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We have shown that classic works of Modigliani and Miller, Black and Scholes, Merton, Black and Cox, and Leland 

making the foundation of the modern asset pricing theory, are wrong due to misinterpretation of no arbitrage as the 

martingale no-arbitrage principle. This error explains appearance of the geometric Brownian model (GBM) for 

description of the firm value and other long-term assets considering the firm and its assets as self-financing portfolios 

with symmetric return distributions. It contradicts the empirical observations that returns on firms, stocks, and bonds 

are skewed. On the other side, the settings of the asset valuation problems, taking into account the default line and 

business securing expenses, BSEs, generate skewed return distributions for the firm and its securities. The Extended 

Merton model (EMM), taking into account BSEs and the default line, shows that the no-arbitrage principle should be 

understood as the non-martingale no arbitrage, when for sufficiently long periods both the predictable part of returns 

and the mean of the stochastic part of returns occur negative, and the value of the return deficit depends on time and 

the states of the firm and market. The EMM findings explain the problems with the S&P 500 VIX, the strange 

behavior of variance and skewness of stock returns before and after the crisis of 1987, etc. 

Keywords: geometric Brownian model, Extended Merton model, business securing expenses, option and warrant 

pricing, corporate debt, default probability 

Introduction  

The motivation of this article is to trace how false ideas arising in one economic study penetrate into others; 

how these studies pass their results and false ideas further down like a baton in a relay race. At first, the papers 

are widely discussed and criticized if their results seem interesting enough, but if the economists fail to reveal 

any errors and the results look plausible, the logic of the original papers by and by gets wide recognition; it is 

used in many following studies, converting the original papers into seminal articles. Since that time, no orthodox 

economist questions the logic and methods of the seminal articles; they defend this logic aggressively against 

those who take risks to doubt it publicly. As a result, a whole branch of study goes in the wrong direction, 

poisoned with those ideas. Sometimes, false ideas from one sector of economics penetrate into another, and 

contamination continues, aggravating the state of economics even more. Of course, such things can happen to 

any science; we talk about economics just because of our professional preferences. 

Here we consider the idea of no arbitrage, its interpretations, and their effects on financial economics, 

especially, asset valuation, credit risk estimation, the effect of debt on the firm value, etc. The no-arbitrage 

principle runs like this: “The term arbitrage refers to the possibility of making a trading gain with no chance of 
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loss” (Financial Economics, Panjer, 1998). More specifically, if an initial value of an admissible portfolio is zero, 

V(0) = 0, then at time t = 1, V(1) = 0 with the unit probability. In a stochastic environment, the return can be 

presented as V(1) - V(0) = [U(1) - U(0)] + [W(1) - W(0)], here U(1) - U(0) is the predictable return and W(1) - 

W(0) is the stochastic return. In these conditions, the no-arbitrage principle assumes the form: U(1) - U(0) = 0, 

and Mean[W(1) - W(0)] = 0. We say that an arbitrage opportunity is available if there is an admissible portfolio 

violating the no-arbitrage principle. 

We begin our analysis with the famous Modigliani-Miller Propositions starting asset valuation studies 

(MMPs, Modigliani & Miller, 1958; 1963), where the authors use the no-arbitrage principle to prove their 

Theorem of Irrelevance that capital structure makes no effect on the firm value. The MMPs consider mean cash 

flows and use the no-arbitrage principle in a form: V(1) - V(0) = 0. We show that the MMPs conflict with another 

seminal paper by Merton (1974), which considers the firm value and the value of its security in essentially 

stochastic conditions. Therefore, Merton uses the no-arbitrage principle in the form: U(1) - U(0) = 0 and 

Mean[W(1) - W(0)] = 0. The last equality means that the stochastic variable V(t) makes a martingale. Harrison 

and Kreps (1979) prove that the portfolio value makes a martingale if and only if it is equivalent to a self-financing 

portfolio, admitting no payments and no fund infusions. Thus, both the levered and unlevered firms in the MMPs 

make no payments; it points to an artificial construction of MMP premises. The same conclusion concerns the 

firm and its long-term security considered by Merton (1974). To stay consistent with the current understanding 

of no-arbitraging, Merton finally comes to the geometric Brownian model for the firm value, which does not 

allow any payment. 

When the portfolio value makes a martingale, the portfolio’s return distribution occurs symmetric. Therefore, 

the option pricing formulas (Black & Scholes, 1973), and the firm value, stock value, and zero-coupon bond 

value formulas (Merton, 1973; Merton, 1974; Black & Cox, 1976) are based on the normal distribution as the 

most “natural” one among other symmetric distributions. Using this logic, Black and Scholes (1973) comes to 

the option-pricing formula and Merton (1974) derives the equation for pricing any security whose value can be 

written as a function of the firm value and time. These results stimulate further development of Black-Scholes-

Merton’s (BSM) ideas: Black and Cox (1976) introduce the default line into financial mathematics, Leland (1994), 

integrating the BSM ideas with ideas of Black and Cox, works out mathematical foundations of the trade-off 

theory choosing the optimal debt leverage for the firm. All above-mentioned papers commit serious errors 

compromising their results, but Leland completes a logical circle: starting with no-arbitrage conditions, 

containing in methods and formulas of BSM and Black and Cox, he constructs a firm, which is an arbitraging 

machine. It is most wonderful that this feature of Leland’s paper escapes the attention of economists. We will 

show that all these problems follow from the “classical” interpretation of the no-arbitrage principle. We call this 

interpretation the martingale no-arbitrage principle. 

In contrast to theoretical estimations, empirical data give vast evidence that bond and stock returns are 

skewed. This fact definitely points to drawbacks of the theoretical models, but instead of revising the foundations 

of the financial risk theories, economists begin mending them with jump-diffusion processes, calibrated models, 

etc. However, the asymmetry in returns on the firm, stock, bond, etc. is already in Merton’s equation (1974), 

describing the firm dynamics, and the absorbing boundary by Black and Cox (1976): the firm’s payments 

decrease its returns, making them negatively skewed, and the absorbing boundary (the default line) accelerates 

the process. This asymmetry develops over time reducing the firm’s value and the values of long-term assets 
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issued by the firm. Therefore, the no-arbitrage conditions become U(1) - U(0) < 0 and Mean[W(1) - W(0)] < 0, 

meaning that both the predictable returns and the mean stochastic returns decrease over time due to their 

asymmetry. The shorter the time of observation, the lesser the deviation of the situation from the martingale no 

arbitrage. These conditions explain a relative success in option pricing due to the short life of options and makes 

short-term speculations quite a martingale process. We call this new interpretation of the no-arbitrage principle 

the non-martingale no arbitrage (understanding, however, that this is the only correct no-arbitrage principle). It 

brings a lot of inconveniences for long-term investors like big firms, mutual and pension funds, etc., but nobody 

can hide from reality; to survive and succeed, it is better to rely upon the bitter truth, than on sweet lies. Shemetov 

(2020) rejects the existence of no arbitraging, but the paper’s logic proves that the author objects against the 

martingale no arbitraging. We see the future progress of financial economics with development of the Extended 

Merton model, which has explained some important empirical observations. 

