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Abstract: Blue carbon ecosystems, including mangroves, seagrasses, and salt marshes, play a crucial role in mitigating climate change 

by capturing and storing atmospheric CO₂ at rates exceeding those of terrestrial forests. This study explores the potential of HCWs 

(Human-Controlled Wetlands) in the Italian Venice Lagoon as an underappreciated component of the global blue carbon pool. Using 

GEE (Google Earth Engine), we conducted a large-scale assessment of carbon sequestration in these wetlands, demonstrating its 

advantages over traditional in situ methods in addressing spatial variability. Our findings highlight the significance of below-water 

mud sediments as primary carbon reservoirs, with a TC (Total Carbon) content of 3.81% ± 0.94% and a stable storage function akin to 

peat, reinforced by high CEC (Cation Exchange Capacity). GEE analysis identified a redoximorphic zone at a depth of 20-30 cm, 

where microbial respiration shifts to anaerobic pathways, preventing carbon release and maintaining long-term sequestration. The study 

also evaluates key factors affecting remote sensing accuracy, including tidal variations, water depth, and sky cover. The strong 

correlation between field-measured and satellite-derived carbon parameters (R² > 0.85) confirms the reliability of our approach. 

Furthermore, we developed a GEE-based script for monitoring sediment bioturbation, leveraging Sentinel-1 SAR (Synthetic Aperture 

Radar) and Sentinel-2 optical data to quantify biological disturbances affecting carbon fluxes. Our results underscore the value of 

HCWs for carbon sequestration, reinforcing the need for targeted conservation strategies. The scalability and efficiency of remote 

sensing methodologies, particularly GEE, make them essential for the long-term monitoring of blue carbon ecosystems and the 

development of effective climate mitigation policies. 
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1. Introduction 

Blue carbon, the carbon sequestered and stored in 

coastal and marine ecosystems, plays a critical role in 

mitigating global climate change. Temperate wetlands, 

including salt marshes, seagrass meadows, and 

mangroves, recognized vital reservoirs of blue carbon 

due to their capacity to capture and store carbon for 

extended periods. HCWs (Human-Controlled Wetlands), 

such as constructed wetlands, are increasingly gaining 

attention for their potential contribution to blue carbon 

sequestration. Despite their importance, assessing blue 

carbon sinks in these ecosystems remains a complex 

and time-intensive process, often requiring field-based 
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measurements, sophisticated models, and multidisciplinary 

datasets. Advances in remote sensing technologies and 

platforms like GEE (Google Earth Engine) have 

revolutionized environmental monitoring by offering 

scalable, cost-effective tools for analyzing ecosystems. 

Since its public release in 2010, GEE has provided 

researchers and practitioners with access to an extensive 

archive of geospatial data, combined with powerful 

cloud-based computational capabilities. This platform 

enables rapid analysis of critical ecosystem parameters, 

making it a game-changer for environmental science. 

However, there is a need for tailored tools and scripts 

to simplify the quantification of blue carbon potential 
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in wetlands, especially for checks and decision-making 

processes. Furthermore, ensuring reproducibility and 

accuracy of results requires the inclusion of the date of 

run, as geospatial data in GEE can change over time 

due to updates in datasets or changes in ecosystem 

conditions. The goal of this study is to develop a robust 

GEE script designed to automate the rapid assessment 

of ecosystem parameters relevant to blue carbon sink 

evaluation in temperate and HCWs. The script includes 

functionality to document the date of execution to 

ensure state-specific results and transparency. This tool 

aims to streamline the carbon credit pre-certification 

process by enabling scientists to efficiently analyze 

vegetation cover, soil carbon, hydrological dynamics, 

and other key indicators. This paper outlines the 

development, functionality, and potential applications 

of the script. 

