݎ݃

Then ݀  and ሚ݀
  are metrics on ܺ  and ܩ , 

respectively. Mappings ߙ, ,ߚ ݉,  and ߬ are ߝ

continuous with respect to the topology ߬ௗ
and 

߬ௗ෨
 given by metrics ݀ and ሚ݀

 respectively. Hence 

ሺܩ, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬ሻ  is a topological groupoid. We 

will denote this groupoid by ܵܥܦሺԹሻ. 

Example 3. Let ܩ be such as in Example 2 and let 

ܩ ؿ ܩ  contains all diffeomorphisms ݃ א ܩ  for 

which the domain ܦ is the cloasure of its interior i.e. 

ܦ ൌ ݈ܿ ቀ݅݊ݐ൫ܦ൯ቁ. 

Let us consider the set 

෨ܩ ൌ ൛ሺ݃, ܽሻ א ܩ ൈ Թ: ܽ א  ,ൟܦ

where ݊ א Գ is constant. 

As the base of the groupoid 

ܩ ൌ ൫ܩ෨, ܺ, ,ߙ ,ߚ ݉, ,ߝ ߬൯ we take the set ܺ composed 

of all pairs ሺܭ, ܽሻ, where ܭ is a compact subset of 

Թ and ܽ א  .ܭ

The source and target maps are defined in the 

following way: 

,ሺ݃ߙ ܽሻ ൌ ቀܴ, ݃ሺܽሻቁ oraz ߚሺ݃, ܽሻ ൌ ൫ܦ, ܽ൯, 

where ܦ is the domain and ܴ is the image of the 

diffeomorphism ݃. 

Groupoid action ݉ on pairs ሺ݃, ܽሻ and ሺ݄, ܾሻ is 

done, if ܦ ൌ ܴ  and ܾ ൌ ݃ሺܽሻ . Then 

݉൫ሺ݄, ܾሻ, ሺ݃, ܽሻ൯ ൌ ሺ݄ ל ݃, ܽሻ. The identity secion ߝ 

we define by: 

 ߝሺܭ, ܽሻ ൌ ሺ݅݀, ܽሻ for any ሺܭ, ܽሻ א ܺ  and the 

inverse map ߬ has the value 

 ߬ሺ݃, ܽሻ  ൌ  ൫݃ିଵ, ݃ሺܽሻ൯ for any ሺ݃, ܽሻ א  ෨. Onܩ

the set ܩ෨ we consider the family of 

 functions ࣠ ൌ ଵ࣠  ࣠ଶ  ࣠ଷ , where ଵ࣠  is a 
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family of functions of the form 

 ఎ݂ሺ݃, ܽሻ ൌ ൫݃ሺܽሻ൯ߟ  for ሺ݃, ܽሻ א ෨ܩ  and 

ߟ א  ,ሺԹሻ∞ܥ

࣠ଶ  is a family of functions ߜ , where for any 

multiindex ݅ א ሺԳ  ሼ0ሽሻwe have 

,ሺ݃ߜ ܽሻ ൌ
డ||

డ௫ ሺܽሻ for ሺ݃, ܽሻ א  ෨ܩ

(all partial derivatives exists because ܦ ൌ

݈ܿ ቀ݅݊ݐ൫ܦ൯ቁ) and ࣠ଷ is a family of 

functions ఎ  defined by 

,ఎ  ሺ݃ ܽሻ ൌ ,ሺܽሻ for ሺ݃ߟ ܽሻ א  ,෨ܩ

where ߟ א  .ሺԹሻ∞ܥ

The family of functions ࣠ generates the differential 

structure ࣝ on ܩ෨ (ࣝ ൌ ݃݁݊ ࣠). 

We will prove that ࣝ is a groupoid differential 

structure on ܩ෨. For it is enough to show that each 

compositions of functions from families ଵ࣠, ࣠ଶ and 

࣠ଷ  with mappings ݉, ߬, ߝ ל ߝ and ߙ ל ߚ  are  

smooth. 