Here we briefly introduce the reader to the Extended Merton model (EMM, Shemetov, 2020; 2021), which 

we extensively use in this paper. Merton’s equation for the firm development is: 

𝑑𝑋 = (𝜇𝑋 − 𝑃)𝑑𝑡 + 𝐶𝑋𝑑𝑊, 𝑋(0) = 𝑋0 

where X(t)—firm’s stochastic assets, P > 0—business securing expenses (BSEs), 𝑃 = 𝐹𝐶 + 𝐷𝑃 + 𝑇𝐴𝑋 + 𝐷𝐼𝑉, 

FC—fixed costs, DP—debt payments, TAX—taxes, DIV—dividends, all dollar per time unit; 𝑃(𝑡) = 𝑃0𝜋(𝑡), 

𝜋(𝑡)—a piecewise continuous function of time, µ—the expected rate of return, C—volatility. We consider asset 

returns as 𝑥 = ln⁡(𝑅𝑋 𝑃0)⁄ ; using Ito’s lemma, we come to: 

𝑑𝑥 = 𝑅(1 − 𝜋(𝑡)𝑒−𝑥)𝑑𝑡 + 𝐶𝑑𝑊       (i.1a) 

𝑥(0) = 𝑥0 = ln⁡(𝑅𝑋0/𝑃0), 𝑅 = 𝜇 − 𝐶2/2      (i.1b) 

Equation (i.1a) represents an ordinary diffusion with a drift rate 𝐷𝑅(𝑥, 𝑡) = 𝑅(1 − 𝜋(𝑡)𝑒−𝑥) dependent on the 

location of Brownian particles on the x-axis and time. For the uniform payment, 𝜋(𝑡) ≡ 1, the drift rate is: DR(0) 

= 0, 0 < DR(x) < R for x > 0, and -∞ < DR(x) < 0 for x < 0. When a part of the distribution of Brownian particles 

V(x, t) gets below the line x = 0, its particles are transported to the negative infinity with an increasing drift rate, 

creating a deficit of particles below this line. The diffusion force compensates this deficit with particles from the 

upper part of the distribution, and the process continues until there are no more particles left above the line x = 0 

(in economic applications, the process continues until the default probability equals unit). 

The return distribution 𝑉(𝑥, 𝑡) satisfies the equation (𝑉𝑦 is a partial derivative over variable y): 

𝑉𝑡 + 𝑅(1 − 𝜋(𝑡)𝑒−𝑥)𝑉𝑥 − 0.5𝐶2𝑉𝑥𝑥 + 𝑅𝜋(𝑡)𝑒−𝑥𝑉 = 0 (i.2a) 

starting its evolution from a normal distribution (the initial condition): 

𝑉(𝑥, 0) = 𝑁(𝑥; 𝐻0, 𝜎0
2), 𝐻0 = 〈𝑥(0)〉 = 〈ln⁡[𝑅𝑋(0)/𝑃0]〉, 𝜎0

2 = 〈(𝑥(0) − 𝐻0)
2〉 (i.2b) 

To solve the problem, one must add boundary conditions for the return distribution, reflecting the fact that 

when the firm’s assets intercept the boundary, the firm defaults (Black & Cox, 1976): 

𝐷𝐿 = max⁡{ln⁡(𝑅𝑋𝐷 𝑃0), 0}⁄  (i.2c) 

line 𝐷𝐿 = ln⁡(𝑅𝑋𝐷 𝑃0)⁄  corresponds to outstanding debt 𝑋𝐷 (the exogenous default line). Line 𝐷𝐿 = 0 serves 

as a soft default line (the endogenous default line) because when x < 0, business activities inflict losses on the 

firm. If the problem setting does not include the firm’s payments and the default line (e.g., Merton, 1974), the 

return distribution starting from the normal distribution remains normal, spreading with rate C. In actual cases 
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with default line DL and payments, the mean return will rise or go down depending on the difference RX - P, and 

the return distribution decreases with rate DPINT(t), the intensity of default probability: 

𝐷𝑃𝐼𝑁𝑇(𝑡) = 2∫ 𝑉(𝑥, 𝑡)𝑑𝑥
𝐷𝐿(𝑡)

−∞
  (i.3) 

and default probability DPR(t) over the interval [0, t], t—the time of observation, is: 

𝐷𝑃𝑅(𝑡) = ∫ 𝐷𝑃𝐼𝑁𝑇(𝜏)𝑑𝜏
𝑡

0
  (i.4) 

The leak rate through the boundary is proportional to the part of distribution V(x, t) getting below the  

default line. The loss of mass (Brownian particles constituting the distribution) at the default line induces 

redistribution of the remaining distribution mass down to the default line. The distribution becomes negatively 

skewed. The cumulative effect of the diffusion spreads and the distribution distortion makes the negative tail 

grow heavier over time, increasing the default probability. So, the skewed return distribution V(x, t) is a natural 

effect of the firm dynamics, which does not need any additional mechanisms like a jump-diffusion process for its 

development.  

The fact that asset returns are skewed is now well established (e.g., Simkowitz & Beedles, 1980; Singleton 

& Wingender, 1986; Badrinath & Chatterjee, 1988; Fortune, 1996; Harvey & Siddique, 2000). However, the 

nature and driving forces of asset skewness remain unclear to economists and investors unfamiliar with the EMM. 

The novel vision of the asset return development helps to improve understanding of some financial management 

problems. The EMM used for analysis of the firm’s debt leverage demonstrates that debt negatively affects the 

returns and survival of the firm. The EMM reveals inconsistency in debt studies by Leland (1994); Leland and 

Toft (1996), etc., which make a quantitative basis for the trade-off theory.  

