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Abstract: In this paper, a semi-analytical method for investigating the vibro-acoustic characteristics of multi-stepped cylindrical
shells (MSCS) immersed in infinite fluid medium is presented. Based on the Flugge’s thin shell theory, the theoretical model for
vibration analysis of MSCS is established, whereas acoustic analysis is carried out by employing the Kirchhoff-Helmholtz integral
equation. The Chebyshev polynomials is set as shape function for vibro-acoustic analysis of the MSCS, all displacement components
are expressed by the Chebyshev polynomials in meridional direction and Fourier series in circumferential direction. For discretizing
of acoustic boundary, a set of Chebyshev collocation points and spectral boundary element are introduced, and for solving the
non-uniqueness problem in acoustic analysis, the CHIEF method is applied. Through comparison studies with the results of previous
literature and the coupled finite element method/ boundary element method (FEM/BEM), the accuracy, convergence and reliability
of the proposed method are verified. Finally, the effects of geometry, boundary conditions, fluid medium, material properties and
type of applied force on the vibro-acoustic characteristics of MSCS are investigated by several numerical examples.
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1. Introduction Reissner-Naghdi’s  theory, and  Goldenveizer-

. . o Novozhilov’s were developed for the dynamic
It is well known that circular cylindrical shells are o ]
) . i characterization of shell structures [1, 2]. With the
the main components widely used in the fields of .
. ) . o development of shell theory, extensive research has
mechanical engineering, aerospace, shipbuilding, . .
. . . . been carried out to develop high-accuracy and
chemical industry, etc. A detailed example is the ) ] ;
. L efficient calculation methods. In this process, many
fuselage of a carrier-rocket or space vehicle in the . .
. L efficient solution methods have been proposed, such
aerospace industry, the fuselage of a submarine in the . .
as general domain decomposition methods [3, 4], the

Ritz method [5-9], differential quadrature method
[10-13], FEM [14-16], wave propagation approach [17,
18], Galerkin method [19, 20], meshless method
[21-23], the dynamics stiffness method [24-26]
discrete singular solution method [27, 28], and Haar

shipping industry, and the pressure vessels in the
chemical industry. These structures, especially those
used in airframe or ship fuselage, are operated under
various working conditions and environments, and can
cause vibrations and noise during the operation. Since

the vibration and noise generated during the operation . .
: ) wavelet method [29]. Depending on the working
have detrimental effects on the life, strength and o ] )
. conditions and structural requirements, in some cases
health of the machine, the study of accurately o ] )
. o ] ) a stepped cylindrical shell structure is required, and
analyzing and predicting the vibro-acoustic . o
L ) the study to analyze the dynamic characteristics of a
characteristics is being carried out.

Based on the hypothesis of Kirchhoff-Love, thin
shell  theories such as  Fliigge’s theory,

stepped cylindrical shell is carried out in Refs [30-32].
Much research has been done on the analysis of
sound radiation problem of elastic structures in fluid
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cylindrical shells. The most widely used method for
the analysis of sound radiation problem of elastic
structures immersed in a fluid medium is the coupled
FEM/BEM. In this method, FEM is used to describe
the dynamic behavior of the structure, and BEM 1is
used to represent the acoustic load acting on the
structure. The continuity condition at the interface
between the structure and fluid is that the normal
velocity and the continuity of the sound pressure
acting on the surface of the structure must be ensured.
While FEM has advantages in structural dynamic
behavior analysis, BEM has advantages in acoustic
analysis, where all discretization and numerical
approximations are located on the surface of the
structure. Moreover, the radiation condition exiting
infinity is automatically satisfied in BEM [33] when
the fluid medium exists in an infinite space. The
accurate results may be obtained by discretizing the
shell and fluid medium boundaries using two- or
three-dimensional finite elements and
two-dimensional boundary elements [34-38]. Denli
and Sun [39] used two-dimensional finite elements
and two-dimensional boundary elements for acoustic
analysis both inside and outside of sandwich
cylindrical shells. Bérot and Peseux [40] presented an
analytical formulation and numerical meodel to
investigate the vibro-acoustic behavior of submerged
cylindrical shells immersed in heavy fluid. To
investigate the vibration and acoustic responses of a
submarine hull under harmonic excitation, Caresta et
al. [41, 42] used the power series-wave solution. By
using the double reflection method, Chen et al. [43]
investigated vibro-acoustic behavior of cylindrical
shell with complex acoustic boundary conditions.
Based on a general higher-order shear deformable
Qu et al. [44]
approach  for

zig-zag theory, presented a

semi-analytical obtaining  the
vibro-acoustic characteristics of multilayered shell
such as cylindrical, conical and spherical shell
immersed in a light or heavy fluid. Zou et al. [45]

presented an analytical formulation for the underwater

acoustic radiation of a cylindrical shell with an
internal flexural floor based on the reciprocity
theorem, Liu et al. [46]
behavior and acoustic radiation of a finite cylindrical

investigated vibration

shell partially covered with circumferential compliant
layers by using the method presented in Ref. [45].
Wang et al. [47] presented an analytical model of
vibro-acoustic response of a stiffened submerged
cylindrical shell with force and acoustic excitation, the
accuracy of the model was verified experimentally.
When acoustic analysis is performed based on the
classical Kirchhoff-Helmholtz integral equation, it is
possible that the

two-dimensional or one-dimensional, and therefore

boundary element is either
may not give a unique solution at some fictitious
frequencies [48]. These frequencies have no physical
meaning and produce insignificant peaks in the
acoustic response, which can be effectively removed
using the CHIEF method [49] or Burton-Miller
method [50]. In addition to the study of the
vibro-acoustic analysis of various types of individual
shells, the

interconnected structure of shells such as conical,

vibro-acoustic  analysis of  the
cylindrical and spherical shapes has also been studied
[51-56].