Let us take an arbitrary function ఎ݂ א ଵ࣠. Then we 

have 

ఎ݂ ቀ݉൫ሺ݄, ܾሻ, ሺ݃, ܽሻ൯ቁ ൌ ఎ݂ሺ݄ ל ݃, ܽሻ

ൌ ൫ሺ݄ߟ ל ݃ሻሺܽሻ൯ ൌ ߟ ቀ݄൫݃ሺܽሻ൯ቁ

ൌ ൫݄ሺܾሻ൯ߟ ൌ ఎ݂ሺ݄, ܾሻ 

which means that ൫ ఎ݂ ל ݉൯ሺߦ, ሻߪ ൌ ఎ݂ሺߦሻ  for 

all ሺߦ, ሻߪ א ෨ଶ. Hence ఎ݂ܩ ל ݉ is an element of the 

differential structure ࣝ ۪ ࣝ  on the space ܩ෨ଶ . We 

have also 

ఎ݂൫߬ሺ݃, ܽሻ൯ ൌ ఎ݂൫݃ିଵ, ݃ሺܽሻ൯ ൌ ߟ ቀ݃ିଵ൫݃ሺܽሻ൯ቁ

ൌ ሺܽሻߟ ൌ ,ఎሺ݃ ܽሻ 

for each element ሺ݃, ܽሻ א ෨ܩ  which means that ఎ݂ ל
߬ ൌ ఎ א ࣠ଷ ؿ ࣝ. 

Subsequently, for each element ሺ݃, ܽሻ א  ෨ܩ

ఎ݂൫ሺߝ ל ,ሻሺ݃ߙ ܽሻ൯ ൌ ఎ݂ ቀߝ൫ߙሺ݃, ܽሻ൯ቁ ൌ

ఎ݂ ൬ߝ ቀܴ, ݃ሺܽሻቁ൰ ൌ ఎ݂ ൬݅݀ோ
, ݃ሺܽሻ൰ ൌ

ߟ ൬݅݀ோ
൫݃ሺܽሻ൯൰ ൌ ൫݃ሺܽሻ൯ߟ ൌ ఎ݂ሺ݃, ܽሻ. 

Then ఎ݂ ל ሺߝ ל ሻߙ ൌ ఎ݂ א ଵ࣠ ؿ ࣝ . Similarly, for 

each element ሺ݃, ܽሻ א  ෨ܩ

ఎ݂൫ሺߝ ל ,ሻሺ݃ߚ ܽሻ൯ ൌ ఎ݂ ቀߝ൫ߚሺ݃, ܽሻ൯ቁ ൌ ఎ݂ ቀߝ൫ܦ, ܽ൯ቁ

ൌ ఎ݂ ቀ݅݀
, ܽቁ ൌ ߟ ൬݅݀

ሺܽሻ൰

ൌ ሺܽሻߟ ൌ ,ఎሺ݃ ܽሻ 

which means that 

ఎ݂ ל ሺߝ ל ሻߚ ൌ ఎ א ࣠ଷ ؿ ࣝ. 

Now we can make similar considerations for an 

arbitrary function 

 

ߜ ቀ݉൫ሺ݄, ܾሻ, ሺ݃, ܽሻ൯ቁ ൌ ሺ݄ߜ ל ݃, ܽሻ ൌ 

ൌ
߲||

ݔ߲ ሺ݄ ל ݃ሻሺܽሻ ൌ 

ൌ  ܿ,௦భ,ڮ,௦

భڮ

ଵஸ||ஸ||
|భ|ାڮା||ୀ||
|௦భ|ାڮା|௦|ୀ||

߲||

ݕ߲ ቀ݄൫݃ሺܽሻ൯ቁ ቌ
߲|௦భ|

௦భݔ߲
݃ሺܽሻቍ

భ

ڮ ቌ
߲|௦|

௦ݔ߲
݃ሺܽሻቍ
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ൌ  ܿ,௦భ,ڮ,௦

భڮ

ଵஸ||ஸ||
|భ|ାڮା||ୀ||
|௦భ|ାڮା|௦|ୀ||

,ሺ݄ߜ ܾሻߜ௦భ

భሺ݃, ܽሻ ڮ ௦ߜ

ሺ݃, ܽሻ 

 

where ܿ,௦భ,ڮ,௦

భڮ א Ժ . Then ߜ ל ݉ is a polynomial 

function of several variables composed with elements 

of ࣠ଶ and because of that it is an element of ࣝ. 

Let us consider the superposition ߜ ל ߬. We have 

,൫߬ሺ݃ߜ ܽሻ൯ ൌ ,൫݃ିଵߜ ݃ሺܽሻ൯ ൌ 

ൌ
డ||

డ௫ ݃ିଵ൫݃ሺܽሻ൯. 