Because of the continuous leak of Brownian particles at the default line, the mean of the stochastic part of 

returns is always negative, and stochastic returns never make a martingale. When the firm is far from default, the 

leak is low, making an illusion that returns make a martingale. When the firm comes closer to default, the leak 

increases noticeably, and the returns cannot be assumed a martingale anymore. That is why no-arbitrage acts in 

the form of the martingale no arbitrage in the market of the GBM firms (no leak at the default line) and becomes 

the non-martingale no arbitrage in the market of the EMM firms paying their BSEs (see Sections 3 and 4). So, 

all theoretical constructions admitting the martingale no arbitrage have a limited domain of validity. The non-

martingale no-arbitrage principle in the market of firms paying their BSEs makes void the risk-neutral approach 

and risk-neutral probabilities (e.g., Cox et al., 1979; Harrison & Kreps, 1979; Harrison & Pliska, 1981) 

inapplicable to the analysis of credit risks. 

To compute statistical moments of the firm’s return like the mean, variance, skewness, etc., one must 

calculate the return distribution of the boundary problem (i.2) for the firms of the same prehistory and existing at 

time t. One can get this distribution 𝑉̂(𝑥, 𝑡) from distribution 𝑉(𝑥, 𝑡) as: 

𝑉̂(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑉(2𝐷𝐿 − 𝑥, 𝑡) (i.5) 

determined in the interval of [DL, +∞) and meeting the condition of 𝑉̂(𝐷𝐿, 𝑡) = 0, 𝑡 ∈ [0,+∞). The moments of 

the return distribution 𝑉̂(𝑥, 𝑡) are: 

𝐻(𝑡) = ∫ 𝑥𝑉̂(𝑥, 𝑡)𝑑𝑥
∞

𝐷𝐿
 , 𝑉𝑎𝑟(𝑡) = ∫ (𝑥 − 𝐻)2𝑉̂(𝑥, 𝑡)𝑑𝑥

∞

𝐷𝐿
  (i.6) 
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𝑆𝐾(𝑡) = ∫ (𝑥 − 𝐻)3𝑉̂(𝑥, 𝑡)𝑑𝑥
∞

𝐷𝐿

 

Parameters governing the evolution of the return distribution are: distance to default 𝐻(𝑡) − 𝐷𝐿(𝑡) , 

variance VAR(t), skewness SK(t), the intensity of market shocks C2, and stochastic ratio 𝑅𝑋(𝑡)/𝑃(𝑡). One can 

add here a general economic motion influencing the firm development: a growing economy with higher return 

rates and lesser default risks, or a declining economy with lower return rates and higher default risks.  

The rest of the article is organized as follows: in Section 1, we consider early empirical and theoretical 

results introducing the idea of a symmetric Brownian motion of stock and bond prices into financial economics 

and the first signs that the reality is more complicated. In Section 2, we consider Modigliani-Miller Propositions 

and the no arbitrage method of their proof; we show that MMPs are obtained if and only if both levered and 

unlevered firms can be modeled with self-financing portfolios admitting no payments and fund infusions. In 

Section 3, we discuss the Black-Scholes-Merton model and show how the classic interpretation of the no-

arbitrage principle brings Black and Scholes to their formula for option pricing and lets Merton down in his 

formulas for warrant pricing, etc. We also discuss the implied volatility and its applications for estimating   

market volatility (the S&P 500 Volatility Index). Finally, we review theoretical improvements introduced into 

the BSM model after 1973 and the progress achieved in the description of advanced options. In Section 4,     

we analyze Merton’s equation for pricing the firm and any security issued by this firm and demonstrate how 

Merton has come to the geometric Brownian equation as a descriptor of the firm’s asset dynamics and the 

problems caused by this choice. In Section 5, we discuss the default line introduced by Black and Cox and its 

consequences for financial analysis. In Section 6, we consider the synthesis of ideas of Merton (1974) and Black 

and Cox (1976) used for analysis of the effect of debt on the firm value by Leland (1994), Leland and Toft (1996) 

and Leland’s choice of the optimal debt leverage making the essence of the trade-off theory. Section 7 concludes 

the paper. 

Early Empirical and Theoretical Results Supporting Idea of Brownian  

Motion of Stock Prices 

What arguments make economists believe that stock market prices follow the Brownian motion? The main 

contribution has been made by two empirical papers by Kendall (1953) and Osborn (1959) and three theoretical 

papers using the ideas similar to that of Kendall and Osborn and providing the break-through in optimal portfolio 

allocation (Markowitz, 1952) and capital asset pricing (Sharp, 1964; Lintner, 1965). 

The original objective of Kendall’s study (1953) was to reveal regular cycles in market stock prices, but he 

has concluded that market prices follow a random walk. As he says, each data series appears to be “a wandering 

one, almost as if once a week the Demon of Chance draws a random number from a symmetrical population of 

fixed dispersion and adds it to the current price to determine the next week’s price.” (Kendall, 1953, p. 13). This 

result has been confirmed by Osborn who argues that:  

if 𝑌 = ln⁡[𝑃(𝑡 + 𝜏)/𝑃0(𝑡)], where 𝑃(𝑡 + 𝜏) and 𝑃0(𝑡) are the price of the same random choice stock at random times 

𝑡 + 𝜏 and t, then the steady state distribution of Y is 

𝜑(𝑌) = (2𝜋𝜎2𝜏)−1/2exp⁡[−𝑌2/(2𝜎2𝜏)], 

which is precisely the probability distribution for a particle in Brownian motion, if 𝜎 is the dispersion developed at the 

end of unit time. (Osborn, 1959, p. 145)  



NO-ARBITRAGE IN FINANCIAL ECONOMICS 

 

130 

In other words, changes in stock price logarithms (asset returns) are independent random values following a 

normal distribution with a fixed variance. 

Markowitz (1952) looks for the optimal portfolio allocation using two asset characteristics: their means and 

variances (co-variances). He considers the variance as a measure of asset risks. The mean-variance portfolio 

optimization supposes the normal distribution of asset returns, anticipating the results of Kendall and Osborne. 

In Markowitz’s mean-variance portfolio optimization, the investor maximizes the mean portfolio return, keeping 

the variance fixed. Markowitz’s theory is the first-ever scientific portfolio allocation method enthusiastically 

recognized by financial theorists and practitioners.  

Mandelbrot (1963) and Fama (1965) cast the first doubts that stock prices follow the random walk model. 

Mandelbrot (1963) states that the empirical distributions of price changes conform better to the stable Paretian 

distributions than to its marginal form (the normal distribution). A typical representative of the stable Paretian 

distributions looks like a symmetric leptokurtic distribution with heavy tails. (In theory, their tails are so heavy 

that a typical distribution has an infinite variance). Fama (1965) collects statistics of daily changes in logarithmic 

prices that show that empirical frequency distributions of log prices for all stocks under study contain more 

relative frequency in their central part and more relative frequency in their extreme tails than it would be expected 

under the normal hypothesis. Our explanations of these results can be seen in Section 3. 

