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Abstract: In this paper, a semi-analytical method for investigating the vibro-acoustic characteristics of multi-stepped cylindrical 

shells (MSCS) immersed in infinite fluid medium is presented. Based on the Flugge’s thin shell theory, the theoretical model for 

vibration analysis of MSCS is established, whereas acoustic analysis is carried out by employing the Kirchhoff–Helmholtz integral 

equation. The Chebyshev polynomials is set as shape function for vibro-acoustic analysis of the MSCS, all displacement components 

are expressed by the Chebyshev polynomials in meridional direction and Fourier series in circumferential direction. For discretizing 

of acoustic boundary, a set of Chebyshev collocation points and spectral boundary element are introduced, and for solving the 

non-uniqueness problem in acoustic analysis, the CHIEF method is applied. Through comparison studies with the results of previous 

literature and the coupled finite element method/ boundary element method (FEM/BEM), the accuracy, convergence and reliability 

of the proposed method are verified. Finally, the effects of geometry, boundary conditions, fluid medium, material properties and 

type of applied force on the vibro-acoustic characteristics of MSCS are investigated by several numerical examples. 
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1. Introduction  

It is well known that circular cylindrical shells are 

the main components widely used in the fields of 

mechanical engineering, aerospace, shipbuilding, 

chemical industry, etc. A detailed example is the 

fuselage of a carrier-rocket or space vehicle in the 

aerospace industry, the fuselage of a submarine in the 

shipping industry, and the pressure vessels in the 

chemical industry. These structures, especially those 

used in airframe or ship fuselage, are operated under 

various working conditions and environments, and can 

cause vibrations and noise during the operation. Since 

the vibration and noise generated during the operation 

have detrimental effects on the life, strength and 

health of the machine, the study of accurately 

analyzing and predicting the vibro-acoustic 

characteristics is being carried out. 

Based on the hypothesis of Kirchhoff-Love, thin 

shell theories such as Flügge’s theory, 
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Reissner-Naghdi’s theory, and Goldenveizer- 

Novozhilov’s were developed for the dynamic 

characterization of shell structures [1, 2]. With the 

development of shell theory, extensive research has 

been carried out to develop high-accuracy and 

efficient calculation methods. In this process, many 

efficient solution methods have been proposed, such 

as general domain decomposition methods [3, 4], the 

Ritz method [5-9], differential quadrature method 

[10-13], FEM [14-16], wave propagation approach [17, 

18], Galerkin method [19, 20], meshless method 

[21-23], the dynamics stiffness method [24-26] 

discrete singular solution method [27, 28], and Haar 

wavelet method [29]. Depending on the working 

conditions and structural requirements, in some cases 

a stepped cylindrical shell structure is required, and 

the study to analyze the dynamic characteristics of a 

stepped cylindrical shell is carried out in Refs [30-32]. 

Much research has been done on the analysis of 

sound radiation problem of elastic structures in fluid 

medium as well as on the analysis of vibration of 
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cylindrical shells. The most widely used method for 

the analysis of sound radiation problem of elastic 

structures immersed in a fluid medium is the coupled 

FEM/BEM. In this method, FEM is used to describe 

the dynamic behavior of the structure, and BEM is 

used to represent the acoustic load acting on the 

structure. The continuity condition at the interface 

between the structure and fluid is that the normal 

velocity and the continuity of the sound pressure 

acting on the surface of the structure must be ensured. 

While FEM has advantages in structural dynamic 

behavior analysis, BEM has advantages in acoustic 

analysis, where all discretization and numerical 

approximations are located on the surface of the 

structure. Moreover, the radiation condition exiting 

infinity is automatically satisfied in BEM [33] when 

the fluid medium exists in an infinite space. The 

accurate results may be obtained by discretizing the 

shell and fluid medium boundaries using two- or 

three-dimensional finite elements and 

two-dimensional boundary elements [34-38]. Denli 

and Sun [39] used two-dimensional finite elements 

and two-dimensional boundary elements for acoustic 

analysis both inside and outside of sandwich 

cylindrical shells. Bérot and Peseux [40] presented an 

analytical formulation and numerical meodel to 

investigate the vibro-acoustic behavior of submerged 

cylindrical shells immersed in heavy fluid. To 

investigate the vibration and acoustic responses of a 

submarine hull under harmonic excitation, Caresta et 

al. [41, 42] used the power series-wave solution. By 

using the double reflection method, Chen et al. [43] 

investigated vibro-acoustic behavior of cylindrical 

shell with complex acoustic boundary conditions. 

Based on a general higher-order shear deformable 

zig-zag theory, Qu et al. [44] presented a 

semi-analytical approach for obtaining the 

vibro-acoustic characteristics of multilayered shell 

such as cylindrical, conical and spherical shell 

immersed in a light or heavy fluid. Zou et al. [45] 

presented an analytical formulation for the underwater 

acoustic radiation of a cylindrical shell with an 

internal flexural floor based on the reciprocity 

theorem, Liu et al. [46] investigated vibration 

behavior and acoustic radiation of a finite cylindrical 

shell partially covered with circumferential compliant 

layers by using the method presented in Ref. [45]. 

Wang et al. [47] presented an analytical model of 

vibro-acoustic response of a stiffened submerged 

cylindrical shell with force and acoustic excitation, the 

accuracy of the model was verified experimentally. 