It is know from the course of calculus that the 

derivative 
డ||

డ௫ ݃ିଵሺܾሻ is a rational function of partial 

derivatives of the map ݃ taken at the point ݃ିଵሺܾሻ. 

Then 
డ||

డ௫ ሺ݃ିଵሻ൫݃ሺܽሻ൯ is a rational function of partial 

derivatives of the map ݃ taken at the point ܽ (which 

are elements of ࣠ଶ). Hence it belongs to ࣝ. 

Subsequently we consider the superposition 

ߝሺሺߜ ל  .ሻሻߙ

ߝ൫ሺߜ ל ,ሻሺ݃ߙ ܽሻ൯ ൌ ߜ ቀߝ൫ߙሺ݃, ܽሻ൯ቁ

ൌ ߜ ൬ߝ ቀܴ, ݃ሺܽሻቁ൰

ൌ ߜ ൬݅݀ோ
, ݃ሺܽሻ൰ ൌ

߲||

ݔ߲ ݅݀ோ
൫݃ሺܽሻ൯

ൌ
߲||

ݔ߲ ݃ሺܽሻ ൌ ,ሺ݃ߜ ܽሻ 

for each element ሺ݃, ܽሻ א ߜ ෨. Thenܩ ל ሺߝ ל ሻߙ ൌ ߜ א
࣠ଶ ؿ ࣝ. Similarly 

ߝ൫ሺߜ ל ,ሻሺ݃ߚ ܽሻ൯ ൌ ߜ ቀߝ൫ߚሺ݃, ܽሻ൯ቁ ൌ

ߜ ቀߝ൫ܦ, ܽ൯ቁ ൌ ߜ ቀ݅݀
, ܽቁ ൌ

డ||

డ௫ ݅݀
ሺܽሻ ൌ

 .(or 1 0) ݐ݊ܽݐݏ݊ܿ

Since ߜሺሺߝ ל  ሻሻ is a constant function it belongsߚ

to ࣝ. 

Let’s take any function ఎ א ࣠ଷ. Then we have 

ఎ  ቀ݉൫ሺ݄, ܾሻ, ሺ݃, ܽሻ൯ቁ ൌ ఎሺ݄  ל ݃, ܽሻ ൌ ሺܽሻߟ ൌ

,ఎሺ݃  ܽሻ. 

Then ൫ఎ ל ݉൯ሺߦ, ሻߪ ൌ ,ߦሻ for all ሺߦఎሺ ሻߪ א  .෨ሺଶሻܩ

It means that the superposition ఎ ל ݉ is a element of 

the differential structure ࣝ ۪ ࣝ on the space ܩ෨ሺଶሻ. 

We have 

,ఎ൫߬ሺ݃ ܽሻ൯ ൌ ,ఎ൫݃ିଵ ݃ሺܽሻ൯ ൌ ൫݃ሺܽሻ൯ߟ ൌ ఎ݂ሺ݃, ܽሻ 

for each element ሺ݃, ܽሻ א ෨ܩ . Hence ఎ ל ߬ ൌ ఎ݂ א

ଵ࣠ ؿ ࣝ. Since 

ߝఎ൫ሺ ל ,ሻሺ݃ߙ ܽሻ൯ ൌ ఎ ቀߝ൫ߙሺ݃, ܽሻ൯ቁ

ൌ ఎ ൬ߝ ቀܴ, ݃ሺܽሻቁ൰

ൌ ఎ ൬݅݀ோ
, ݃ሺܽሻ൰ ൌ ൫݃ሺܽሻ൯ߟ

ൌ ఎ݂ሺ݃, ܽሻ 

for each element  ሺ݃, ܽሻ א ෨ܩ  we obtain that 

ఎ ל ሺߝ ל ሻߙ ൌ ఎ݂ א ଵ࣠ ؿ ࣝ. Similarly 

ߝఎ൫ሺ ל ,ሻሺ݃ߚ ܽሻ൯ ൌ ఎ ቀߝ൫ߚሺ݃, ܽሻ൯ቁ

ൌ ఎ ቀߝ൫ܦ, ܽ൯ቁ ൌ ఎ ቀ݅݀
, ܽቁ

ൌ ሺܽሻߟ ൌ ,ఎሺ݃ ܽሻ 

for each element ሺ݃, ܽሻ א ఎ ෨. It means thatܩ ל ሺߝ ל
ሻߚ ൌ ఎ א ࣠ଷ ؿ ࣝ. 