By and by, economists have accumulated empirical data showing that not only asset returns but portfolio 

returns, too, are skewed. Simkowitz and Beedles (1980), Singleton and Wingender (1986), Badrinath and 

Chatterjee (1988), Fortune (1996), and Harvey and Siddique (2000) present empirical evidence of skewness in 

individual stock returns and market indexes in the US stock markets. Shemetov (2020; 2021), considering the 

firm valuation in settings with the firm’s payments and the default line, shows that an initially normal distribution 

of asset returns becomes skewed over time. Those facts make economists reconsider methods for efficient 

portfolio allocation. Considering portfolio allocation with higher moments (skewness, kurtosis), Kraus and 

Litzenberger (1976) recommend selecting positively skewed assets to the portfolio. So, researchers looking for 

efficient portfolios begin to maximize the portfolio mean returns and skewness while keeping their variance fixed 

(Mencia & Sentana, 2009; Harvey et al., 2010; Adcock et al., 2012; Krueger, 2021). Opposing those views, 

Shemetov (2022) shows that high positive skewness comes with a high default probability, and the unconditional 

maximization of skewness dangerously increases portfolio risks. He also demonstrates that for skewed asset 

returns, the variance is no adequate measure of asset risks (see Section 3); thus, its minimization is useless. A 

proper measure of risks for skewed return distributions is the intensity of default probability. In portfolio 

optimization with higher moments, Shemetov (2022) recommends solving the following problem: maximize the 

mean return and skewness while keeping the intensity of default probability under control. Such an approach 

helps select both efficient and reliable portfolios. 

The Capital Asset Pricing model, CAPM (Sharp, 1964; Lintner, 1965), developing Markowitz’s ideas, 

relates the expected portfolio return 𝐸(𝑟𝑝) with the expected market return 𝐸(𝑟𝑀) and beta: 

𝐸(𝑟𝑝) = 𝑟𝑓 + 𝛽𝑝[𝐸(𝑟𝑀) − 𝑟𝑓] , 𝛽𝑝 = 𝑐𝑜𝑣(𝑟𝑝, 𝑟𝑀)/𝑣𝑎𝑟(𝑟𝑀)  

here 𝑟𝑓 is the return on a risk-free asset. CAPM uses two basic assumptions:  

(1) asset returns are normally distributed or  

(2) investors have a quadratic utility function.  
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Notwithstanding these rigid limitations, practitioners widely apply the mean-variance theory for asset 

allocation because it provides an intuitively clear assessment of the relative merits of alternative portfolios. 

Moreover, one can span the mean-variance efficient frontiers with only two funds, which simplifies calculation 

and interpretation of these efficient frontiers. However, now economists know that asset returns are skewed, and 

the classic CAPM does not satisfy them anymore. An intensive search for the next generation of capital asset 

pricing models continues. 

Modigliani-Miller Propositions 

The modern theories of capital structure and dividend policy decisions start with the outstanding series of 

papers by Modigliani and Miller (1958; 1961; 1963). Modigliani-Miller Propositions (hereafter MMPs) have 

been under intense scrutiny since their publication, and Miller (1988) remarks in his jubilee paper that first 

discussions were very hot. However, the MMP critique by and by calms down by the 90s, and the MMPs and the 

arbitrage method of their proof are now generally recognized (Bhattacharya, 1988). The main MMP results are, 

in brief, as follows. The MMP1 (1958) states that the capital structure does not affect the expected firm value in 

the perfect market. In other words, there is no optimal debt leverage in those conditions. The MMP2 (1961) 

argues that the dividend policy in the same conditions does not influence the expected firm value. The MMP1 

and MMP2 shocked economists at the time of their publication because the choice of the capital structure and the 

dividend policy were considered crucial for the firm success. The MMP3 (1963) considers two firms: an 

unlevered firm and a levered firm identical to the unlevered one in all aspects but the capital structure. The 

theorem states that in the perfect market with corporate income taxes, the after-tax expected value of the levered 

firm equals the after-tax value of the unlevered firm plus tax deductions. This result gives theoretical 

underpinnings to the trade-off theory arguing that in the presence of corporate taxes and bankruptcy costs there 

is an optimal debt leverage maximizing the firm value.  

Our objective is to test the MMP results in the light of the EMM (Shemetov, 2020; 2021) and show that the 

MMPs follow from the perfect market assumptions joined with an implicit assumption that the firm value meets 

the GBM distribution with no payments at all. We show that the MMP1 and MMP3 are false even when the 

firm’s payments are proportional to the firm value, although the return distribution remains normal in that case. 

None of the MMPs holds good for the EMM firms with payments to be a function of time, and the return 

distribution becomes skewed. Because debt decreases the mean after-tax value, the mean after-tax value of the 

unlevered firm is higher, not lesser, than the mean after-tax value of the identical levered firm. It implies that the 

MMP3 and the trade-off theory following from it are wrong; hence, all conclusions and recommendations based 

on the trade-off theory are false.  

The idea of proof of the MMPs consists of constructing an analog of the Marshallian industry for firms’ 

cash flows and then applying the one-price principle to the market of perfect substitutes. Modigliani and Miller 

(1958) consider firms in the perfect market described with the assumptions: 

(1) The firm value is determined only by the mean cash flow generated by the firm; 

(2) All investors have full information about firms’ cash flows; thus, the investors have homogenous 

expectations on corporate cash flows and their riskiness;  

(3) There is an “atomistic” competition and no market friction of any kind. That implies, among other things, 

that at the market of corporate stocks and bonds (a) there are no agency costs, (b) bankruptcy entails no liquidation 
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costs, and (c) all investors, both individuals and institutions, can borrow at the same rate as corporations; 

(4) The debt of firms and investors is riskless, so the interest rate of all debts is the risk-free rate for all 

possible amounts of debt; 

(5) There are no corporate or personal income taxes; 

(6) “All firms can be divided into ‘equivalent return classes’ (Miller (1988) calls them ‘risk classes’) such 

that the return on the shares issued by any firm in any given class is proportional to (and hence perfectly correlated 

with) the return on shares issued by any other firm in the same class” (Modigliani & Miller, 1958, p. 266). “All 

relevant properties of a share are uniquely characterized by specifying (1) the class to which it belongs and (2) 

its expected return.” The authors claim that this assumption permits them “to classify firms into groups within 

which the shares of different firms are ‘homogeneous,’ that is, perfect substitutes for one another” (ibid). 