When acoustic analysis is performed based on the 

classical Kirchhoff-Helmholtz integral equation, it is 

possible that the boundary element is either 

two-dimensional or one-dimensional, and therefore 

may not give a unique solution at some fictitious 

frequencies [48]. These frequencies have no physical 

meaning and produce insignificant peaks in the 

acoustic response, which can be effectively removed 

using the CHIEF method [49] or Burton-Miller 

method [50]. In addition to the study of the 

vibro-acoustic analysis of various types of individual 

shells, the vibro-acoustic analysis of the 

interconnected structure of shells such as conical, 

cylindrical and spherical shapes has also been studied 

[51-56]. 

As can be seen from the previous work, there has 

been a lot of work on vibro-acoustic analysis of shells 

with uniform thickness, whereas no research on 

vibro-acoustic analysis of stepped shells has been 

found. Therefore, the present paper focuses on the 

analysis of the vibro-acoustic properties of MSCS 

immersed in an infinite fluid medium. Based on the 

Flügge’s thin shell theory, the theoretical formulation 

for the vibration analysis of a MSCS is established, 

the variational principles is adopted. Acoustic analysis 

of MSCS is carried out by employing the 

Kirchhoff–Helmholtz integral equation, for solving 

the non-uniqueness problem in acoustic analysis, the 

CHIEF method is applied. The Chebyshev 

polynomials is set as shape function for vibro-acoustic 

analysis of the MSCS, all displacement components 
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are expressed by the Chebyshev polynomials in 

meridional direction and Fourier series in 

circumferential direction. Vibro-acoustic response of 

the MSCS with material properties under various 

boundary conditions are presented through numerical 

examples. 

2. Theoretical Formulation 

2.1 Description of the Model 

The geometric model of MSCS is shown in Fig. 1. 

The MSCS consists of N uniform shells of length Li, 

thickness hi and middle surface radius is R. Subscript 

i(1, 2, ..., N) denotes number of step. A cylindrical 

shell of uniform thickness can be obtained by setting 

the thickness of individual steps equal. The cylindrical 

shell is defined by an orthogonal coordinate system (x, 

θ, z) with x in the horizontal direction, θ in the 

circumferential direction, and z in the normal direction 

of middle surface MSCS. The displacements 

components in the x, θ and z directions of individual 

shells are expressed by ui, vi and wi, respectively. 

 

 
Fig. 1  Geometry and coordinate system of a MSCS. 

 

2.2 Vibration Analysis Model 

According to Flügge’s thin shell theory, the linear 

strain expressions are defined as following [1, 2]. 
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According to Hooke’s law on stress-strain 

relationship, the corresponding stresses components of 

individual step shell can be expressed as follows: 
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where 𝐸 and μ are Young’s modulus and Poisson’s 

ratio, respectively. 

From the elastic theory, the strain energy function 

in the ith step shell can be expressed as 

( )
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The kinetic energy of ith step shell can be written as: 

( ) ( ) ( )
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The effect of external loads to study the force 

vibration characteristic of proposed structure can be 

expressed as following energy function [32]. 
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where, fu, fv and fw are the external forces in the 

meridional, circumferential, and the normal directions, 

respectively. 

The virtual work corresponding to the external 

acoustic medium pressure can be expressed as 

follows. 

( ) ( )f i i

x

W w p dxd



= −  r r      (7) 

Where pi is the acoustic medium pressure acting on 

the ith step shell. 

By applying the pseudo-stiffness technique, the 

boundary and continuity conditions can be generalized, 

and the potential energy stored in the boundary and 

connecting springs are given as follows, respectively. 

In Eq. (8) symbols ku, kv, kw and Kw are the boundary 

spring stiffness. Table 1 shows the spring stiffness 

value corresponding to the several boundary 

conditions. 
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Table 1  The spring stiffness value corresponding to the boundary conditions. 

BC ku,0, ku,1 kv,0, kv,1 kw,0, kw,1 kφ,0, kφ,1 kθ,0, kθ,1 

F 0 0 0 0 0 

SD 0 1014 1014 0 0 

SS 1014 1014 1014 0 1014 

C 1014 1014 1014 1014 1014 

E1 108 108 108 1014 1014 

E2 1014 1014 1014 108 108 

E3 108 108 108 108 108 
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In addition, in Eq. (9), kuc, kvc, kwc and Kwc represent 

the connection spring stiffness. By setting the stiffness 

value of the connecting spring to infinity (1014), the 

individual shells can be considered as rigid bonded 

shells. 

In this paper, the displacement is parametrically 

represented by the Chebyshev polynomial of first kind 

in the meridional direction and Fourier series in the 

circumferential direction, can be written as follows: 

( )0

0 0

, , ( ) cos( ) sin( )
M N

i i i i t

m mn mn

m n

u x t T U n U n e    
= =

 = +                (10a) 

( )0

0 0

, , ( ) sin( ) cos( )
M N

i i i i t

m mn mn

m n

v x t T V n V n e    
= =

 = +              (10b) 

( )0

0 0

, , ( ) cos( ) sin( )
M N

i i i i t

m mn mn

m n

w x t T W n W n e    
= =

 = +               (10c) 

 

where Tm(ϕ) is the m-order Chebyshev polynomial, 

which means the displacement function in the 

meridional direction, and the maximum degree is M. 

, , , ,i i i i i

mn mn mn mn mnU U V V W  and 
i

mnW are unknown 

coefficients of the polynomial to be determined. ω is 

an angular frequency, t denotes time. n is the 

circumferential wave number, and the maximum 

degree is N. 