Finally we see that ࣝ is a groupoid differential 

structure on ܩ෨ i. e. ሺܩ, ࣝሻ is a differential groupoid. 
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Abstract: Normal practice of financial management in the defense system is crucial for the performance of assigned tasks. Payment 
transactions in cash, in addition to non-cash payment system are very important if we take into account the specificity of the defense 
system. With limited financial resources optimization level of bookkeeping cash limit should provide continuous funding of units and 
institutions of the defense system. The aim of this paper is to show that using the method of analytic hierarchy process (AHP) we can 
help optimize the allocation of cash financial funds within the defense system. 
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1. Introduction 

One of the main challenges with which people are 

faced in everyday situations is how to make the right 

decision for the given problem. One way is the use of 

multi-criteria optimization, which offers a range of 

representative methods for making the right decisions. 

Methods of analytic hierarchy process (AHP) is one of 

the most highly used methods for multi-criteria 

decision making, where a decision is made based on a 

number of criteria and multiple time periods. It is this 

method that is going to be used in the paper to 

determine the relative weights of the criteria and the 

optimal solution to the problem, i.e. determining the 

cash maximum for the Serbian Army (SA) units. 

The aim of this paper is to based on rational and 

scientific approach, show a way of solving the problem 

of decision-making, using multi-criteria optimization 

in determining the amount of cash maximum in SA 

units. It is the applicative aspect of the paper that 

should arise from the elaborated example which is its 

fundamental contribution. Multiple criteria 
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decision-making plays a key role in many real-life 

problems. This has been confirmed in practice, whether 

it is applied to state authorities, managers of companies 

or any other businesses, because they all face situations 

where they choose in a range of alternatives the best 

one, based on the existing criteria. This paper provides 

empirical analysis of a multi-criteria problem with 

which managers in the defense system are faced, with a 

recommendation for the creation and implementation 

of a model that will improve the decision-making 

process. 

2. Organization of Cash Operations in the 
Serbian Army 

Area of financial operations in SA is regulated with a 

number of normative acts, each of which in its area 

regulates the performance of certain actions and 

procedures. One of the most important regulations is 

the Regulation on financial operations in the Ministry 

of Defense and Serbian Army [1] in which, among 

other things, the performance of bookkeeping cash 

operations is regulated. 

Serbian Army, as a direct budget beneficiary can use 

its provided funds for the following purposes [2]:  

 acquisition of assets, works and services;  

D 
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 payment of personnel costs and  

 specific purposes. 

State and purpose of use of the approved funds must 

constantly be monitored and recorded in an appropriate 

manner. Especially significant are the funds that must 

be provided daily for lesser payments in units, in order 

to ensure normal functioning. For this reason each units 

has its own cash operation, and the realization is done 

through cashiers that were established by formation. 

Cash operations include downloading, storing and 

issuing or trade of cash. It should be taken into account 

that the regulations limit cash payments up to a certain 

specified amount. To prevent cash buildup in the 

cashier’s desk, cash maximum is determined, which 

represents the largest amount of cash that can be kept in 

the cashier’s desk. Height of cash maximum is 

determined by a decision of the Head of budget 

Administration of the Ministry of Defense. Article 39 

of the Regulations on financial operations of the 

Ministry of Defense and Serbian Army (OMG 17/2011) 

regulates that the supervisor of the beneficiary 

authorizes the person that takes over the cash in the 

manner and procedure prescribed by the regulation on 

budget execution system. 

One of the problems present in the work of financial 

services authority, which directly make decisions in the 

budget Administration, is how to determine the 

maximum cash for each unit. It is the aim of this paper 

to help solve the aforementioned problem, using the 

method of multi-criteria optimization. 

3. Methods of Multicriteria Analysis 

There are numerous methods to solve multi-criteria 

decision making models that can be divided based on 

several criteria, and the best in today's time are: 

 ELECTRE method; 

 PROMETHEE method; 

 AHP (analytic hierarchy proccess) method; 

 TOPSIS method; 

 SAW method and other. 

Special attention in this paper will be devoted to the 

AHP method, which is a method of multi-criteria 

decision making, created to assist decision makers in 

solving complex decision problems involving a large 

number of decision makers, a number of criteria in 

multiple periods. Methodologically speaking AHP is 

based on the decomposition of a complex problem 

into a hierarchy. The goal is at the top of the hierarchy, 

while the criteria, sub-criteria and alternatives are at 

lower levels. AHP holds all the parts of the hierarchy 

in relationship, so it's easy to see how a change in one 

affects the other criteria. 