The authors implicitly use one more assumption that the firm cannot default in its development because the 

firm space has no default line hitting which the firm defaults, and the firm cannot default on a special date like 

the maturity of its debt. 

Assumption (1) looks strange taking account of the Markowitz mean-variance theory of efficient portfolio 

allocation (1952) recognized by 1958. This theory puts forward the hypothesis that the firm value is completely 

determined by its mean cash flow and risk represented by the cash flow variance. It seems natural to characterize 

the risk class with the expected return and variance. There is also a hypothesis supported by practical observations 

that the higher the firm’s debt, the higher the risk. Discussing the effect of debt on the value of the firm’s warrant, 

Merton (1973, p. 151) says “If the firm changed its capital structure by raising the debt/equity ratio, then the 

riskiness of the common stock would increase, and the warrant would become more valuable”. Leland (1994) 

uses this relation as an established fact to show that the firm’s return is a convex-up function of debt leverage. 

Using Markowitz’s hypothesis and the dependence of the firm risk/variance on its leverage, one can conclude 

that the unlevered firm and the identical levered firm can never get into the same risk class, and, therefore, the 

firm value depends on its capital structure rejecting the MMP1.  

The arbitrage proof of MMP1 can be explained by the rule of contraries. Let us consider two firms within 

the same risk class, an unlevered firm and the levered one identical to the first in all aspects but the capital 

structure. Suppose also to the contrary of MMP1 that the value of the levered firm is higher than that of the 

unlevered firm. Now investors, having in their portfolios shares of both levered and unlevered firms, can sell 

shares of the levered firm, buy cheaper shares of the unlevered one, and, borrowing enough debt, reproduce the 

capital structure of the levered firm in their portfolios but at a lower cost. The perfect market conditions guarantee 

that the cost of debt (the interest rate) remains the same for the levered firm and investors. So, this line of actions 

brings arbitrage profits to the investors. The arbitrage profit will exist until the values of levered and unlevered 

firms differ. To prevent arbitrage profits, the authors conclude that both levered and unlevered firms must have 

the same value, and the capital structure does not affect the firm value. However, there are two more possible 

conclusions in this line of reasoning: (1) the levered and unlevered firms identical in all aspects but the capital 

structure cannot get into the same risk class, and (2) the risk classes with the properties required by Assumption 

6 do not exist. Merton’s model (1974) supports the first alternative conclusion. 

We test the MMP1 using Merton’s model (1974), where the firm value is described by the equation: 

𝑑𝑋 = (𝜇𝑋 − 𝑃)𝑑𝑡 + 𝐶𝑋𝑑𝑊, 𝑋(0) = 𝑋0      (2.1) 

𝑃 = 𝐷𝑃 + 𝐷𝐼𝑉 
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Here X(t) is the firm market value at time t, μ is the rate of instantaneous expected returns on the firm per 

unit time, P is the total dollar payouts by the firm per unit time to either its shareholders or liabilities-holders 

(dividend DIV or interest DP payments) per unit time, constant C2 is the instantaneous variance of returns, W is 

a Wiener process. 

Let the levered firm have its payments proportional to the firm value, P = δX, 0 < δ⁡< µ, while the unlevered 

firm pays nothing, δ⁡= 0. The firms are identical in all other respects: they have the same initial values X0, 

expected returns 𝜇, and the same intensity of shocks C. The model (2.1) describing dynamics of both firms in 

these conditions becomes the geometric Brownian model (GBM): 

𝑑𝑋/𝑋 = (𝜇 − 𝛿)𝑑𝑡 + 𝐶𝑑𝑊 , 𝑋(0) = 𝑋0       (2.1a) 

For the logarithmic variable 𝑧 = ln⁡(𝑋/𝑋0), (Eq. 2.1a) by Ito’s lemma transforms to: 

𝑑𝑧 = (𝑅 − 𝛿)𝑑𝑡 + 𝐶𝑑𝑊, 𝑅 = 𝜇 − 𝐶2/2         (2.2) 

and the mean return for the levered firm grows with the rate of expected return 𝑅 − 𝛿: 

〈𝑧𝐿(𝑡)〉 ≡ 𝐻𝐿(𝑡) = (𝑅 − 𝛿)𝑡 

while the unlevered firm’s return grows with the rate of expected return R:  

〈𝑧𝑈(𝑡)〉 ≡ 𝐻𝑈(𝑡) = 𝑅𝑡 

One can see that 𝐻𝑈(𝑡) > 𝐻𝐿(𝑡), 𝑡 > 0, and the firm value depends on its capital structure in the GBM with 

proportional payments. 

What is the effect of taxes on the values of two identical levered and unlevered firms? Let payments of the 

unlevered firm consist of dividends only, PU = DIV = δ1X, δ1 > 0, while payments of the levered firm consist of 

dividends and debt payments, PL = DIV + DP = δ2X, R > δ2 > δ1. The returns 𝐻𝐿(𝑡) and 𝐻𝑈(𝑡) of both firms, 

described by Eq. (2.2), can be effectively considered as the returns of two unlevered firms with no payments 

(𝑃𝑒𝐿 = 𝑃𝑒𝑈 = 0) with different effective rates of return. Correspondingly, returns of the second firm, 𝐻𝐿(𝑡) ≡

〈𝑧𝐿(𝑡)〉 = (𝑅 − 𝛿2)𝑡, 𝑧 = ln⁡(𝑋/𝑋0), are lesser than returns of the first firm, 𝐻𝑈(𝑡) ≡ 〈𝑧𝑈(𝑡)〉 = (𝑅 − 𝛿1)𝑡. As 

an unlevered firm, the second firm has no right on the tax shield and pays its tax at the same rate as the first firm. 

Therefore, the after-tax mean value of the levered firm is lesser than the after-tax mean value of the unlevered 

one. This conclusion rejects the MMP3 (1963) in the GBM with payments proportional to the firm value. It means 

that debt negatively affects the after-tax mean value. So, all kinds of the trade-off theory, claiming after the MMP3 

a positive effect of debt on the after-tax mean value, are wrong in the GBM, P = δX (e.g., Kraus & Litzenberger, 

1973; Leland, 1994; Ju et al., 2005; Frank & Goyal, 2007). All papers on the optimal capital structure, using the 

MMP3 and the GBM, P = δX (e.g., Leland, 1994; Leland & Toft, 1996; Goldstein et al., 2001), are self-

contradictory because the GBM, P = δX, is inconsistent with the MMPs.  