2. Methods 

This study was conducted in the Venetian Lagoon, 

Italy, a temperate wetland ecosystem characterized  

by complex interactions between ecological and 

anthropogenic factors. Within this system, Val Dogà 

(45.558261° N, 12.536424° E) was selected for its high 

carbon sequestration capacity [1]. These historical 

wetlands are engineered systems designed to optimize 

carbon retention through hydrological control, biomass 

preservation, and sediment management. Functionally 

analogous to temperate peatlands, these HCWs  

sustain long-term carbon storage by maintaining 

anaerobic, waterlogged conditions that limit microbial 

decomposition [2]. HCWs exhibit a fossorial carbon 

system, a stable belowground carbon reservoir composed 

of organic-rich sediments. These sediments include 

mud deposits enriched with DOC (Dissolved Organic 

Carbon) and particulate organic matter from algae, 

submerged vegetation, and detritus. Their high CEC 

(Cation Exchange Capacity) enhances long-term 

carbon retention [3]. Unlike unmanaged wetlands, the 

controlled hydrology of HCW minimizes carbon 

release by preventing drainage and sustaining anaerobic 

conditions [4]. Below-water mud sediments in HCW 

were found to contain TC (Total Carbon) at 8.56% ± 

0.94%. The carbon pool is further enriched by contributions 

from decaying seagrasses, halophytic plants, and algae, 

forming a dynamic reservoir of organic matter. To 

quantify and validate carbon sequestration processes, 

multi-sensor satellite data from the GEE platform were 

utilized. Remote sensing approaches enabled 

systematic assessment of five primary carbon pools: 

(1) AGB (Above-Ground Biomass) of Halophytes 

Dominated by Tamarix sp., which contributes 

significantly to carbon storage. 

Tamarix sp. exhibited an average TC content of 

48.42% dw. 

Functions as an alternative to mangroves in temperate 

regions. 

(2) Algae and Seagrass Biomass 

Key species include Ruppia maritima (30.95% dw 

TC) and Cymodocea nodosa (27.54% dw TC). 

Macroalgae, such as Chaetomorpha linum, had a 

mean carbon content of 33.65% ± 7.99% [5]. 

(3) Below-Water Mud Sediments 

The primary fossorial carbon baseline, enriched with 

decayed aquatic vegetation and seasonal biomass 

deposits. 

(4) Above-Water Salt Marsh 

Characterized by variable TC content (2%-11% dw), 

influenced by CEC and hydrological conditions. 

(5) Carbon Fluxes and Productivity Estimations 

Sentinel-2 spectral data facilitated the computation 

of GPP (Gross Primary Productivity), NEE (Net 

Ecosystem Exchange), and CO₂ fluxes using vegetation 

indices NDVI [6]. 

NDVI = (B8 - B4) / (B8 + B4) 

Water areas utilized NDWI (Normalized Difference 

Water Index) [7] to analyse hydrological conditions. 

2.1 Water Quality and Biogeochemical Indicators 

Satellite-based analyses integrated empirical models 

for key aquatic indicators: Chlorophyll-a (Chl_a) [8]; 
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Cyanobacteria (Cya) [9]; Turbidity (Turb) [10]; 

CDOM (Chromophoric Dissolved Organic Matter); 

DOC (Dissolved Organic Carbon) [11]. 

2.2 Atmospheric Carbon Monitoring 

To estimate atmospheric CO₂ levels, the 

COPERNICUS/S5P/NRTI/L3_CO dataset was employed. 

Since CO (Carbon Monoxide) acts as a proxy for CO₂, 

conversion was applied following Kaiser et al. [12]: 

CO to CO₂ equivalent = CO (ppm) × 10,000 

Adjustment factor of 1.15 is applied for in situ 

validation. 

To enhance accuracy, an APA Script (Aquatic Plants 

and Algae Custom Script Detector) was integrated into 

GEE [13], automating aquatic vegetation classification 

and field site selection. This automation improved 

spatial accuracy and reduced manual effort. Beyond 

Sentinel-2, the study incorporated: 

(1) MODIS/061/MOD11A1 LST 

Used for estimating soil and water temperature, 

influencing respiration rates [14]. 

Respiration was modeled using the Q10 temperature 

dependence equation: Respiration = Rbase * Q10 * 

((Temp - 10) / 10); 

[14], where Rbase = 0.5, Q10 = 2.0. 

(2) Dynamic World (GOOGLE/DYNAMICWORLD/ 

V1) 

Used for land cover classification, including intertidal 

zones, marshes, and submerged vegetation [15]. 

(3) SRTM (Shuttle Radar Topography Mission) 

Elevation (USGS/SRTMGL1_003) 

Assessed topographic variation, influencing water 

retention, sediment deposition, and vegetation 

distribution [16]. 

(4) Soil Data (OpenLandMap) 

Integrated bulk density and organic carbon datasets 

to estimate soil carbon stocks [17]. 

(5) Global  Intertidal  Classification  (UQ/murray/ 

Intertidal/v1_1/global_intertidal) 

Identified intertidal zones crucial for carbon cycling 

[18]. 