The process of solving the decision-making 

problem is often very complex due to the presence of 

conflicting objectives among the available criteria or 

alternatives. The problem is to choose the alternative 

that will best meet the set goals. Field of application 

of this method is multi-criteria decision making, 

where based on a defined set of criteria and attribute 

values for each alternative the most appropriate is 

selected. In order to easily facilitate the application of 

this method a software tool in decision support 

systems has been developed named Expert Choice. 

The process of realization of the AHP method 

includes four main phases [3]: 

 Structuring the problem, which consists of 

decomposing any complex decision making problem 

into a series of hierarchies, where each level 

represents a smaller number of manageable attributes. 

They are then decomposed in a second set of elements 

which correspond to the next level. This way of 

hierarchical structuring of any decision making 

problem is an effective way of dealing with the 

complexity of real life problems and identifying 

significant attributes in order to achieve the overall 

goal of the problem. 

 Data collection is the beginning of the second 

phase of the AHP method. The decision maker assigns 

relative scores in pairs of attributes of one hierarchical 

level and does this at all levels of the entire hierarchy. 

The best known scale used to assign weights is 

Saaty’s nine-point scale. 
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 Rating the relative weights implies that the 

comparison matrix in pairs, is translated into problems 

of determining their own values, to obtain the 

normalized and unique own vectors, with weights for 

all attributes at each level of the hierarchy. 

 Determining the solution to the problem is the 

last stage that involves finding the so-called composite 

normalized vector. Once the vector of sequence of 

criterion values in a model is determined, in the next 

round it is necessary to determine the order of 

importance of alternatives in the model with respect to 

the same procedure, within each of the monitored 

criteria. 

3.1 Formulating the Mathematical Model of 

Multi-Criteria Decision Making  

Model of the multi-criteria decision making has the 

following mathematical formulation [3]: 

     1 2 ,  ,...,  ,   2pmax f x f x f x p    (1) 

with limitations: 

   0,  1,ig x i m 
 

0,  1,jx j n 
 

where: 

n – number of variables; 

p – number of criterion functions; 

m – number of limitations; 
X – n- dimensional vector of variables xj, 1,j n  

fk - function (goal) of the criteria, 1,k p   

gi(x) – set of constraints, 1,i m  

It should be noted that the maximization of the 

function vector is carried out with the given 

constraints, since the minimization criteria can be 

converted into maximization criteria, and: 

 max f ( ) min f ( ) , (1, )r rx x r p      (2) 

By solving the model above a set of permissible 

solutions is obtained, vector X which belongs to the 

set of positive integers X nR , for which applies: 

( ) 0, 1, , 0, 1,i jX x g x i m x j n         (3) 

Thus resulting set of solutions X, to which 

corresponds a set of values of the function criteria, or 

the vector f(x), so that the set of permissible solutions 

X can be mapped into a criterion set S:  

1 2( ) ( ), ( ),..., ( )pf x f x f x f x        (4) 

( )S f x x X      

3.2 Defining the Terms in the Decision-Making 

Problem  

Defining the criteria occupies an important place in 

the process of deciding on cash maximum amount 

which is determined for the units. Criterion as a term 

refers to the attributes that are related to alternatives 

between which we select. They can be divided into 

qualitative and quantitative criteria depending on the 

degree of measurability. Quantitative criteria are those 

that can be accurately measured and are expressed in 

different units of measurement. Qualitative criteria are 

those that cannot be expressed numerically. They can 

be divided into two subgroups: the attributes whose 

values cannot be accurately measured, but can be 

ranked by the "intensity" and attribute basis of which 

no quantitative comparison of alternatives can be done. 

There are plenty of ways to translate qualitative 

criterion values in quantitative. The most commonly 

used scales are: in-line scale, interval scale and ratio 

scale. The second criterion, which is also used for the 

distribution of decision making criteria is the direction 

of correlation of their values and utility providers. 

According to the stacking direction there are [4]: 

 Revenue criteria;  

 Expenditure Criteria and  

 Non-monotonic criteria. 

In the process of the observed choices there are 

great number of criteria available, which are more or 

less important and precisely defined at the beginning, 

and in our case they are: distance of the unit from the 

Accounting Centre, unit level, unit size and unit type. 
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Alternatives are the solutions which are emerging as a 

choice between which we select the best one. For 

simplicity of presentation three SA units are taken into 

consideration between which we select to whom to 

assign the highest cash maximum. They have 

characteristics that match the criteria that have been 

defined.  