We will not analyze the MMP2 (1961) here because it has already got a good share of criticism for its 

unrealistic assumptions (the perfect capital market, no taxes, the fixed investment policy, no risk of uncertainty, 

investors are indifferent between the dividends and the capital-gain income, etc.) and conclusions having no 

support in practice (see Baker & Powel, 1999; H. DeAngelo & L. DeAngelo, 2006; Dhanani, 2005). 

Merton’s model shows that the only way to obtain all MMPs in the frameworks of one model is to have 

absolutely no payments for the levered and unlevered firms. Because there are no dividend payments for both 

firms (DIV = 0), the dividend policy does not affect the firm value (MMP2, 1961). Because there are no debt 
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payments (DP = 0), the capital structure has no influence on the firm value (MMP1, 1958). Because the levered 

firm does not pay for its debt but presumably enjoys the tax shield, its mean after-tax value is higher than the 

mean after-tax value of the unlevered firm due to tax deductions (MMP3, 1963). However, the MMP3 is a logical 

error. Because the levered firm does not pay for its debt, it is indistinguishable from the identical unlevered firm, 

and, therefore, its tax shield must be zero. We have that in the perfect market with corporate income taxes, the 

after-tax value of the levered firm equals the after-tax value of the unlevered firm (MMP1 with corporate taxes). 

The firm’s payments make all MMPs wrong. 

It is interesting that attempts to test M&M Invariance Theorem experimentally continue 60 years after the 

first publication of the theorem (Modigliani & Miller, 1958). Charness and Neugebauer (2019) investigate the 

invariance theorem in experimental asset markets, finding value-invariance for assets of identical risks (the 

levered assets and unlevered assets belong to the same risk class) when the returns to these assets are perfectly 

correlated. The authors do not motivate how (any) two different assets can have perfect correlation of their returns. 

Without such an explanation, their problem setting is unreal, and their results have neither theoretical no 

practical value. 

The MMPs can be obtained if and only if both levered and unlevered firms can be modeled with self-

financing portfolios admitting no payments and fund infusions. In the market of self-financing firms, the 

martingale no-arbitrage principle (see Section 3) is effective (Merton, 1973; Cox et al., 1979; Harrison & Kreps, 

1979; Harrison & Pliska, 1981). The martingale no arbitrage is valid if and only if the mean stochastic return on 

the firm is zero. The mean stochastic return is zero if and only if the return distribution is symmetric. So, the 

firm’s return distribution is symmetric in the MMPs. The last conclusion contradicts the facts observed in practice; 

we have a lot of reliable evidence that the firm’s return distributions are skewed. The verdict on the MMPs is that 

the model is oversimplified to have any practical value. For long years of recognition, the MMPs stimulate the 

development of false intuition on the firm capital structure and continue to undermine logic and validity of all 

studies using them.  

Nevertheless, the historical value of the MMPs as one of the first scientific financial models causes no doubts. 

The MMPs have set up the foundation and pointed the direction for capital structure theories for decades. The 

martingale no arbitrage principle and the MMPs serve as an essential argument in the seminal papers on option 

pricing (e.g., Black & Scholes, 1973; Merton, 1973), in the most influential article on valuation of corporate debt 

by Merton (1974), and in the paper on the joined effect of debt and taxes on the firm value by Ross (1985), and 

a more resonant series of articles on the same subject by Leland and his co-authors (Leland, 1994; Leland & Toft, 

1996; Goldstein et al., 2001).  

The Black-Scholes-Merton Model and Option Pricing 

Theory of BSM Model  

The pricing of financial derivatives is a crucial problem in portfolio management and investing. The Black-

Scholes-Merton (BSM) model is the first universally recognized theory of rational option pricing on the long way 

of pricing various financial derivatives. The original BSM model offers the Black-Scholes (BS) formulas for 

pricing European call and put options that made options trading less gambling and more scientific. The BS 

formula relates the option price with the price of an underlying stock, the risk-free interest rate, the option 

exercise/strike price, its expiration time, and volatility and the return distribution of the underlying stock. All 
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parameters, except volatility, are directly observable. This important feature of the BSM model favorably 

distinguishes it from its predecessors (e.g., Sprenkle, 1961; Samuelson, 1965; Samuelson & Merton, 1969; Chen, 

1970). Empirical analysis confirms that the price estimates produced by the BS formula are often close to the 

prices observed in exchange. Many modified option pricing models are now at the disposal of option traders.  

Scholes (2023) argues the option market prices can render an essential service to the theorists studying 

market risks and to the traders taking those risks into account in their operations: option prices can serve as a 

reconnaissance drone providing valuable information about the market risks in real time. It makes the basis for 

managing market risks proactively.  

The main idea behind the method of option pricing is hedging the option by buying and selling the 

underlying stock in calculated proportions to eliminate risks. 

The BS formula uses the following assumptions: 

(a) The short-term interest rate is known and is constant through time.  

(b) The stock price x follows a random walk in continuous time with constant variance rate v2 proportional 

to the square of the stock price. Thus, the distribution of possible stock prices at the end of any finite interval is 

lognormal.  

(c) The stock pays no dividends or other distributions.  

(d) The option is “European” if it can only be exercised at its maturity, 𝑡∗.  

(e) There are no transaction costs in buying or selling the stock or the option.  

(f) It is possible to borrow any fraction of the price of a security to buy it or to hold it, at the constant short-

term interest rate, r.  

(g) There are no penalties to short selling. A seller who does not own a security will simply accept the price 

of the security from a buyer, and will agree to settle with the buyer on some future date by paying him an amount 

equal to the price of the security on that date. 

The authors consider the European call option price, w(x, t), as a function of the stock price x, time t, and 

the problem parameters. Black and Scholes (hereafter B&S) create a hedged portfolio consisting of a long  

position in the stock and a short position in the option. In this case, the value of that hedged position does not 

depend on the stochastic stock price but is a function of time and the problem parameters. B&S derive the 

equation:  

𝑤𝑡 + 𝑟𝑥𝑤𝑥 + 0.5𝑣2𝑥2𝑤𝑥𝑥 − 𝑟𝑤 = 0       (3.1a) 

with a condition at the option maturity: 

𝑤(𝑥, 𝑡∗) = max[𝑥 − 𝑐, 0] ≡ [𝑥 − 𝑐]+        (3.1b) 

A solution of the BS problem (3.1) is: 

𝑤(𝑥, 𝑡) = 𝑥𝑁(𝑑1) − 𝑐𝑒−𝑟(𝑡
∗−⁡𝑡)𝑁(𝑑2) 

𝑑1 = [ln (
𝑥

𝑐
) + (𝑟⁡ + ⁡0.5𝑣2)(𝑡∗ − 𝑡)]/(𝑣√𝑡∗ − 𝑡)       (3.2) 

𝑑2= [ln (
𝑥

𝑐
) + (𝑟 − ⁡0.5𝑣2)(𝑡∗ − 𝑡)]/(𝑣√𝑡∗ − 𝑡) 

𝑐 is the exercise price, 𝑡∗—the option expiration date (maturity), N(x) is a cumulative normal distribution. 