As can be seen from the previous work, there has
been a lot of work on vibro-acoustic analysis of shells
with uniform thickness, whereas no research on
vibro-acoustic analysis of stepped shells has been
found. Therefore, the present paper focuses on the
analysis of the vibro-acoustic properties of MSCS
immersed in an infinite fluid medium. Based on the
Fliigge’s thin shell theory, the theoretical formulation
for the vibration analysis of a MSCS is established,
the variational principles is adopted. Acoustic analysis
of MSCS is
Kirchhoff-Helmholtz integral equation, for solving

carried out by employing the

the non-uniqueness problem in acoustic analysis, the
CHIEF method is Chebyshev

polynomials is set as shape function for vibro-acoustic

applied. The

analysis of the MSCS, all displacement components
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are expressed by the Chebyshev polynomials in

meridional direction and Fourier series in
circumferential direction. Vibro-acoustic response of
the MSCS with material properties under various
boundary conditions are presented through numerical

examples.
2. Theoretical Formulation
2.1 Description of the Model

The geometric model of MSCS is shown in Fig. 1.
The MSCS consists of N uniform shells of length L,

Surface force

Line force

ku(]

Fig.1 Geometry and coordinate system of a MSCS.
2.2 Vibration Analysis Model

According to Fliigge’s thin shell theory, the linear
strain expressions are defined as following [1, 2].
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thickness /; and middle surface radius is R. Subscript
i(1, 2, ..., N) denotes number of step. A cylindrical
shell of uniform thickness can be obtained by setting
the thickness of individual steps equal. The cylindrical
shell is defined by an orthogonal coordinate system (x,
0, z) with x in the horizontal direction, & in the
circumferential direction, and z in the normal direction
of middle MSCS. The
components in the x, 8 and z directions of individual

surface displacements

shells are expressed by u;, v; and w;, respectively.
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In Eq. (1), 5;,0, gg,o and }/;9,0 denote the normal and
shear strains in the middle surface of the it step shell,

., 7, and y!, denote the curvature and twist
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According to Hooke’s law on stress-strain

relationship, the corresponding stresses components of
individual step shell can be expressed as follows:

deformations.
They are written as follows:
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where E and u are Young’s modulus and Poisson’s
ratio, respectively.

Ui = % [ j [[o'c! + i +7ly7s Revd0d:

From the elastic theory, the strain energy function
in the i step shell can be expressed as

(5;,0 )2 + (8é,0 )2 + 2/15;,05;,0 + I_T/u(ria,o )2
Eh. ( i)2+( [)2+2 i i+__ﬂ( i) @
=2(T:u2)<|.-.‘ 2 Xy Xo MY Xo > Ao Rdxd@
o |42 N
N +z§<e;;,0z;;—e;e,ozg)—lz‘—;‘y;g,oz;{%j + 5 Vo
The kinetic energy of i step shell can be written as: == I J-w dxd 0 (7)

+(wl.)2}Rdxd9 5)

; h L2
T =%_)‘:£[(u1) +(v

The effect of external loads to study the force
vibration characteristic of proposed structure can be
expressed as following energy function [32].

= [[( S+ £,5 + £, ) RdOx  (6)
x 0

where, f,, fv and f,, are the external forces in the

Where p; is the acoustic medium pressure acting on
the it step shell.

By applying the pseudo-stiffness technique, the
boundary and continuity conditions can be generalized,
and the potential energy stored in the boundary and
connecting springs are given as follows, respectively.

In Eq. (8) symbols k«, kv, kwand K, are the boundary
spring stiffness. Table 1 shows the spring stiffness

meridional, circumferential, and the normal directions, value corresponding to the several boundary
respectively. conditions.
The virtual work corresponding to the external
acoustic medium pressure can be expressed as
follows.
[ egtt® + kv + ke 0" + K o (Ow/ &%) |
U, j (®)
+ kil + v+ kWK, (Ow/ox) |
Table 1 The spring stiffness value corresponding to the boundary conditions.
BC ku0, ku,1 kv,0, k1 kw0, kw,1 ko0, ko1 ko0, ko1
F 0 0 0 0 0
SD 0 104 104 0 0
SS 104 101 10 0 101
C 10™ 10 104 10 10
Ei 108 108 108 101 10
E> 10 104 104 108 108
Es 108 108 108 108 108
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U J‘ uc i _ui+l )2 + kvc (vi _vi+l )2 + kw (W WH—l )2
o | +K, [ (u,— 0w,/ ox)—(u,,,

In addition, in Eq. (9), kuc, kve, kwe and K, represent
the connection spring stiffness. By setting the stiffness
value of the connecting spring to infinity (10'4), the
individual shells can be considered as rigid bonded
shells.