(6) Globathy Bathymetry 

Provided insights into underwater topography, 

crucial for sediment distribution [19]. 

(7) ETH (Swiss Federal Institute of Technology 

ETH Zurich) Global Canopy Height 2020 and   

GEDI ( (Global Ecosystem Dynamics Investigation 

by NASA) Data Used for estimating above-ground 

biomass via vegetation height measurements     

[20, 21]. 

All remote sensing data were validated through field 

measurements and AI-driven models to ensure accuracy 

[22]. The integration of Sentinel-2’s high-resolution 

spatial data with MODIS’s frequent temporal coverage 

provided comprehensive monitoring of blue carbon 

sequestration in HCW. This multi-source approach 

strengthens the robustness of wetland carbon 

assessments and advances the accuracy of global blue 

carbon accounting frameworks. 

3. Results 

The analysis of blue carbon ecosystems is essential 

for understanding global carbon dynamics and mitigating 

climate change. These ecosystems—including wetlands, 

mangroves, seagrasses, and tidal marshes—act as 

significant carbon sinks by capturing and storing 

atmospheric CO₂. While natural blue carbon habitats 

have been extensively studied, our research highlights 

the underexplored potential of temperate, HCWs as a 

crucial component of the global blue carbon pool. 

Unlike natural wetlands, human-modified wetlands 

exhibit distinct carbon storage capacities, with carbon 

distributed across different pools compared to 

seagrasses and mangroves [23]. A comprehensive 

methodological approach is required to assess their 

carbon sequestration potential accurately. We applied 

three distinct approaches: 

(1) In situ analysis (Fig. 1) 

(2) An AI-driven approach (Fig. 2) and  

(3) GEE-based satellite data integration (https://code. 

earthengine.google.com/76508751e945b8e450dee4a4

637b5f4d ) (Fig. 3). 
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Fig. 1  Carbon sink ecosystem control by one point in situ 

analysis and a continuous datalogger.  
 

 
Fig. 2  Carbon sink ecosystem control using a combined AI 

system (data from analysis plus datalogger and satellite). 
 

 
Fig. 3  Carbon sink ecosystem control using a multiple 

satellite database GEE.  
 

A comparative analysis of these methods is presented 

in Table 1, while the mean carbon accumulation rate is 

shown in Table 2. Our findings indicate that restoration 

and improved management of HCWs could significantly 

enhance their role as carbon sinks [24, 25]. For further 

discussion on HCWs, refer to Doimi’s video YouTube 

Link (https://youtu.be/81z23IfAlTY) [26, 27]. 

The evaluation of wetland carbon sequestration rates 

was conducted using three distinct methodologies: GEE, 

in situ analysis, and an AI (Artificial Intelligence)-

based approach. The results, expressed in grams of carbon 

per square meter per day (g/cm²/day), demonstrate 

variations in carbon sink rates across different wetland 

zones and biomass categories. The total WCS rate 

showed significant discrepancies between the methods. 

The AI-based approach estimated the highest TC sink 

rate (8.47 g/cm²/day), more than double the values 

obtained from both GEE (3.56 g/cm²/day) and in situ 

analysis (3.68 g/cm²/day). This suggests that the AI 

model might be capturing additional carbon storage 

dynamics, particularly within the water wetland zone, 

which exhibited the most substantial difference (8.07 

g/cm²/day in AI vs. 2.08 g/cm²/day in GEE and 2.9 

g/cm²/day in in situ analysis). In the land wetland zone, 

GEE estimated the highest carbon sink rate (1.48 

g/cm²/day), nearly double that of in situ analysis (0.78 

g/cm²/day) and almost four times the AI-derived 

estimate (0.39 g/cm²/day). This suggests that satellite-

based remote sensing methods may capture a broader 

range of carbon fluxes in land zones, while AI 

techniques might be more conservative in estimating 

terrestrial carbon sequestration. For above-ground 

biomass, both tree and non-tree carbon sink rates varied 

notably among methods. In situ measurements yielded 

the highest values for both above-ground tree (0.37 

g/cm²/day) and non-tree (0.40 g/cm²/day) carbon sink 

rates, indicating the potential for underestimation in 

remote sensing and AI-based approaches. GEE and AI 

estimates for tree carbon sink rates were relatively 

similar (0.20 and 0.29 g/cm²/day, respectively), but AI 

significantly underestimated the non-tree carbon sink 

rate (0.09 g/cm²/day) compared to both in situ   (0.40 

g/cm²/day) and GEE (0.26 g/cm²/day). These findings 

highlight key methodological differences in carbon 

sequestration  assessments. While  in  situ  analysis  
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Table 1  Comparative analysis of methods to evaluate HCW carbon sink activity. Lat. 45.56070 N; long. 12.52913 E.   