B&S consider also the pricing of European put options (options to sell). Denoting the value of a put option 

as u(x, t), they show that the differential equation remains the same: 
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𝑢𝑡 + 𝑟𝑥𝑢𝑥 + 0.5𝑣2𝑥2𝑢𝑥𝑥 − 𝑟𝑢 = 0       (3.3a) 

but the boundary condition changes to: 

𝑢(𝑥, 𝑡∗) = max[𝑐 − 𝑥, 0] ≡ [𝑐−𝑥]+        (3.3b) 

The solution to problem (3.3) is: 

𝑢(𝑥, 𝑡) = −𝑥𝑁(−𝑑1) + 𝑐𝑒−𝑟𝑡
∗
𝑁(−𝑑2)       (3.4) 

where 𝑑1  and 𝑑2  are determined in Eq. (3.2). Concerning the behavior of the option price on the model 

parameters, B&S, referring Merton (1973), say that the option value increases continuously as any one of maturity 

𝑡∗, interest rate r, or variance rate v2 increases approaching the maximum value equal to the stock price. 

B&S pay tributes to previous studies in warrant pricing (Sprenkle, 1961; Samuelson, 1965; Samuelson & 

Merton, 1969) and explain why those studies have failed to achieve satisfactory solutions. B&S indicate that the 

warrant analysis is much more complicated than the analysis of vanilla options because the warrant life is 

typically much longer (years) than the option life (a few months). Therefore, the warrant valuation must take into 

account many events that can happen during the warrant lifetime, such as dividend payments, changes in the 

strike price on specified dates, etc. However, B&S see the main effect of the warrant long life in substantial 

changes in the variance rate rather than in payments of the underlying firm.  

B&S give examples of long-period business situations where, as they believe, the option pricing formula 

will successfully work for pricing long-term securities. At the same time, they understand that more complicated 

cases, when a company issues callable or convertible bonds, cannot be handled by using the option pricing 

equations (Eqs. (3.2) or (3.3)) because of significant changes in the variance rate of returns of the underlying firm 

during their long maturity. The EMM proves that the primary cause of the ineffectiveness of the BS formula for 

the valuation of long-term assets and securities is the development of distribution skewness caused by the firm’s 

BSE payments and the default line. 

Simultaneously with Black and Scholes, Merton (1973) published the most important paper in the option 

pricing literature. Paying tributes to the merits of the BS formula (the option price depends on observable 

parameters except for the market volatility), he remarks that “although their (B&S) derivation of the (option 

pricing) formula is intuitively appealing, such an important result deserves a rigorous derivation. … The rigorous 

derivation … gives insight into necessary conditions for the formula to obtain” (Merton, 1973, p. 161). Merton 

gives his alternative derivation of the BSM model with slightly relaxed assumptions. 

(1) “Frictionless” markets: there are no transactions, costs, or differential taxes. Trading takes place 

continuously and borrowing and short-selling are allowed without restrictions. At that, the borrowing rate equals 

the lending rate. 

(2) Stock price dynamics is described by the stochastic differential equation: 

𝑑𝑆/𝑆 = 𝛼𝑑𝑡 + 𝜎𝑑𝑧          (3.5) 

where α is the instantaneous expected return on the common stock, σ2 is the instantaneous variance of the return 

(non-stochastic, known function of time), and dz is a standard Gauss-Wiener process.  

(3) Let P(τ) be the price of a riskless (in terms of default) discounted loan (“bond”) which pays one dollar τ 

years from now. If the current and future interest rates are positive, then 

1 = 𝑃(0) > 𝑃(𝜏1) > 𝑃(𝜏2) > ⋯ >> 𝑃(𝜏𝑛) for 0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑛  

at a given point in calendar time. The dynamics of bond returns are described by the equation: 
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𝑑𝑃/𝑃 = 𝜇(𝜏)𝑑𝑡 + 𝛿(𝜏)𝑑𝑞(𝑡; 𝜏)         (3.6) 

where µ is the instantaneous expected return, δ2 is the instantaneous variance, and dq(t; τ) is a standard Gauss-

Wiener process for maturity τ. At that process dq for one maturity τ is not perfectly correlated with process dq 

for another maturity T: 

𝑑𝑞(𝑡; 𝜏)𝑑𝑞(𝑡; 𝑇) = 𝜌𝜏𝑇𝑑𝑡         (3.7) 

but 𝑑𝑞(𝑠; 𝜏)𝑑𝑞(𝑡; 𝑇) = 0 for 𝑠 ≠ 𝑡 , and 𝑑𝑞(𝑠; 𝜏)𝑑𝑧(𝑡) = 0 for 𝑠 ≠ 𝑡. 

Expected return µ may be stochastic, but instantaneous variance δ2 is non-stochastic and independent of the 

level of P. 

(4) All investors agree on the values of σ and δ, and on the distributional characteristics of dz and dq. It is 

not assumed that they agree on either α or µ. 

(5) It is assumed the option price H is a function of the stock price S, riskless bond price P, exercise price E, 

and the length of time to expiration τ: H(S, P, τ; E). 