uy (x,0,1) = iiTm (#) [U ! cos(nd)+U" sin(nﬁ)}ei“’t

m=0 n=0

RdO 9)
—ow.,,/ 8x)]

i+1

In this paper, the displacement is parametrically
represented by the Chebyshev polynomial of first kind
in the meridional direction and Fourier series in the

circumferential direction, can be written as follows:

(10a)
M N )
v (x,6,t :ZZTm(gb)[ i sin(n@) + V! cos(n@)}e"‘” (10b)
m=0 n=0
cos(nf)+ W' sm(n@)} (10c)

WOth ZZ (¢)[

m=0 n=0

where T.(¢) is the m-order Chebyshev polynomial,
which means the displacement function in the
meridional direction, and the maximum degree is M.
Urlnn’Utlnn’anm’ Vl Wi and Wnlm

mn? mn

are unknown

coefficients of the polynomial to be determined. w is
an angular frequency, ¢ denotes time. n is the
circumferential wave number, and the maximum
degree is M.

The mth polynomial of Chebyshev polynomial of

first kind uniformly defined as [32].

T, (¢) = cos(marccos §); (m =0,1,2,...,

m

<1) (11)

By employing the relation
cos[(m+1)@]+cos[(m-1)p]=2cosgcosm¢, the repetitive

equation of the Chebyshev polynomial can be written

trigonometric

as:

T..(¢)=2xT,(¢)-T,. () (12)

Thus, the Chebyshev polynomials can be obtained
as:

[m/2]

T,.(9)= 3 (-1) W'—Zk)'¢ (1-¢) (3

k=0

where [m/2] denotes the integer part of m/2.

The Chebyshev polynomial are complete and
orthogonal polynomials defined on the interval of
¢<[-1,1]. Thus, a linear transformation statute must be
introduced for coordinate conversion from interval
xe[0, L;j] of the individual step shell to interval
# p<[-1,1]) of the Chebyshev polynomial,

Since the Chebyshev polynomial is an orthogonal
function defined in the interval ¢e[-1,1], the actual
interval of the individual shell xe[0, L;] must be
linearly transformed into a polynomial interval. Thus,

the following linear transformation condition must be

2 L
introduced; g=—x—1lorx = 3’(¢+ 1).
The total Lagrangian energy L of the MSCS can be
expressed as:

L:i(Ti —UN)= (U, +UR)+(W' +W}) (14)

According to the Rayleigh-Ritz method, the total
Lagrangian energy of the MSCS is minimized by
partial derivation with respect to the unknown
coefficients.
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a—L=o, $=U,,
09
Substituting Eqgs.(4)-(14) into Eq. (15), the

discretized vibration equation of the MSCS is

Ui Vi I}i Wi

mn®" mn> " mn®"" mn?

Wi o(15)

obtained as matrix form.
2

(K—a) M)A:FS+FP (16)

where K and M are the stiflfness and mass matrix of

the MSCS, and A is

respectively. Fs is the generalized force vector due to

the coefficient vector,

the external forces acting on the structure, and F, is
the force vector generated by the sound pressure of the
fluid medium acting on the surface of the shell.

2.3 Acoustic Analysis Model

When sound propagates in a fluid medium due to

structural vibrations of an elastic body, some
assumptions about the fluid medium are introduced as:

- -

Collogation r \
/ poﬁtts \

(1) A sound-transmitting medium is an ideal fluid
that does not take into account the viscosity of the
fluid medium and the energy transfer loss of the sound
waves in the fluid medium; (2) The initial fluid
velocity of the sound-transmitting medium is zero and
uniformly distributed; (3) The sound wave transmitted
in a fluid medium is an elastic wave with a small
amplitude.

In analyzing the acoustic characteristics of
structures in fluid-solid coupling space, BEM is a
widely applied method due to its ease of coupling with
finite element methods, which essentially provides
numerical solution of the Helmholtz integral equation.
A schematic diagram for considering the problem of
external acoustic wave propagation of an
axisymmetric elastic structure in sound fields without

sound sources and acted forces is shown in Fig. 2.

-
P -
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Fig.2 The coordinate system for analyzing the sound radiation of a MSCS.

Considering that MSCS is axisymmetric, to define
the acoustic field, a global coordinate system (7, 8, z)
located on the geometric symmetry axis of the MSCS
is introduced.

Based on this coordinate
Kirchhoff-Helmholtz boundary

governing the exterior sound space of MSCS can be

system, the

integral equation

expressed as [56]:

C(r)p(r)= j[p(f)m_c(r,f)@}ds (7

on n
where C(r) means the position of the point measuring
the acoustic characteristics and is defined as:
1, reQ
C(r)=40, reQres (18)
1/2, reS
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r(r, 0, z) is the radius vector of any measurement
point in the sound propagation space Q and (7, 8,%)
is the radius vector of any point on the fluid-solid
interface S§. G(r,r_) is a Green’s function and is
defined in cylindrical coordinates as follows:

e—ikRO(r,F)
G(r,r)=—— (19)
(r.F) 4zR,(r,T)
where k& = w/cs, w is the vibration frequency, ¢y is the
velocity of sound in the fluid, and Ro(r,T) is the

distance Ro(r,r) between two vectors r and r and it is
calculated as follows.

Ro(r,F)=\/r2—172—2r1700$(€—§)—|—(z—2)2 (20)
When

axisymmetric elastic bodies, P(r) and P(r) can be

analyzing the acoustic behavior of
expanded into Fourier series in the circumferential

direction.