Parameter GEE In situ analysis (*) AI 

Area of selected place (ha) 1,309.382766 1,309.382766 1,309.382766 

Data of beginning  15/07/2024 15/07/2024 15/07/2024 

Data of end 17/07/2024 17/07/2024 17/07/2024 

Mean temp. in the region (°C) 33.90380488 26 26 

Mean SHR (Wetland Heterotrophic Respiration) (g/cm²/day) 2.528846019 2.9 - 

Mean GPP (g/cm²/day) 34.84163932 45 - 

Mean Net CO2 (g/cm²/day) -1.482872963 -2 - 

Mean Chl_a (Chlorophyll-a) 7.731967475 9.7 - 

Mean PAR 70 53.1 - 

Mean Cya (Cyanobacteria) 5.52E+12 - - 

Mean turbidity (NTU) 3.86981434 5.86 - 

Mean CDOM 23.74547792 - - 

Mean DOC 39.73943702 - - 

Mean color 206.0762702 - - 

Mean CO2 (ppm) 390 400 - 

Mean water CO2 (ppm)   1,129 207.74 - 

Total algae area (m²) 3,773,786.59 6,209,705.76 - 

Total water area (m²) 9,641,349.438 8,757,700.00 - 

Min water deep (mt) 1.04 - - 

Max water deep (mt) 6.84 - - 

Mean water deep (mt)  4.92 0.5 - 

Trees area (ha) 9.055336145 

858.3900 

- 

Grass area (ha) 0 - 

Flooded_vegetation area (ha) 115.0267198 - 

Crops area (ha) 0.540515129 - 

Shrub_and_scrub area (ha) 0 - 

Intertidal area (ha) 947.8462 - 

Stat. Elevation (SRTM) min mt. -9 - - 

Stat. Elevation (SRTM) max mt. 8 - - 

Stat. Elevation (SRTM) mean mt. -0.2 - - 

FAI (Floating Algae Index) 281 417  

NDWI -0.004044 -  

DBH 13.56 16.68  

Tamarix tree number  227,689 220,282  

Canopy height Lang 2022 98%  10.33 - - 

Canopy height Potapov 2021 95%  0.06 - - 

Canopy height (≥ 1 m)  4.06 5 4 

Canopy height (m) 0.035 - - 

Soil density Min (×10 kg/m³) 100 138 - 

Soil density Max (×10 kg/m³) 140 146 - 

Soil density Mean (×10 kg/m³) 126 - - 

Mean soil organic carbon (0 cm deep) 3.82 - - 

Mean soil organic carbon (10 cm deep) 3.81 - - 

Mean soil organic carbon (30 cm deep) 1.98 2.52 - 

Mean soil organic carbon (60 cm deep) 1.21 - - 

Mean soil organic carbon (100 cm deep) 1.13 - - 

Mean soil organic carbon (200 cm deep) 0.87 - - 

*: R² values exceeding 0.85. 
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Table 2  Mean carbon accumulation rate on HCW, lat. 45.56070 N; long. 12.52913 E.  

Parameter 
GEE 

(g/cm2/day) 

In situ analysis (*) 

(g/cm2/day) 

AI 

(g/cm2/day) 

Wetland area (ha) 1,309.38 1,309.38 1,309.38 

Above Ground Tree Carbon Sink rate 0.20 0.37 0.29 

Above Ground not Tree Carbon Sink rate  0.26 0.40 0.09 

Land Wetland zone Carbon Sink rate  1.48 0.78 0.39 

Water Wetland zone Carbon Sink rate  2.08 2.9 8.07 

Tot WCS (Wetland Carbon Sink) rate  3.56 3.68 8.47 

*: R² values exceeding 0.85.  
 

provides direct field-based measurements, GEE offers 

large-scale, consistent monitoring capabilities, and A.I. 