The mth polynomial of Chebyshev polynomial of 

first kind uniformly defined as [32]. 
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equation of the Chebyshev polynomial can be written 

as: 

( ) ( ) ( )1 12m m mT xT T  + −= −     (12) 

Thus, the Chebyshev polynomials can be obtained 
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where [m/2] denotes the integer part of m/2. 

The Chebyshev polynomial are complete and 

orthogonal polynomials defined on the interval of 

[-1,1]. Thus, a linear transformation statute must be 

introduced for coordinate conversion from interval 

x[0, Li] of the individual step shell to interval 

([-1,1]) of the Chebyshev polynomial,  

Since the Chebyshev polynomial is an orthogonal 

function defined in the interval [-1,1], the actual 

interval of the individual shell x[0, Li] must be 

linearly transformed into a polynomial interval. Thus, 

the following linear transformation condition must be 

introduced; 
2

1
i

x
L

 = − or ( )1
2

iL
x = + . 

The total Lagrangian energy L of the MSCS can be 

expressed as: 

( ) ( ) ( )
1

N
i i i i

s B C f

i

T U U U W W
=

= − − + + +L  (14) 

According to the Rayleigh-Ritz method, the total 

Lagrangian energy of the MSCS is minimized by 

partial derivation with respect to the unknown 

coefficients.  
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
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 (15) 

Substituting Eqs.(4)-(14) into Eq. (15), the 

discretized vibration equation of the MSCS is 

obtained as matrix form. 

( )2

s p− = +K M A F F        (16) 

where K and M are the stiflfness and mass matrix of 

the MSCS, and A is the coefficient vector, 

respectively. FS is the generalized force vector due to 

the external forces acting on the structure, and Fp is 

the force vector generated by the sound pressure of the 

fluid medium acting on the surface of the shell. 

2.3 Acoustic Analysis Model 

When sound propagates in a fluid medium due to 

structural vibrations of an elastic body, some 

assumptions about the fluid medium are introduced as: 

(1) A sound-transmitting medium is an ideal fluid 

that does not take into account the viscosity of the 

fluid medium and the energy transfer loss of the sound 

waves in the fluid medium; (2) The initial fluid 

velocity of the sound-transmitting medium is zero and 

uniformly distributed; (3) The sound wave transmitted 

in a fluid medium is an elastic wave with a small 

amplitude. 

In analyzing the acoustic characteristics of 

structures in fluid-solid coupling space, BEM is a 

widely applied method due to its ease of coupling with 

finite element methods, which essentially provides 

numerical solution of the Helmholtz integral equation. 

A schematic diagram for considering the problem of 

external acoustic wave propagation of an 

axisymmetric elastic structure in sound fields without 

sound sources and acted forces is shown in Fig. 2. 

 

 
Fig. 2  The coordinate system for analyzing the sound radiation of a MSCS. 

 

Considering that MSCS is axisymmetric, to define 

the acoustic field, a global coordinate system (r, θ, z) 

located on the geometric symmetry axis of the MSCS 

is introduced. 

Based on this coordinate system, the 

Kirchhoff–Helmholtz boundary integral equation 

governing the exterior sound space of MSCS can be 

expressed as [56]: 
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where C(r) means the position of the point measuring 

the acoustic characteristics and is defined as: 
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r(r, θ, z) is the radius vector of any measurement 

point in the sound propagation space Ω and 𝐫̅(𝑟,̅ 𝜃̅, 𝑧̅) 

is the radius vector of any point on the fluid-solid 

interface S. 𝐺(r, 𝐫)̅  is a Green’s function and is 

defined in cylindrical coordinates as follows: 
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0
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4 ,
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=
r r

r r
r r
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where k = ω/cf, ω is the vibration frequency, cf is the 

velocity of sound in the fluid, and R0(r,𝐫̅) is the 

distance R0(r,𝐫̅) between two vectors r and 𝐫̅ and it is 

calculated as follows. 
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When analyzing the acoustic behavior of 

axisymmetric elastic bodies, 𝑃(𝐫) and 𝑃(𝐫)̅ can be 

expanded into Fourier series in the circumferential 

direction. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

, , sin , , cos

, , sin , , cos

N
s c

n n

n

N
s c

n n

n

p p r n z n p r n z n

p p r n z n p r n z n

 

 

=

=

 = + 

 = + 





r

r

            (21) 

 

where 𝑝𝑛
𝑠(𝑟, 𝑛, 𝑧),  𝑝𝑛

𝑐 (𝑟, 𝑛, 𝑧)  are the Fourier 

coefficients of the sound pressure at the measurement 

point 𝐫(𝑟, 𝑛, 𝑧)  of the sound field, and 

𝑝̅𝑛
𝑠(𝑟̅, 𝑛̅, 𝑧̅),  𝑝𝑛

𝑐 (𝑟̅, 𝑛̅, 𝑧̅) are the Fourier coefficients of 

the sound pressure at the interface point 𝐫̅(𝑟̅, 𝑛̅, 𝑧̅) of 

the sound field (the surface of shell). n is the acoustic 

mode number in the circumferential direction. 

Similarly, expanding the Green’s function and its 

normal derivative into a Fourier series 

circumferentially at the interface, they can be written 

as: 
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In Eq. (22), 
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The contact surface interaction of the fluid with the 

body structure can be written as 

( )
( )

2

1
i

f

p
w

n 


=



r
r        (24) 

where 𝑤𝑖(𝐫̅) is the normal displacement of the elastic 

body at the surface of the elastic body and 
( )p

n





r
 is 

the normal derivative of the sound pressure at the 

boundary point of the sound field (the surface of the 

elastic body). 