N
p(r)= Z[p; (r,n,z)sin(n)+ p (r,n,z)cos (né’)}
" @1)
p(¥)=Y| B, (F.7.2)sin(nd )+ b (F.7,Z ) cos (nd) |
n=0
where p;(r,n,z), p5(r,n,z) are the Fourier mode number in the circumferential direction.

coefficients of the sound pressure at the measurement
r(r,n,z) of the
pa(7,7,7z), ps (7,7, Z) are the Fourier coefficients of

point sound field, and

the sound pressure at the interface point r(7,7,2) of
the sound field (the surface of shell). n is the acoustic

Similarly, expanding the Green’s function and its

normal  derivative into a  Fourier  series

circumferentially at the interface, they can be written
as:

G(r,T)= liHﬂ [sin(n@)sin(nﬁ_) +cos (nd)cos (ng)]

7Z-n0

In Eq. (22),

27 -ikR,

0

The contact surface interaction of the fluid with the
body structure can be written as
1 op(r)

WA=
f

where w;(T) is the normal displacement of the elastic

. op(r)
body at the surface of the elastic body and 8— is

n

the normal derivative of the sound pressure at the

e )
H, = dg, H=[Z
n J. 4R, cos(ng)dg 0 Z[ o

(22)

e—ikR .,

ey jcos(nqﬁ)d @ (23)

boundary point of the sound field (the surface of the
elastic body).

Substituting Eqs. (21-24) into Eq. (17) and after
performing certain algebraic operations, we can obtain
the modified form of the Kirchhoff-Helmholtz integral
equation as follows [39]:
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r)i[]?; (r,n,z)sinnd+ p; (r,n,z)cos nﬁ] =

ﬁ:[ (7,n,7) H smn@] Z[p (7,n, z)H cosn@} (25)
:J-; n=0 n=0 rdl
—p,0 Z[w (7,n,z)H, smmﬂ P, Z[W (7,n,Z)H, cosntﬂ
n=0
Eq. (26) can be written simply as o J . .
C(r)p, = [(H,7, ~p,@*H,w, JFdl g __,Z—;‘j}(é)p"’ R o
o o (e v
()i~ ({5 -, P= 31O, =T R,
l J=

To construct the coupling matrix of solid-fluid
interactions, the acoustic boundary / must be
discretized in such a way that the acoustic boundary
segments and shell segments are matched. The sound
pressure for each shell segment is expanded as

follows:

Mz

C(r)J, ()P

]
UR

c<r>Jp<f>r-:<r>=i; [1,3,(

i=1

where ‘J c ‘ is the Jacobian coordinate transformation.

To discretize the boundary integral equation, J+1
collocation points are defined within the boundary
element. Such collocation points can be chosen as
zero points of orthogonal polynomials. The formula
for calculating the zero points of the Chebyshev
orthogonal polynomials of the first kind is as:

2k -1
fj,k = cos( 2/

By moving the measurement point r of the sound

7[] k=12,.,J+1,j=J+1 (29)

field to the j™ collocation point of the & boundary
element according to the BEM, Eq. (28) can be

written as

J[ (gﬂJA}dfﬁi(
7| Jaep; (F) —p,-wzi I [H,3,(¢

where, Ti(&) is the j® order Chebyshev orthogonal
polynomials of the first kind. p, ; and py; denote
the generalized pressure. Substituting Eqgs. (27) and
(10c) into Eq. (26), the
Kirchhoff-Helmholtz boundary integral equation can

o aew: (F)

|| Ews (F)es)

discretized

be written as following.

-p,@ Zf[ o

N

_CJ ( pnk Z nzpnz ZG n,i
; N (30)

_CJ ( Z = ZGn,iW
i=1 i=l

where

H =jF1an (&)7 (&)|.|as
l (31)

In addition, Eq. (30) can be written in one matrix
form as follows:

N N
YHP =>G,w, (32)
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in which

T
= | 55 =S =S =C =C =C
P, = [pn,l""’pn,i""’pn,N’pn,l’""pn,i”"’pn,N]

s S s C c C T
W, =W W LW W W W] (33)
In order to remove .the norll—unic.luenes.s of Eq. (32), Hep =Ge,w, (36)
the CHIEF method is applied, in which, Eq. (30)
where the collocation points are set outside of the Therefore, considering the matrix added by the
fluid is used as constraint. If the collocation points r; CHIEF  method, when the circumferential
are placed outside the fluid, the quantity C(r) becomes wavenumber is unity the boundary element matrix is
zero and Eq. (30) can be rewritten as ~ ~
60 fi,p, =G,w, (36)
N N
Zch’l.pr. = ZGcn,inui where
i=1 i=1 ~ T
H, =[H] Hc] |
N N
He p¢. =) Gec. we. 34 - r
; n,lpn,z ; n,i o on,i ( ) Gn — [G:,GCZ] (37)
where Considering the circumferential wave number n =
. ¢, = L ch J, ( 5)7 ( 5)‘ J&‘ dé 9~N, the dlSC.I‘etl.ZthIOTl matrix of the total boundary
i integral equation is written as
Gcn,i :pfaﬂj.[chJW(f)F(f)‘J‘f‘df (35) Hp:Gw (38)
In addition, Eq. (34) can be simplified as follows: where
_1:11 - _él -
ﬁz éz
H= - , G= L (39)
Hl’l Gﬂ
i H; | | Gy |