4. Application of the AHP Method in 
Multicriteria Optimization of Determining 
the Height of Bookkeeping Cash Maximum 

The process of determining the maximum cash 

amount in SA units which are the executors of the 

approved plan of financial resource expenditure 

represents a problem which we will try to realize using 

the method of multi-criteria optimization. Mitigating 

factor during usage of any method of multi-criteria 

decision-making is the fact that they are all software 

supported, and the mentioned software in our case can 

be found at the internet address: www.odlucivanje.fon. 

rs. However in this paper the emphasis is not directly 

placed on the application of this software but the 

logical-mathematical setting of the problem. 

Justification of this paper can be ontologically 

substantiated by facts of appropriateness of the 

optimization of determining the height of cash 

maximum from the competent authority within the 

defense system that is, to show that in practice the use 

of these methods may lead to an optimal solution. 

Also an important requirement that is going to be 

satisfied in this way is the scientific foundation of the 

procedure of decision-making. 

The assumption in this problem is determining cash 

maximum amount for accounting purposes in order to 

maintain permanent liquidity of the financial assets in 

the SA units. In order to find the optimal solution for 

given assumptions four criteria are used in relation 

with three possible alternatives which will be 

considered. 

Criteria in this problem are: 

 K1 – Distance of the unit from the Accounting 

Centre (AC) is one of the criteria to be taken for 

determining the cash maximum amount, which is the 

criterion of maximization. It is necessary to determine 

the distance of the unit from the AC because of the 

need to determine the time interval in which the 

documents are submitted to the AC. For example 

some units due to the physical distance only deliver 

their accounting documents twice a week making it 

difficult to justify the consumed cash as a condition to 

receive newly approved. 

 K2– Unit level in accordance with the Decision 

on authorization for management and replacement of 

movable property and the procurement of works and 

services to the MoD and SA [5]. By this Decision the 

commanders of beneficiaries among which are cash 

funds have the authority delegated by the Defense 

Minster concerning managing funds. In this regard, 

depending on the degree of autonomy to manage the 

funds greater or smaller amount of cash is required, 

the units will be observed as the commander 1 (the 

lowest level of authority), commander 2 (medium 

degree of authority) and commander 3 (the highest 

level of authority).  

 K3 – Unit size is the maximization criterion, and 

refers to the number of people within the unit which 

significantly affects the level of cash maximum due to 

an increase in personnel expenses. Personnel 

expenditures conditionally progressively increase due 

to the increase of personnel during peacetime and war 

formations. 

 K4 – Unit type is determined depending on the 

composition and use of a particular unit or institution. 

Within this criterion in determining the amount of 

cash maximum it is significant to determine the degree 

of significance of the quantity of cash as an instrument 

of maintaining continuous liquidity with a goal to 

support permanent combat readiness of SA units. As a 

condition of determining the maximum cash amount it 

is significant to differentiate between infantry, 

artillery, armor, special units, logistics and others. 

The decision making matrix in this case is shown in 
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table 1: 

Quantifying this matrix, using Saaty nine-point 

scale for assigning weights the following matrix is 

obtained: 

4.1 Evaluation of the Relative Weights of Criteria 

At the beginning of processing the problem it is 

necessary to start by determining the relative weights 

of the criteria that is, significance of the criteria. To 

estimate the relative weights of the criteria we will use 

Saaty’s scale [6]. 

Based on the data obtained from the evaluation of 

relative weights of the criteria, using the same 

procedure alternatives should be observed as well. 

Comparison of alternatives will also be done by using 

Saaty’s scale. After forming the tables of comparing 

the weights in pairs for each alternative, we will 

calculate own vectors. 
 