Substituting Eqs. (21-24) into Eq. (17) and after 

performing certain algebraic operations, we can obtain 

the modified form of the Kirchhoff-Helmholtz integral 

equation as follows [39]: 
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
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 
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      (25) 

 

Eq. (26) can be written simply as 

( ) ( )

( ) ( )

2

2

s s s

n n n f n n

l

c c c

n n n f n n

l

C p H p H w rdl

C p H p H w rdl

 

 

= −

= −





r

r
   (26) 

To construct the coupling matrix of solid-fluid 

interactions, the acoustic boundary l must be 

discretized in such a way that the acoustic boundary 

segments and shell segments are matched. The sound 

pressure for each shell segment is expanded as 

follows:  

( ) ( )

( ) ( )

,

0

,

0

J
s s s

n j n j p n

j

J
c c c

n j n j p n

j

p T p

p T p

 

 

=

=

= =

= =





T p

T p

    (27) 

where, Tj(ξ) is the jth order Chebyshev orthogonal 

polynomials of the first kind. 𝑝̅𝑛,𝑗
𝑠  and 𝑝̅𝑛,𝑗

𝑐  denote 

the generalized pressure. Substituting Eqs. (27) and 

(10c) into Eq. (26), the discretized 

Kirchhoff-Helmholtz boundary integral equation can 

be written as following. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

1 1
i i

N N
s s s

p n n p n f n n

i il l

C H r J d H r J d          
= =

   = −     r J p r J p r J W r  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

1 1
i i

N N
c c c

p n n p n f n n

i il l

C H r J d H r J d          
= =

   = −     r J p r J p r J W r (28) 

 

where J is the Jacobian coordinate transformation. 

To discretize the boundary integral equation, J+1 

collocation points are defined within the boundary 

element. Such collocation points can be chosen as 

zero points of orthogonal polynomials. The formula 

for calculating the zero points of the Chebyshev 

orthogonal polynomials of the first kind is as: 

,

2 1
cos , 1,2,..., 1, 1

2
j k

k
k J j J

j
 

 −
= = + = + 

 
 (29) 

By moving the measurement point r of the sound 

field to the jth collocation point of the kth boundary 

element according to the BEM, Eq. (28) can be 

written as 

( ) ( )

( ) ( )

, , , , ,

1 1

, , , , ,

1 1

N N
s s s

p k n k k n i n i n i n i

i i
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C

C

 

 

= =

= =

− + =

− + =

 

 

J p H p G W

J p H p G W

(30) 

where 

( ) ( )

( ) ( )

,

2

,

i

i

n i n p

l

n i f n w

l

H r J d

H r J d





  

    

=

=





H J

G J
    (31) 

In addition, Eq. (30) can be written in one matrix 

form as follows: 

0 0

N N

n n n n

n n= =

= H P G w        (32) 
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in which 

( ) ( ),1 , , ,1 , ,,..., ,..., , ,..., ,...,

s c
n n

k

n n n i n N n n i n N i p kC 

 
 = −
 
  P P

H H H H H H H r J     

,1 , , ,1 , ,,..., ,..., , ,..., ,...,

s c
n n

n n n i n N n n i n N

 
 =
 
  w w

G G G G G G G                    

,1 , , ,1 , ,,..., ,..., , ,..., ,...,
T

s s s c c c

n n n i n N n n i n N
 =  p p p p p p p                       

,1 , , ,1 , ,,..., ,..., , ,..., ,...,
T

s s s c c c

n n n i n N n n i n N
 =  w w w w w w w               (33) 

 

In order to remove the non-uniqueness of Eq. (32), 

the CHIEF method is applied, in which, Eq. (30) 

where the collocation points are set outside of the 

fluid is used as constraint. If the collocation points ri 

are placed outside the fluid, the quantity C(r) becomes 

zero and Eq. (30) can be rewritten as 

, , , ,

1 1

N N
s s

n i n i n i n i

i i= =

= p wHc Gc           

, , , ,

1 1

N N
c c

n i n i n i n i

i i= =

= p wHc Gc       (34) 

where 

( ) ( ),
i

n i n p
l

Hc r J d  =  JHc       

( ) ( )2

,
i

n i f n w
l

Hc r J d    =  JGc  (35) 

In addition, Eq. (34) can be simplified as follows: 

n n n n=Hc p Gc w           (36) 

Therefore, considering the matrix added by the 

CHIEF method, when the circumferential 

wavenumber is unity the boundary element matrix is 

n n n n=H p G w            (36) 

where 

,
T

T T

n n n
 =  H H Hc             

,
T

T T

n n n
 =  G G Gc          (37) 

Considering the circumferential wave number n = 

0~N, the discretization matrix of the total boundary 

integral equation is written as 

=Hp Gw               (38) 

where 

1

2

n

N

 
 
 
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 
 
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, 
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 
 
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 

=  
 
 
 
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G

G

G
G

G

         (39) 

 

2.4 Coupled Model for Vibro-Acoustic Analysis 
When the structure is immersed in a light fluid, the 

influence of sound radiation by the fluid can be 
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neglected because the density of the fluid is much 

smaller than the material density of the structure, 

therefore, the vibration and sound radiation problems 

of the structure can be analyzed separately in this case. 