] . ) When the structure is immersed in a light fluid, the
2.4 Coupled Model for Vibro-Acoustic Analysis ) o ]
influence of sound radiation by the fluid can be
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neglected because the density of the fluid is much
smaller than the material density of the structure,
therefore, the vibration and sound radiation problems
of the structure can be analyzed separately in this case.
However, if the structure is immersed in a heavy fluid,
the fluid will affect the force acting on the structure,
and thus the acoustic radiation cannot be neglected.
The acoustic-vibration coupling system of an elastic
structure in a fluid has a close relationship between

the sound pressure and the structural vibration, and
therefore structural and acoustic problems must be
solved simultaneously. The influence of the sound
pressure exerted by the structure in the fluid space is
considered as the external force of the structure.

Wf=ij.uf(—pi~l_/ie)dl (40)

i=1 I

oW = —Z:“a(w;,,. ) [Sf J Jindl}xpfl —ZZF(WL ) [Cf J J{Vdel}po =-5(w,) Cp, @1

in which
S¢ = ["sin? (n0)d6,C? = [ cos® (n0)d6 (42)
0 0
There is a relation of w = TA between the normal
displacement and the total displacement of the
structure, where T is the transformation matrix.

The external force F, due to the sound pressure can
be obtained as

F,=T'Cp (43)
The acoustic-vibration coupling equation of the
fluid-elastic structure is follows as:
(-o’M+K)A+T'Cp=F
GTE-Hp=0

(44)

Eq.(44) can be rewritten as matrix form:

{—szﬂ( TTCHA} {F}
= (45)
GT -H ||p 0

By solving Eq. (45), the vectors A, p can be
obtained directly, and then the generalized pressure
vector p can be calculated and the sound pressure of
any position in the fluid space is also obtained.

3. Numerical Results

In this section, the accuracy, convergence and
reliability of the method proposed in this paper for the
investigate of the vibro-acoustic responses of MSCS
are verified by comparison with the results of the

previous literature and FEM/BEM, and the influences

of several parameters on the vibro-acoustic
characteristics are presented by numerical examples.
Unless otherwise stated, in all calculations below, the
light fluid is considered as air (the sound velocity ¢ =
340 m/s and the density pr = 1.225 kg/m?), and the
heavy fluid as water (the sound velocity ¢, = 1500
m/s and the density ps= 1026 kg/m?).

Since the range of sound pressure and sound power
variations is very large, therefore, in acoustic
engineering, the sound pressure level (SPL) and sound
power level (SWL) defined by the Eq. (46) are usually

used, and the units are decibel (dB).

SPL=20log i ,SWL=10log WL (46)
Ref Re f

The reference sound pressure and the reference
sound power in Eq. (46) are set as follows for water
and air: the reference sound pressure is Prey =2%107
for water and Pger =1x10¢ for air, respectively: the
reference sound power is Wrer=1x10"12 for both water
and air.

3.1 Convergence and Validation

Before investigating the vibro-acoustic
characteristics of MSCS, the accuracy, convergence
and reliability of the present method must be verified.
As shown in Eq. (11), the Chebyshev polynomial can

be expanded to infinity. However, increasing the
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degree of the polynomial can lead to higher
computational accuracy, while the computational
efficiency may be reduced. Therefore, it is important
to determine the reasonable polynomial degree to
achieve high computational efficiency with
computational accuracy.

Table 2 shows the change of frequency parameter

of the MSCS according to the increment of the

polynomial order. As shown in Table 2, the frequency
parameter converges to a certain value as the
polynomial order increases. But in all cases, when the
polynomial order exceeds 15, there is no change in the
frequency parameter. Therefore, the polynomial order
is selected as M = 15 for all calculations below.

Table 2 Convergence of frequency parameters according to increase the polynomial order.

Polynomial order

B.Cs n 3 5 7 9 11 13 15 Ref. [32]
C-F 1 0.062512 0.056642 0.056309 0.056082 0.05594 0.055854 0.0558 0.055788
2 0.024446 0.020263 0.020189 0.020137 0.020096 0.020067 0.020047 0.020042
3 0.012904 0.010692 0.010666 0.010652 0.010641 0.010631 0.010623 0.010622
4 0.011038 0.010158 0.010148 0.010144 0.010141 0.010138 0.010135 0.010134
5 0.014407 0.014117 0.014114 0.014112 0.014111 0.01411 0.014108 0.014107
6 0.020252 0.020143 0.020141 0.020141 0.02014 0.020139 0.020137 0.020135
7 0.027597 0.027545 0.027544 0.027544 0.027543 0.027542 0.027539 0.027538
8 0.036197 0.036165 0.036165 0.036164 0.036163 0.036161 0.036158 0.036157
9 0.045986 0.045961 0.04596 0.045959 0.045958 0.045956 0.045952 0.045952
10 0.056942 0.056919 0.056918 0.056917 0.056915 0.056912 0.056907 0.056909
C-C 1 0.298475 0.201847 0.197243 0.195424 0.194659 0.194297 0.194105 0.194089
2 0.290264 0.101632 0.099219 0.098059 0.097442 0.097099 0.096901 0.096886
3 0.287499 0.055651 0.054619 0.054164 0.053882 0.0537 0.053581 0.053574
4 0.286428 0.034902 0.034379 0.03419 0.034069 0.033983 0.033921 0.033918
5 0.286052 0.026392 0.026111 0.026026 0.025975 0.025936 0.025906 0.025906
6 0.2861 0.02569 0.025553 0.025516 0.025495 0.025479 0.025467 0.025468
7 0.286522 0.030073 0.030012 0.029995 0.029987 0.029981 0.029976 0.029977
8 0.28735 0.037424 0.037397 0.037389 0.037385 0.037382 0.03738 0.037382
9 0.288658 0.046667 0.046654 0.04665 0.046648 0.046647 0.046646 0.046648
10 0.29054 0.057368 0.057362 0.057359 0.057358 0.057357 0.057356 0.057361