Table 1  Decision making matrix 

Alternatives 
Criteria 

K1 K2 K3 K4 

Unit 1 360 Commander 2 2300 infantry 

Unit 2 150 Commander 1 500 armor 

Unit 3 90 Commander 3 80 logistic 
 

Table 2  Quantified input data 

Alternatives 
Criteria 

K1 K2 K3 K4 

Unit 1 360 5 2300 5 

Unit 2 150 3 500 7 

Unit 3 90 9 80 9 
 

Table 3  Evaluation of relative weights of the criteria 

 K1 K2 K3 K4 

K1 1 (5) (4) (7) 

K2 5 1 4 (5) 

K3 4 (4) 1 (6) 

K4 7 5 6 1 

Σ 17 6,45 11,25 1,51 
 

Table 4  Calculation of own vectors with corresponding own values 

 K1 K2 K3 K4 Σ W(Σ/4) 

K1 0,059 0,031 0,022 0,092 0,204 0,051 

K2 0,294 0,155 0,355 0,132 0,936 0,234 

K3 0,235 0,039 0,089 0,113 0,476 0,119 

K4 0,412 0,775 0,533 0,662 2,382 0,595 
 

Table 5  Calculation of own vectors corresponding to own values (Distance of units from the AC) 

 Unit 1 Unit 2 Unit 3 Σ W(Σ/3) 

Unit 1 1 9 7 2,329 0,776 

Unit 2 (9) 1 (3) 0,205 0,068 

Unit 3 (7) 3 1 0,465 0,155 
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Table 6  Calculation of own vectors corresponding to own values (Unit level) 

 Unit 1 Unit 2 Unit 3 Σ W(Σ/3) 

Unit 1 1 5 (7) 0,569 0,189 

Unit 2 (5) 1 (9) 0,180 0,060 

Unit 3 7 9 1 2,251 0,750 
 

Table 7  Calculation of own vectors corresponding to own values (Unit size) 

 Unit 1 Unit 2 Unit 3 Σ W(Σ/3) 

Unit 1 1 7 9 2,251 0,750 

Unit 2 (7) 1 5 0,569 0,189 

Unit 3 (9) (5) 1 0,180 0,060 
 

Table 8  Calculation of own vectors corresponding to own values (Unit type) 

 Unit 1 Unit 2 Unit 3 Σ W(Σ/3) 

Unit 1 1 (5) (7) 0,215 0,072 

Unit 2 5 1 (5) 0,695 0,232 

Unit 3 7 5 1 2,089 0,696 
 

Table 9  Determining the amount of cash maximum 

 
K1 K2 K3 K4 Total priorities of  

alternatives 0,051 0,234 0,119 0,595 

Unit 1 0,776 0,189 0,750 0,072 0,216 

Unit 2 0,068 0,060 0,189 0,232 0,178 

Unit 3 0,155 0,750 0,060 0,696 0,604 
 

4.2 Determining the Solution to the Problem 

After assessing relative weights of alternatives with 

respect to each criterion we approach to determining 

the maximum cash amount of the observed units. The 

choice of units is made based on the received own 

vectors of alternatives and previously obtained own 

vectors of criteria. Total priorities of alternatives are 

obtained by multiplying each alternative by its weight 

within the observed criterion in order and finally 

adding up the results. 

From Table 9 it can be seen that after implementing 

the procedure of AHP method for the given example, 

the order of alternatives would be as follows: "Unit 1" 

(22%), "Unit 2" (18%), "Unit 3" (60%), which shows 

that the best decision would be to award the highest 

cash maximum to "Unit 3".  

5. Conclusions 

Everyone - individuals, politicians, professionals, 

business men daily consider and make small and big 

decisions - decisions that affect individuals, families, 

business systems or social communities - of regions, 

countries and even the world as a whole. In most cases 

that is, problems solved there are several solutions. 

But the question that arises is which solution to 

choose? One that considers and decides takes into 

account several aspects of the problem being solved: 

some reasons speak in favor of deciding in one way, 

but other reasons say that such decisions are often 

reviewed and often amended. 

Thus the practice of problem solving in the  

defense system shows that they can be resolved in 

different ways, taking into account the relevant  

criteria. The possibility of using a number of 

representative methods that are available when 

deciding on the amount of maximum cash makes the 

work even easier and raises the level of quality of the 

decision to a higher level. It is an example of using the 
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AHP method in choosing which unit should be 

assigned the highest maximum cash is shown in a 

rather simple way how with a precise procedure a 

decision can be made, and while doing so recognizing 

all the set criteria on which the selection is made. It is 

also in this way shown that there are significant 

arguments for this method to be based on scientific 

grounds. 

In the specific problem (formulated criteria, 

assumed input data) people who decide in the defense 

system, that need to decide on the maximum cash 

limit will not make a mistake if the decision relates to 

the choice of alternative "Unit" 3. This decision 

stemmed from conducted methodological procedure 

of applying the AHP method, where in a 

scientific-friendly and reliable manner the solution of 

multi-criteria problem was got. 
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