However, if the structure is immersed in a heavy fluid, 

the fluid will affect the force acting on the structure, 

and thus the acoustic radiation cannot be neglected. 

The acoustic-vibration coupling system of an elastic 

structure in a fluid has a close relationship between 

the sound pressure and the structural vibration, and 

therefore structural and acoustic problems must be 

solved simultaneously. The influence of the sound 

pressure exerted by the structure in the fluid space is 

considered as the external force of the structure. 

( )
1

i

N
e

ef i i

i l

W u p n dl
=

= −      (40) 

( ) ( ) ( ), ,

1 1i i

N N
T T Tn s T s c T c

f n i n w p n n i n w p n n n n
l l

i i

W S dl C dl    
= =

   = −  −  = −
      

  w J J p w J J p w C p   (41) 

 

in which 

( )
2

2

0
sinnS n d


  =  , ( )

2
2

0
cosnC n d


  =  (42) 

There is a relation of w = TA between the normal 

displacement and the total displacement of the 

structure, where T is the transformation matrix. 

The external force Fp due to the sound pressure can 

be obtained as 

T

p = T CpF            (43) 

The acoustic-vibration coupling equation of the 

fluid-elastic structure is follows as: 

( )2

0

T − =


− =

M + K A + T Cp

GTE Hp

F
    (44) 

Eq.(44) can be rewritten as matrix form: 

2

0

T −    
=     

−     

AM + K T C

pGT H

F
    (45) 

By solving Eq. (45), the vectors A, 𝐩̅  can be 

obtained directly, and then the generalized pressure 

vector 𝐩̅ can be calculated and the sound pressure of 

any position in the fluid space is also obtained. 

3. Numerical Results 

In this section, the accuracy, convergence and 

reliability of the method proposed in this paper for the 

investigate of the vibro-acoustic responses of MSCS 

are verified by comparison with the results of the 

previous literature and FEM/BEM, and the influences 

of several parameters on the vibro-acoustic 

characteristics are presented by numerical examples. 

Unless otherwise stated, in all calculations below, the 

light fluid is considered as air (the sound velocity cf = 

340 m/s and the density ρf = 1.225 kg/m3), and the 

heavy fluid as water (the sound velocity cf  = 1500 

m/s and the density ρf = 1026 kg/m3). 

Since the range of sound pressure and sound power 

variations is very large, therefore, in acoustic 

engineering, the sound pressure level (SPL) and sound 

power level (SWL) defined by the Eq. (46) are usually 

used, and the units are decibel (dB). 

Re

20log
f

P
SPL

P

 
  
 

= ,
Re

10log
f

W
SWL

W

 
  
 

= (46) 

The reference sound pressure and the reference 

sound power in Eq. (46) are set as follows for water 

and air: the reference sound pressure is PRef =2×10-5 

for water and PRef =1×10-6 for air, respectively: the 

reference sound power is WRef =1×10-12 for both water 

and air. 

3.1 Convergence and Validation 

Before investigating the vibro-acoustic 

characteristics of MSCS, the accuracy, convergence 

and reliability of the present method must be verified. 

As shown in Eq. (11), the Chebyshev polynomial can 

be expanded to infinity. However, increasing the 
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degree of the polynomial can lead to higher 

computational accuracy, while the computational 

efficiency may be reduced. Therefore, it is important 

to determine the reasonable polynomial degree to 

achieve high computational efficiency with 

computational accuracy. 

Table 2 shows the change of frequency parameter 

of the MSCS according to the increment of the 

polynomial order. As shown in Table 2, the frequency 

parameter converges to a certain value as the 

polynomial order increases. But in all cases, when the 

polynomial order exceeds 15, there is no change in the 

frequency parameter. Therefore, the polynomial order 

is selected as M = 15 for all calculations below. 

 

Table 2  Convergence of frequency parameters according to increase the polynomial order. 

  Polynomial order   

B.Cs n 3 5 7 9 11 13 15  Ref. [32] 

C-F 1 0.062512 0.056642 0.056309 0.056082 0.05594 0.055854 0.0558  0.055788 

 2 0.024446 0.020263 0.020189 0.020137 0.020096 0.020067 0.020047  0.020042 

 3 0.012904 0.010692 0.010666 0.010652 0.010641 0.010631 0.010623  0.010622 

 4 0.011038 0.010158 0.010148 0.010144 0.010141 0.010138 0.010135  0.010134 

 5 0.014407 0.014117 0.014114 0.014112 0.014111 0.01411 0.014108  0.014107 

 6 0.020252 0.020143 0.020141 0.020141 0.02014 0.020139 0.020137  0.020135 

 7 0.027597 0.027545 0.027544 0.027544 0.027543 0.027542 0.027539  0.027538 

 8 0.036197 0.036165 0.036165 0.036164 0.036163 0.036161 0.036158  0.036157 

 9 0.045986 0.045961 0.04596 0.045959 0.045958 0.045956 0.045952  0.045952 

 10 0.056942 0.056919 0.056918 0.056917 0.056915 0.056912 0.056907  0.056909 

           