The results of the frequency parameters €,, =
@R (p(1-u2)/E)'2 of the proposed structure obtained
based on the theoretical formulation established in
Section 2 are shown in Table 3, comparing with those
of the literature. The structure used for comparison is
a two-stepped cylindrical shell and the geometry are R
=1m, h/1=0.01 m, /2= 0.005 m, L;=0.5 m, L,=0.5
m. As shown in Table 3, the results of the frequency
parameters obtained by the proposed method are
found to be in very good agreement for all boundary

conditions, length to radius ratio and circumferential

wave number. From the comparison results in Tables
1 and 2, it can be seen that the vibration characteristics
of the MSCS can be accurately predicted by presented
method.

Since the aim of this study is to analyze the
vibro-acoustic characteristics of MSCS, it is necessary
to verify the accuracy of the sound radiation
characteristics by the proposed method.

To verify the accuracy of the current method for
sound radiation characteristics, Fig. 3 shows the

comparison of the radiation directivity for a uniform
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cylindrical shell made of steel. The shell is immersed
in air, the sound pressures are measured in Rp= 15 m
and Rp= 30 m. The geometric and material properties
of the shell are as follows: L=2m, R=1m, 2= 0.01
m, E =210 GPa, u = 0.3, p = 7800 kg/m3. The unit
surface load 1 N is acted on the normal direction and
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location is defined as xo= 0 m, x;= 0.2 m, 6y= -7/3, 6,
= /3. The excitation frequency due to external force
is 100 Hz. From Fig. 3, it is clearly seen that the
directivity pattern of radiated sound pressure by the
present method is in very good agreement with the
results of the previous work.

Table 3 Comparison of frequency parameters ..., = oR(p(1-4*)/E)'? for a two-stepped cylindrical shell (R = 1 m, k1= 0.01

m, 12=0.005m, Li=0.5m, L=0.5m, m =1).

C-C C-F

SD-SD C-SD

L/R Ref. [32] Present Error,% Ref. [32]

Present Error,%

Ref. [32] Present Error,% Ref. [32] Present Error,%

1 0.85102
0.657085
0.510742
0.409108
0.339613
0.294328
0.269226
0.26175
0.236939
0.124523
0.073567
0.057271
0.062517
0.072523
0.083824
0.100175
0.097703
0.041392
0.027756
0.033748
0.041385
0.053611
0.070682
0.091582

10

0 N N L A WD = 0N R WD = 0NN R WD ~=S

0.850366
0.65755
0.509804
0.408307
0.341667
0.293368
0.268295
0.260729
0.236938
0.124523
0.073626
0.057203
0.062521
0.072498
0.083803
0.100131
0.097713
0.041359
0.027767
0.033723
0.041375
0.0536
0.070674
0.091556

0.0768
-0.0708
0.1837
0.1958
-0.6049
0.3262
0.3459
0.3901
0.0002
0.0001
-0.0805
0.1189
-0.0066
0.0347
0.0256
0.0443
-0.0106
0.0805
-0.0407
0.0738
0.0247
0.0212
0.011
0.028

0.637347
0.409449
0.275042
0.194546
0.147324
0.123625
0.118172
0.126063
0.097836
0.037807
0.022411
0.025746
0.036509
0.051206
0.069402
0.090757
0.029471
0.010877
0.012918
0.021782
0.034298
0.049998
0.068678
0.090272

0.637321
0.4094
0.274997
0.19452
0.147309
0.123493
0.118098
0.125925
0.097834
0.037803
0.022388
0.025715
0.036506
0.051197
0.069386
0.090731
0.029473
0.010885
0.012923
0.02178
0.034297
0.049996
0.068669
0.090253

0.004
0.0119
0.0163
0.0131
0.0099
0.1065

0.063
0.1092
0.0025
0.0109

0.101
0.1222
0.0095
0.0175
0.0225
0.0289
-0.006

-0.07
-0.037
0.0075
0.0041
0.0045
0.0131
0.0206

0.549333
0.622456
0.461383
0.342895
0.265036
0.220569
0.203862
0.208817
0.17659
0.072988
0.041159
0.041561
0.053819
0.064339
0.07795
0.09646
0.056538
0.02075
0.020546
0.029146
0.038195
0.052
0.069888
0.091165

0.549335
0.622438
0.461324
0.342824
0.26501
0.220305
0.203571
0.208586
0.17659
0.072999
0.041145
0.041498
0.053735
0.064284
0.077932
0.096436
0.056537
0.020806
0.020455
0.029155
0.038188
0.051992
0.069872
0.091139