models may capture complex interactions but require 

further validation. The discrepancies underscore the 

need for hybrid approaches that integrate the strengths 

of each method to improve the accuracy and scalability 

of WCS assessments. Furthermore, the integration of 

high-resolution datasets and customized algorithms 

provides robust insights into ecological patterns and 

processes that would be difficult to discern through 

traditional methods. The below-water mud sediments 

in HCWs exhibited a TC content of 3.81% ± 0.94%, 

serving as the primary reservoir for FMA (Fossorial 

Mud Activity) carbon storage. These sediments, 

enriched with organic matter from decaying aquatic 

vegetation and fauna, function as stable carbon sinks, 

similar to peat. This stability is reinforced by the high 

CEC of the soils, which prevents carbon release under 

waterlogged conditions. GEE analysis confirmed our 

hypothesis regarding the redoximorphic zone, 

identifying it at a depth of 20-30 cm, where significant 

shifts in carbon concentrations occur (Fig. 4). This zone 

forms below the surface layer in oxygen-limited 

conditions, where microbial activity transitions from 

aerobic to anaerobic processes. As oxygen is depleted, 

microbes utilize alternative electron acceptors such as 

nitrate, sulphate, or carbon dioxide for respiration, 

ultimately leading to methane formation. 

The correlation (Fig. 5) between HET (Wetland 

Heterotrophic Respiration) and WCS can provide 

valuable insights into carbon cycling in wetland 

ecosystems. A visual inspection of the data suggests a 

positive relationship between HET and WCS, 

indicating that as heterotrophic respiration increases, 

the carbon sink capacity of wetlands also tends to rise. 

This trend aligns with ecological expectations, where 

higher microbial respiration rates correspond to 

increased carbon flux. The Pearson correlation 

coefficient between HET and WCS is approximately 

0.842, with a p-value of 1.18 × 10⁻⁵. This indicates a 

strong positive correlation between the two variables, 

meaning that as heterotrophic respiration increases, the 

wetland’s carbon sink capacity also tends to rise. The 

very low p-value suggests that this correlation is 

statistically significant, meaning the relationship is 

unlikely to be due to random chance. 

It would suggest that wetland respiration plays a 

significant role in determining carbon sequestration 

levels. The GEE data scatter plot, shows in Fig. 6, a 

clear linear trend, meaning that as Net CO₂ increases, 

Land Carbon Sink also tends to increase. This suggests 

that the Land Carbon Sink is strongly linked to Net CO₂ 

emissions, which could have implications for carbon 

cycle modelling and climate studies. 

3.1 GEE Sentinel Sat. for GPP and NEE Estimations 

The application of satellite data from Sentinel-2 

allowed for the estimation of GPP (Gross Primary 

Productivity), NEE (Net Ecosystem Exchange), and 

CO₂ fluxes in the study area. Vegetation indices, such 

as the NDVI and NDWI (Normalized Difference Water 

Index), were used to proxy photosynthetic activity, 

with GPP calculated based on the B8 (near-infrared) 

band. Maximum GPP was observed during the summer 

months, corresponding with peak photosynthetic activity, 

and was significantly influenced by temperature- 
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Fig. 4  GEE data result of deep soil carbon change content and sonar stratigraphic analysis of the HCW mud. 
 

 
Fig. 5  The scatter plot showing the correlation between HET and WCS. The blue points represent the data values, while the 

blue dashed line is the trend line indicating the positive correlation. Pearson correlation coefficient is 0.842. 
 

 
Fig. 6  Pearson correlation coefficient is 0.90, indicating a strong positive correlation between Net CO₂ and Land Carbon Sink. 

The p-value is very low (≈ 0.0000), confirming that the correlation is statistically significant. 
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dependent respiration rates, which were modelled using 

MODIS LST (Land Surface Temperature) data. NEE 

was calculated by subtracting respiration from GPP, 

revealing a net carbon sequestration during the growing 

season. 

3.2 GEE Sentinel Sat. for Proxy CO2 Analysis 

The analysis of satellite-based carbon monoxide (CO) 

data, using a conversion factor between CO and CO₂, 

provided an estimate of CO₂ fluxes across the wetlands. 

The temporal and spatial correlation between CO and CO₂ 

emissions, especially from combustion sources, allowed 

for a reliable estimate of CO₂ fluxes using the Sentinel-

2 data in conjunction with the AIRS (Atmospheric 

Infrared Sounder) and TROPOMI (Tropospheric 

Monitoring Instrument). This approach, based on the 

well-established relationship between CO and CO₂ in 

the atmosphere [28], confirmed the effectiveness of 

using satellite measurements to derive CO₂ estimates 

without extensive field sampling. The results revealed 

consistent CO₂ fluxes during the growing season, with 

variations based on local environmental conditions and 

anthropogenic influences. 