C-C 1 0.298475 0.201847 0.197243 0.195424 0.194659 0.194297 0.194105  0.194089 

 2 0.290264 0.101632 0.099219 0.098059 0.097442 0.097099 0.096901  0.096886 

 3 0.287499 0.055651 0.054619 0.054164 0.053882 0.0537 0.053581  0.053574 

 4 0.286428 0.034902 0.034379 0.03419 0.034069 0.033983 0.033921  0.033918 

 5 0.286052 0.026392 0.026111 0.026026 0.025975 0.025936 0.025906  0.025906 

 6 0.2861 0.02569 0.025553 0.025516 0.025495 0.025479 0.025467  0.025468 

 7 0.286522 0.030073 0.030012 0.029995 0.029987 0.029981 0.029976  0.029977 

 8 0.28735 0.037424 0.037397 0.037389 0.037385 0.037382 0.03738  0.037382 

 9 0.288658 0.046667 0.046654 0.04665 0.046648 0.046647 0.046646  0.046648 

 10 0.29054 0.057368 0.057362 0.057359 0.057358 0.057357 0.057356  0.057361 
 

The results of the frequency parameters Ωn,m = 

ωR(ρ(1-μ2)/E)1/2 of the proposed structure obtained 

based on the theoretical formulation established in 

Section 2 are shown in Table 3, comparing with those 

of the literature. The structure used for comparison is 

a two-stepped cylindrical shell and the geometry are R 

= 1 m, h1 = 0.01 m, h2 = 0.005 m, L1 = 0.5 m, L2 = 0.5 

m. As shown in Table 3, the results of the frequency 

parameters obtained by the proposed method are 

found to be in very good agreement for all boundary 

conditions, length to radius ratio and circumferential 

wave number. From the comparison results in Tables 

1 and 2, it can be seen that the vibration characteristics 

of the MSCS can be accurately predicted by presented 

method. 

Since the aim of this study is to analyze the 

vibro-acoustic characteristics of MSCS, it is necessary 

to verify the accuracy of the sound radiation 

characteristics by the proposed method. 

To verify the accuracy of the current method for 

sound radiation characteristics, Fig. 3 shows the 

comparison of the radiation directivity for a uniform 
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cylindrical shell made of steel. The shell is immersed 

in air, the sound pressures are measured in RQ = 15 m 

and RQ = 30 m. The geometric and material properties 

of the shell are as follows: L = 2 m, R = 1 m, h = 0.01 

m, E = 210 GPa, μ = 0.3, ρ = 7800 kg/m3. The unit 

surface load 1 N is acted on the normal direction and 

location is defined as x0 = 0 m, x1 = 0.2 m, θ0 = -π/3, θ1 

= π/3. The excitation frequency due to external force 

is 100 Hz. From Fig. 3, it is clearly seen that the 

directivity pattern of radiated sound pressure by the 

present method is in very good agreement with the 

results of the previous work. 
 

Table 3  Comparison of frequency parameters Ωn,m = ωR(ρ(1-μ2)/E)1/2 for a two-stepped cylindrical shell (R = 1 m, h1 = 0.01 

m, h2 = 0.005 m, L1 = 0.5 m, L2 = 0.5 m, m = 1). 

  C-C   C-F   SD-SD   C-SD   

L/R n Ref. [32] Present Error,% Ref. [32] Present Error,% Ref. [32] Present Error,% Ref. [32] Present Error,% 

1 1 0.85102 0.850366 0.0768 0.637347 0.637321 0.004 0.549333 0.549335 -0.0003 0.839591 0.839553 0.0045 

 2 0.657085 0.65755 -0.0708 0.409449 0.4094 0.0119 0.622456 0.622438 0.0029 0.656497 0.656429 0.0103 

 3 0.510742 0.509804 0.1837 0.275042 0.274997 0.0163 0.461383 0.461324 0.0128 0.504898 0.504808 0.0179 

 4 0.409108 0.408307 0.1958 0.194546 0.19452 0.0131 0.342895 0.342824 0.0208 0.396288 0.396207 0.0204 

 5 0.339613 0.341667 -0.6049 0.147324 0.147309 0.0099 0.265036 0.26501 0.0098 0.321537 0.321406 0.0409 

 6 0.294328 0.293368 0.3262 0.123625 0.123493 0.1065 0.220569 0.220305 0.1197 0.273013 0.272898 0.0422 

 7 0.269226 0.268295 0.3459 0.118172 0.118098 0.063 0.203862 0.203571 0.1428 0.246394 0.246131 0.1069 

 8 0.26175 0.260729 0.3901 0.126063 0.125925 0.1092 0.208817 0.208586 0.1104 0.238499 0.238227 0.1141 

5 1 0.236939 0.236938 0.0002 0.097836 0.097834 0.0025 0.17659 0.17659 7E-05 0.221194 0.221191 0.0012 

 2 0.124523 0.124523 0.0001 0.037807 0.037803 0.0109 0.072988 0.072999 -0.0155 0.1057 0.105691 0.0086 

 3 0.073567 0.073626 -0.0805 0.022411 0.022388 0.101 0.041159 0.041145 0.0344 0.059344 0.059324 0.0343 

 4 0.057271 0.057203 0.1189 0.025746 0.025715 0.1222 0.041561 0.041498 0.1519 0.047681 0.047643 0.0794 

 5 0.062517 0.062521 -0.0066 0.036509 0.036506 0.0095 0.053819 0.053735 0.1559 0.054198 0.054207 -0.016 

 6 0.072523 0.072498 0.0347 0.051206 0.051197 0.0175 0.064339 0.064284 0.0848 0.064347 0.064329 0.0274 