-0.0003
0.0029
0.0128
0.0208
0.0098
0.1197
0.1428
0.1104
7E-05
-0.0155
0.0344
0.1519
0.1559
0.0848
0.0236
0.0245
0.0016
-0.2698
0.4449
-0.0295
0.0196
0.0163
0.0222
0.0288

0.839591
0.656497
0.504898
0.396288
0.321537
0.273013
0.246394
0.238499
0.221194
0.1057
0.059344
0.047681
0.054198
0.064347
0.077951
0.09646
0.082455
0.032011
0.02286
0.029148
0.038196
0.052
0.069888
0.091165

0.839553
0.656429
0.504808
0.396207
0.321406
0.272898
0.246131
0.238227
0.221191
0.105691
0.059324
0.047643
0.054207
0.064329
0.077929
0.09643
0.082459
0.032002
0.022912
0.029109
0.038195
0.051992
0.069873
0.091139

0.0045
0.0103
0.0179
0.0204
0.0409
0.0422
0.1069
0.1141
0.0012
0.0086
0.0343
0.0794
-0.016
0.0274
0.0282
0.031
-0.005
0.0288
-0.226
0.1344
0.0033
0.0151
0.0221
0.0288
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Fig.3 Comparison of the directivity pattern of radiated sound pressure for uniform cylindrical shell: (a) Ro= 15 m; (b) Ro=30 m.
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Then, the sound pressure level and sound power
level results of the uniform cylindrical shell and
MSCS made of steel obtained by presented method
are compared with the results of FEM/BEM, and the
comparison results are shown in Fig. 4. The material
properties of both the uniform cylindrical shell and
MSCS are E =210 GPa, u = 0.3, p = 7800 kg/m>. And
the geometric dimensions are as follows: L =4 m, R =
1 m, 2 = 0.05 m for uniform cylindrical shell; L1 =1 m,
Ly=1m,L3;=1m,R=1m, £/1=0.01 m, 5= 0.02 m,
h3=0.01 m for MSCS. The unit point load 1N is acted

on the location x = 1 m, & = 0 for uniform shell and x

(a)

60

e=0==FEM/BEM
e Present method

-120 L | L | L | L | L
0 50 100 150 200

Frequency, Hz

Omee FEM-BEM
e Present method

PN TN I R ST

100 150
Frequency, Hz

50

200
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= 0.5 m, 8 = 0 for MSCS. The excitation frequencies
due to external force are 250 Hz and 200 Hz for
uniform shell and MSCS, respectively. The sound
radiation characteristics of the shells are measured in
Rop =5 m, and C-C boundary condition is considered.
As shown in Fig. 4, the results of sound radiation
characteristics by the proposed method for both kinds
of shells are in very good agreement with those of the
FEM/BEM, and it can be concluded that the present
method is an accurate and effective method for the
analysis of the acoustic characteristics of the MSCS.

80
60
40
20
== L
S0
q L
= 20 -
740 L
60 ==o0=FEM/BEM .
80 | = Present method i
-100 L | L | ! | ! | !
0 50 100 150 200 250
Frequency, Hz
(b)

-80 ==o0==FEM/BEM -
-100 Present method il
-120 . | . 1 . | .

0 50 100 150 200
Frequency, Hz

Fig. 4 Comparison of sound radiation results of a uniform cylindrical shell (a) and a MSCS (b).

3.2 Sound Radiation Characteristics

By combining different geometric dimensions such
as thickness, length, and radius, many types of stepped
shells can be obtained. Since it is impossible to
perform the analysis for all the possible combinations

of step shells, in this work, the acoustic analysis of the
following four types of step shells are performed.

Case I: two-stepped shell; L1=1m, Li:Ly=1:2, h1 =
0.01 m, A:hy=1:2

Case II: three-stepped shell; L1 =1 m, Li:Lx:L3z =
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1:1:1; /1= 0.01m, Ahy:ha:hs=1:2:1

Case III: three-stepped shell; L1 =1 m, Li:Ly:L3 =
1:2:1; 1= 0.01 m, hy:ha:h3=1:2:1

Case 1V: five-stepped shell; Li=1m, Li:Ly:L3:L4:Ls
=1:1:1:1:1, 1= 0.01 m, hy:h2:h3:ha:hs= 1:2:1:2:1.

In addition, in all the numerical examples below,

the material properties of the MSCS are assumed to be
E =210 GPa, u = 0.3, p = 7800 kg/m3. Fig. 5 shows
the sound radiation characteristics of the MSCS under

(@

(b)

(©

75
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different classical and elastic boundary conditions.
Two kinds of classical boundary conditions (C-C and
C-F) and one elastic boundary condition (Ei-E;) are
considered. For all boundary conditions and shells, it
is assumed that the unit point load 1N is acted on the
location x = 05 m, & = 0, and the excitation
frequencies due to external force are set 200 Hz. The
sound radiation characteristics of the MSCS are

measured in Rp=5 m for all cases.
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Fig. 5 Radiated sound characteristics results of MSCS with different boundary conditions; (a): C-C, (b): C-F, (¢): Ei-E1.
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As shown in Fig. 5, the change of boundary
conditions leads to the change of the sound radiation
characteristics of the MSCS. Thus, the sound radiation
characteristics of MSCS are different depending on
the different boundary conditions. In particular, it can
be seen that the change of the sound radiation
characteristics in the case of the C-F boundary
condition is more pronounced than the other boundary
conditions.