4. Conclusion 

Blue carbon ecosystems, including mangroves, 

seagrasses, and salt marshes, play a crucial role in 

mitigating climate change by capturing and storing 

atmospheric CO₂ at rates exceeding those of terrestrial 

forests. These ecosystems not only function as carbon 

sinks but also support biodiversity and protect coastal 

communities. The Blue Carbon Initiative, led by 

Conservation International, IUCN (International Union 

for Conservation of Nature), and IOC-UNESCO 

(Intergovernmental Oceanographic Commission of 

United Nations Educational, Scientific and Cultural 

Organization), aims to conserve and restore these 

habitats, contributing to global climate mitigation and 

sustainable livelihoods. Our study demonstrates that 

HCWs in the Italian Venice Lagoon represent a 

valuable and underexplored component of the global 

blue carbon pool. Their potential for carbon 

sequestration highlights the importance of conservation 

and restoration efforts to enhance atmospheric CO₂ 

removal. The integration of GEE has been pivotal in 

conducting large-scale assessments, providing a 

scalable and efficient method for monitoring blue 

carbon ecosystems worldwide. 

Key factors influencing the accuracy of remote 

sensing analysis include: 

(1) Water surface area, which fluctuates due to tidal 

variations [29, 30]. 

(2) Water depth, affecting the effectiveness of 

satellite-based observations [31, 32]. 

(3) Sky cover, which can limit remote sensing 

accuracy [33, 34]. 

Compared to traditional in situ measurements, GEE 

provides a significant advantage in addressing the 

spatial variability of wetland environments, where field 

analyses often lack representativeness. The high 

correlation (R² > 0.85) between remote sensing 

estimates and field-measured carbon parameters 

confirms the reliability of this approach. This 

validation underscores the feasibility of employing 

GEE for large-scale blue carbon assessments, 

particularly in remote and dynamic wetland regions [35, 

36]. Wetland carbon sequestration involves both land-

based and water-based carbon sinks, which contribute 

differently to overall carbon dynamics. The land-based 

sink includes Tamarisk plants, shrubs, and salt marsh 

soil, while the water-based sink consists of seagrass, 

algae, and sediment. These components interact 

through complex biological and geochemical processes 

[37], necessitating advanced remote sensing tools for 

accurate assessment. Using GEE, carbon sink 

estimations become more efficient and scalable, 

allowing for the integration of large datasets to quantify 

wetland carbon storage [38]. The TC sink can be now 

simplified approximated as: 

WCS = Heterotrophic Respiration + Net CO2 

This equation provides a simplified yet comprehensive 

approach to assessing wetland carbon storage by 
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incorporating key indicators of carbon sequestration 

(carbon sink pool) and release [37]. Our GEE analysis 

further highlights the critical role of below-water mud 

sediments in HCWs as primary carbon reservoirs, with 

a stable storage function similar to peat due to their high 

organic content and CEC [39]. The study confirms the 

presence of a redoximorphic zone at a depth of 20-30 

cm, where carbon sequestration is most prominent. 

This anaerobic layer fosters microbial respiration using 

alternative electron acceptors, effectively preventing 

carbon release and maintaining the wetland’s long-term 

carbon sink capacity [37]. Additionally, satellite-based 

datasets enable the detection of bioturbation activity, 

revealing the impact of biological disturbances on 

carbon fluxes [38]. Bioturbation, caused by sediment-

dwelling organisms, influences sediment structure, 

stability, nutrient cycling, and geochemical processes 

[40]. To quantify this activity, we developed a GEE-

based bioturbation monitoring script (Link) that 

integrates multi-sensor remote sensing data: 

Sentinel-1 SAR imagery to assess surface roughness, 

Sentinel-2 optical data to track NDVI and NDWI 

variations over time. 

The result is shown in Fig. 7. 
 

 
Fig. 7  Remote sensing approaches to visualize the selected 

area bioturbation (2023-2024). White: the max area of 

bioturbation. 
 

While in situ measurements remain essential for 

validation—particularly for certification bodies—their 

reliability is often affected by environmental variability, 

sampling biases, and temporal inconsistencies [39]. 

Remote sensing approaches, therefore, offer a more 

standardized and comprehensive framework for 

assessing wetland carbon dynamics. These findings 

emphasize the importance of HCWs as effective carbon 

sinks, reinforcing the need for targeted conservation 

strategies and continued advancements in remote 

sensing methodologies to improve carbon sequestration 

monitoring on a global scale. 
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