 7 0.083824 0.083803 0.0256 0.069402 0.069386 0.0225 0.07795 0.077932 0.0236 0.077951 0.077929 0.0282 

 8 0.100175 0.100131 0.0443 0.090757 0.090731 0.0289 0.09646 0.096436 0.0245 0.09646 0.09643 0.031 

10 1 0.097703 0.097713 -0.0106 0.029471 0.029473 -0.006 0.056538 0.056537 0.0016 0.082455 0.082459 -0.005 

 2 0.041392 0.041359 0.0805 0.010877 0.010885 -0.07 0.02075 0.020806 -0.2698 0.032011 0.032002 0.0288 

 3 0.027756 0.027767 -0.0407 0.012918 0.012923 -0.037 0.020546 0.020455 0.4449 0.02286 0.022912 -0.226 

 4 0.033748 0.033723 0.0738 0.021782 0.02178 0.0075 0.029146 0.029155 -0.0295 0.029148 0.029109 0.1344 

 5 0.041385 0.041375 0.0247 0.034298 0.034297 0.0041 0.038195 0.038188 0.0196 0.038196 0.038195 0.0033 

 6 0.053611 0.0536 0.0212 0.049998 0.049996 0.0045 0.052 0.051992 0.0163 0.052 0.051992 0.0151 

 7 0.070682 0.070674 0.011 0.068678 0.068669 0.0131 0.069888 0.069872 0.0222 0.069888 0.069873 0.0221 

 8 0.091582 0.091556 0.028 0.090272 0.090253 0.0206 0.091165 0.091139 0.0288 0.091165 0.091139 0.0288 

  

Fig. 3  Comparison of the directivity pattern of radiated sound pressure for uniform cylindrical shell: (a) RQ = 15 m; (b) RQ = 30 m. 
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Then, the sound pressure level and sound power 

level results of the uniform cylindrical shell and 

MSCS made of steel obtained by presented method 

are compared with the results of FEM/BEM, and the 

comparison results are shown in Fig. 4. The material 

properties of both the uniform cylindrical shell and 

MSCS are E = 210 GPa, μ = 0.3, ρ = 7800 kg/m3. And 

the geometric dimensions are as follows: L = 4 m, R = 

1 m, h = 0.05 m for uniform cylindrical shell; L1 = 1 m, 

L2 = 1 m, L3 = 1 m, R = 1 m, h1 = 0.01 m, h2 = 0.02 m, 

h3 = 0.01 m for MSCS. The unit point load 1N is acted 

on the location x = 1 m, θ = 0 for uniform shell and x 

= 0.5 m, θ = 0 for MSCS. The excitation frequencies 

due to external force are 250 Hz and 200 Hz for 

uniform shell and MSCS, respectively. The sound 

radiation characteristics of the shells are measured in 

RQ = 5 m, and C-C boundary condition is considered. 

As shown in Fig. 4, the results of sound radiation 

characteristics by the proposed method for both kinds 

of shells are in very good agreement with those of the 

FEM/BEM, and it can be concluded that the present 

method is an accurate and effective method for the 

analysis of the acoustic characteristics of the MSCS. 

    

 
Fig. 4  Comparison of sound radiation results of a uniform cylindrical shell (a) and a MSCS (b). 

 

3.2 Sound Radiation Characteristics 

By combining different geometric dimensions such 

as thickness, length, and radius, many types of stepped 

shells can be obtained. Since it is impossible to 

perform the analysis for all the possible combinations 

of step shells, in this work, the acoustic analysis of the 

following four types of step shells are performed. 

Case I: two-stepped shell; L1 = 1 m, L1:L2 = 1:2, h1 = 

0.01 m, h1:h2 = 1:2 

Case II: three-stepped shell; L1 = 1 m, L1:L2:L3 = 
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1:1:1; h1 = 0.01m, h1:h2:h3 = 1:2:1 

Case III: three-stepped shell; L1 = 1 m, L1:L2:L3 = 

1:2:1; h1 = 0.01 m, h1:h2:h3 = 1:2:1 

Case IV: five-stepped shell; L1 = 1 m, L1:L2:L3:L4:L5 

= 1:1:1:1:1, h1 = 0.01 m, h1:h2:h3:h4:h5 = 1:2:1:2:1. 

In addition, in all the numerical examples below, 

the material properties of the MSCS are assumed to be 

E = 210 GPa, μ = 0.3, ρ = 7800 kg/m3. Fig. 5 shows 

the sound radiation characteristics of the MSCS under 

different classical and elastic boundary conditions. 

Two kinds of classical boundary conditions (C-C and 

C-F) and one elastic boundary condition (E1-E1) are 

considered. For all boundary conditions and shells, it 

is assumed that the unit point load 1N is acted on the 

location x = 0.5 m, θ = 0, and the excitation 

frequencies due to external force are set 200 Hz. The 

sound radiation characteristics of the MSCS are 

measured in RQ = 5 m for all cases. 

(a)  

(b)  

(c)  

Fig. 5  Radiated sound characteristics results of MSCS with different boundary conditions; (a): C-C, (b): C-F, (c): E1-E1. 
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As shown in Fig. 5, the change of boundary 

conditions leads to the change of the sound radiation 

characteristics of the MSCS. Thus, the sound radiation 

characteristics of MSCS are different depending on 

the different boundary conditions. In particular, it can 

be seen that the change of the sound radiation 

characteristics in the case of the C-F boundary 

condition is more pronounced than the other boundary 

conditions. 