The reason may be related to the high frequency
variation in the case of C-F boundary conditions in the
specified frequency range.

Next, the effect of the applied load type on the
of MSCS

investigated. The location of the force is x = 0.5 m, 4

sound radiation characteristics is

= 0 for the point force, xo= 0.2, x1= 0.8 m, = 0 for
the line force, xo= 0.2 m, x; = 0.8 m, 6y= -7/3, 6,=7/3

200

for the surface force. The sound radiation
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characteristics of the MSCS are measured in Rp=5 m,
and elastic boundary condition Ei-E3 is considered.
Fig. 6 shows the radiated sound characteristics of
MSCS for different applied force types.

As can be seen in Fig. 6, the sound radiation
characteristics of the MSCS are clearly different
depending on the type of applied load. This is because
the pressure is different according to the applied area
when the same unit load is applied, thus, the
displacement characteristics result is changed. As can
be seen in Fig. 6, the results of sound radiation for
point force are the largest and the lowest for surface
this
three-stepped  cylindrical

both cases
considered are shells.
Although both shells are three-stepped shells, the
shape of the shells varies with length and thickness,

force. Interestingly, in study,

and thus, the sound radiation characteristics of are also
different.
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Fig. 6 Radiated sound characteristics of MSCS for different applied force types; (a): Case 11, (b): Case III.
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Fig. 7 shows the grouped modal contributions of the
circumferential modes to the sound radiation of MSCS.
Case IV shell with C-C boundary condition is
considered. From Fig. 7, the contribution of different
circumferential modes to the sound radiation is
different. And when n > 6, the
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circumferential modes have almost no effects on
radiated sound results within the frequency range
considered. However, it should be emphasized here,
its influence range will appear in a higher frequency
band.
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Fig. 7 Radiated sound results of MSCS (Case IV) with different circumferential modes.
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Fig. 8 Radiated sound results of the MSCS for different acoustic medium; (a) C-C (b) Es-Es.

Fig. 8 shows the radiated sound results of MSCS

immersed in different acoustic medium: air and water.

The sound radiation characteristics of the MSCS are
measured in Rp = 15 m, and Case II shells with C-C
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and Es-E3 boundary condition are considered. It is
assumed that the unit point load 1N is acted on the
location x = 0.5 m, 8 = 0 in normal direction, and the
excitation frequencies due to external force are set 150
Hz. As can be seen from Fig. 8, the properties of
acoustic medium have an important influence on the
sound radiation characteristic of the MSCS. The

Vibro-acuostic Analysis of Muti-Stepped Circular Cylindrical Shells Inmersed in Fluid Medium

radiated sound results of water (heavy medium) is
higher than that of air (light medium).

Then, Fig. 9 and Fig. 10 shows circumferential
directivity plots of the Case II MSCS immersed in air
and water. The clamped boundary condition is
considered. It is assumed that the unit point load 1 N

is acted on the location x = 1.5 m, 8 = 0 in normal
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Fig. 9 Circumferential directivity plots of radiated sound pressure for MSCS immersed in air.
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direction. These directivity plots are obtained at first circumferential distances are taken into account, i.e., Rp
six frequencies, i.e., 103.16 Hz, 118.29 Hz, 121.84 Hz, =5m, Rp=10m, Rp= 15 m and Rp= 20 m for Fig. 9
1589 Hz, 1748 Hz and 179.52 Hz. In the and Rp=5m, Rp=6 m, Rp="7 m and Rp= 8 m for Fig.
circumferential ~directivity plots four kinds of 10.
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Fig. 10 Circumferential directivity plots of radiated sound pressure for MSCS immersed in water.
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As shown in Fig. 9, the intensity of sound pressure
decreases rapidly with increasing distance from the

measurement location. This phenomenon can be

attributed to the physical properties of acoustic

fi=103.66 Hz

fi=158.9 Hz

Fig. 11 Sound pressure contours of MSCS immersed in air.
4. Conclusion

This paper is investigated the vibro-acoustic
characteristics of (MSCS) immersed in infinite fluid
medium by using a semi-analytical method. Based on
the Flugge’s thin shell theory, the theoretical model
for vibro-acoustic analysis of the MSCS is formulated
by using the energy method and spectral boundary
element method. The variables describing the
displacement and acoustic properties of the structure
are expressed as Chebyshev orthogonal polynomials
in the meridional direction and Fourier series in the
circumferential direction. The external acoustic field
of the MSCS is formulated by the spectral Helmholtz
integral equation with the collocation points. The
non-uniqueness solution of the acoustic integral
CHIEF method.

Comparison studies are performed to verify the

equation is solved using the

accuracy, convergence and reliability of the proposed
method. Finally, the vibro-acoustic responses of

, 7

£=118.29 Hz

fs=174.8 Hz

medium. To improve the reader’s understanding of the
sound radiation characteristics, Fig. 11 shows the
sound pressure contours of the MSCS immersed in air
corresponding to the first six frequencies.

£i=121.84 Hz

lA

f6=179.52 Hz

MSCS immersed in fluid medium with various

geometries, material properties and boundary
conditions are investigated through numerical
examples.
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