The reason may be related to the high frequency 

variation in the case of C-F boundary conditions in the 

specified frequency range. 

Next, the effect of the applied load type on the 

sound radiation characteristics of MSCS is 

investigated. The location of the force is x = 0.5 m, θ 

= 0 for the point force, x0 = 0.2, x1 = 0.8 m, θ = 0 for 

the line force, x0 = 0.2 m, x1 = 0.8 m, θ0 = -π/3, θ1 = π/3 

for the surface force. The sound radiation 

characteristics of the MSCS are measured in RQ = 5 m, 

and elastic boundary condition E1-E3 is considered. 

Fig. 6 shows the radiated sound characteristics of 

MSCS for different applied force types. 

As can be seen in Fig. 6, the sound radiation 

characteristics of the MSCS are clearly different 

depending on the type of applied load. This is because 

the pressure is different according to the applied area 

when the same unit load is applied, thus, the 

displacement characteristics result is changed. As can 

be seen in Fig. 6, the results of sound radiation for 

point force are the largest and the lowest for surface 

force. Interestingly, in this study, both cases 

considered are three-stepped cylindrical shells. 

Although both shells are three-stepped shells, the 

shape of the shells varies with length and thickness, 

and thus, the sound radiation characteristics of are also 

different. 

(a)   

(b)  

Fig. 6  Radiated sound characteristics of MSCS for different applied force types; (a): Case II, (b): Case III. 
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Fig. 7 shows the grouped modal contributions of the 

circumferential modes to the sound radiation of MSCS. 

Case IV shell with C-C boundary condition is 

considered. From Fig. 7, the contribution of different 

circumferential modes to the sound radiation is 

different. And when n > 6, the higher-order 

circumferential modes have almost no effects on 

radiated sound results within the frequency range 

considered. However, it should be emphasized here, 

its influence range will appear in a higher frequency 

band. 

 
Fig. 7  Radiated sound results of MSCS (Case IV) with different circumferential modes. 

 

 

 

Fig. 8  Radiated sound results of the MSCS for different acoustic medium; (a) C-C (b) E3-E3. 

 

Fig. 8 shows the radiated sound results of MSCS 

immersed in different acoustic medium: air and water. 

The sound radiation characteristics of the MSCS are 

measured in RQ = 15 m, and Case II shells with C-C 
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and E3-E3 boundary condition are considered. It is 

assumed that the unit point load 1N is acted on the 

location x = 0.5 m, θ = 0 in normal direction, and the 

excitation frequencies due to external force are set 150 

Hz. As can be seen from Fig. 8, the properties of 

acoustic medium have an important influence on the 

sound radiation characteristic of the MSCS. The 

radiated sound results of water (heavy medium) is 

higher than that of air (light medium). 

Then, Fig. 9 and Fig. 10 shows circumferential 

directivity plots of the Case II MSCS immersed in air 

and water. The clamped boundary condition is 

considered. It is assumed that the unit point load 1 N 

is acted on the location x = 1.5 m, θ = 0 in normal  

 

 

 
(a)                                                           (b) 

Fig. 9  Circumferential directivity plots of radiated sound pressure for MSCS immersed in air. 
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direction. These directivity plots are obtained at first 

six frequencies, i.e., 103.16 Hz, 118.29 Hz, 121.84 Hz, 

158.9 Hz, 174.8 Hz and 179.52 Hz. In the 

circumferential directivity plots four kinds of 

circumferential distances are taken into account, i.e., RQ 

= 5 m, RQ = 10 m, RQ = 15 m and RQ = 20 m for Fig. 9 

and RQ = 5 m, RQ = 6 m, RQ = 7 m and RQ = 8 m for Fig. 

10. 
 

 
 

 
 

 
Fig. 10  Circumferential directivity plots of radiated sound pressure for MSCS immersed in water. 
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As shown in Fig. 9, the intensity of sound pressure 

decreases rapidly with increasing distance from the 

measurement location. This phenomenon can be 

attributed to the physical properties of acoustic 

medium. To improve the reader’s understanding of the 

sound radiation characteristics, Fig. 11 shows the 

sound pressure contours of the MSCS immersed in air 

corresponding to the first six frequencies. 

   

f1 = 103.66 Hz f2 = 118.29 Hz f3 = 121.84 Hz 

   

f4 = 158.9 Hz f5 = 174.8 Hz f6 = 179.52 Hz 

Fig. 11  Sound pressure contours of MSCS immersed in air. 

 

4. Conclusion 

This paper is investigated the vibro-acoustic 

characteristics of (MSCS) immersed in infinite fluid 

medium by using a semi-analytical method. Based on 

the Flugge’s thin shell theory, the theoretical model 

for vibro-acoustic analysis of the MSCS is formulated 

by using the energy method and spectral boundary 

element method. The variables describing the 

displacement and acoustic properties of the structure 

are expressed as Chebyshev orthogonal polynomials 

in the meridional direction and Fourier series in the 

circumferential direction. The external acoustic field 

of the MSCS is formulated by the spectral Helmholtz 

integral equation with the collocation points. The 

non-uniqueness solution of the acoustic integral 

equation is solved using the CHIEF method. 

Comparison studies are performed to verify the 

accuracy, convergence and reliability of the proposed 

method. Finally, the vibro-acoustic responses of 

MSCS immersed in fluid medium with various 

geometries, material properties and boundary 

conditions are investigated through numerical 

examples. 
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