Using Ito’s lemma, Merton writes an equation for changes in the option price: 

𝑑𝐻 = 𝛽𝐻𝑑𝑡 + 𝛾𝐻𝑑𝑧 + 𝜗𝐻𝑑𝑞  

𝛽 = (0.5𝜎2𝐻11 + 𝜌𝜎𝛿𝑆𝑃𝐻12 + 0.5𝛿2𝐻22 + 𝛼𝑆𝐻1 + 𝑃𝑆𝐻2 −𝐻3)/𝐻     (3.8) 

𝛾 = 𝜎𝑆𝐻1/𝐻, 𝜗 = 𝛿𝑃𝐻2/𝐻, 𝐻1 =
𝜕𝐻

𝜕𝑆
, 𝐻2 =

𝜕𝐻

𝜕𝑃
, 𝐻3 =

𝜕𝐻

𝜕𝑡
  

Then Merton forms a portfolio containing the common stock, the option, and riskless bonds with times to 

maturity equal to the option expiration τ, such that the aggregate investment in the portfolio is zero. This is 

achieved by using the proceeds of short sales and borrowing to finance long positions. Merton says nothing about 

how long the investor has to keep and watch this portfolio, but this time, tp, matters. To estimate the option price, 

one must keep and watch the portfolio for the time comparable with the characteristic time of changes in the 

option price, 𝑡𝑝 ≤ 𝜏, because the portfolio dynamics must reflect the option price dynamics. During this time, 

the firm, which issued the underlying stock, makes no payments or makes a few payments, and its return 

distribution will change insignificantly, remaining almost the same. (The characteristic time of changes in the 

firm’s returns is much greater than the characteristic time of changes in the option price). Correspondently, the 

expected stock price and the stock price distribution remain about the same. If W1 is the number of dollars invested 

in the common stock, W2 is the number of dollars invested in the option, and W3 is the number of dollars invested 

in bonds, then W1 + W2 + W3 = 0. For the instantaneous dollar return to the portfolio, dY, one has a relation: 

𝑑𝑌 = 𝑊1
𝑑𝑆

𝑆
+𝑊2

𝑑𝐻

𝐻
+𝑊3

𝑑𝑃

𝑃
=        (3.9) 

[𝑊1(𝛼 − 𝜇) +𝑊2(𝛽 − 𝜇)]𝑑𝑡 + [𝑊1𝜎 +𝑊2𝛾]𝑑𝑧 + [𝑊2𝜗 − (𝑊1 +𝑊2)𝛿]𝑑𝑞      

Merton supposes that a hedging strategy exists (𝑊𝑗 = 𝑊𝑗
∗, 𝑗 = 1, 2, 3) making the coefficients at dz and dq 

always zero and the returns on that portfolio 𝑑𝑌∗ non-stochastic. Together with a zero return to the regular part 

of the portfolio change, it results in a linear system: 

𝑊1
∗(𝛼 − 𝜇) +𝑊2

∗(𝛽 − 𝜇) = 0 

𝑊1
∗𝜎 +𝑊2

∗𝛾 = 0                                 (3.10) 

−𝑊1⁡
∗𝛿 +𝑊2

∗(𝜗 − 𝛿) = 0 

A non-trivial solution of this homogeneous system exists if and only if:  
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𝛽−𝜇

𝛼−𝜇
=

𝛾

𝜎
=

𝜗−𝛿

𝛿
          (3.11)  

Using relation (3.11) and definitions (3.8) of 𝛽, 𝛾, and 𝜗, Merton achieves the equation for the option 

price: 

0.5(𝜎2𝑆2𝐻11 + 2𝜌𝜎𝑆𝑃𝐻12 + 𝛿2𝑃2𝐻22) − 𝐻3 = 0      (3.12a) 

The price H(S, P, τ; E) must also satisfy the boundary conditions: 

𝐻(0, 𝑃, 𝜏; 𝐸) = 0          (3.12b) 

𝐻(𝑆, 1, 0; 𝐸) = max⁡(0, 𝑆 − 𝐸)        (3.12c) 

The existence of a strategy making the coefficients at dz and dq zero means that the returns to portfolio Y 

have the martingale property. We will call (3.10) the conditions of martingale no arbitrage (or martingale 

arbitraging). The portfolio is the martingale arbitraging one if and only if it is self-financing, meaning that the 

firm standing behind the portfolio makes no payments and receives no fund infusions. The spirit of self-financing 

imbues the entire Merton paper (see, for example, Eqs. (3.5) and (3.6)), and conditions (3.10) seem very natural 

to him. Merton concludes his derivation of (Eq. (3.12)) with the statement (p. 168) “We have derived the BS 

warrant pricing formula rigorously under assumptions weaker than they (B&S) postulate.” One must remember 

that the formula for the long-term warrant pricing is derived for the market where the firms can default only     

at the debt maturity. In a real market where the firm pays its BSEs and can default at any moment causing     

the default of all its securities, the situation is quite different. We shall consider the case of actual market a bit 

later. 

Next, Merton tries to extent the BSM model by including dividend payments. He analyzes the effect of 

dividends D on unprotected warrants in the case of a known and constant interest rate r. Using the same conditions 

(3.10), he comes to the equation for the warrant price W(S, τ; E):  

0.5𝜎2𝑆2𝑊11 + (𝑟𝑆 − 𝐷)𝑊1 −𝑊2 − 𝑟𝑊 = 0     (3.13) 

subject to the boundary conditions, W(0, τ; E) = 0, W(S, 0; E) = max(0, S - E) for a European warrant, and to 

additional arbitrage boundary condition W(S, τ; E) ≥ max(0, S - E) for an American warrant. Inclusion of dividend 

payments violates the self-financing condition which is necessary for the BSM model, and only practical 

usefulness can excuse this inconsistency. But the pricing model for a long-term warrant to be useful must take 

account of many requirements not included in the BSM model; therefore, model (3.13) and all inferences from it 

are, unfortunately, of a little value.  

To make the problem setting more realistic, one must take into consideration the firm’s payments and the 

default line introduced by Black and Cox (1976). It changes the situation drastically: Equations (3.12) may be 

good for short-term options, but they do not work for long-term warrants. To understand what conditions must 

be set for the hedging strategy (𝑊𝑗
∗, 𝑗 = 1, 2, 3), one should remember that the firm’s market value develops due 

to two interrelated stochastic processes. The first and relatively slow one is the corporate asset development 

during the manufacturing and marketing goods by the firm. This process includes multiple payments and 

infusions of funds and is definitely not a self-financing process. It involves the growing distribution skewness 

and negative mean stochastic returns. The faster second process sets the market price on the firm’s stock. We can 

prove (and will show it in a later paper) that this process follows the GBM if the firm asset value does not change. 

Thus, the stock market price has a symmetric return distribution, and a zero mean stochastic return. Conditions 

(3.10) are the conditions of hedging portfolio dY against the trading fluctuations. The cumulative effect of both 
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processes makes the firm return distribution skewed and the mean stochastic return negative when pricing long-

term assets and securities. At that, the managers controlling portfolio dY will see the coefficients at dz and dq to 

be close to zero at any moment because the firm mean returns decrease slowly. 

The greater the payments and the longer their period, the sharper the effect of payments. Therefore, for 

short-term options, conditions (3.10) are almost fulfilled, but for long-term securities like warrants, shares of 

stock, bonds, etc. when the portfolio must be kept and watched for the times comparable with times of the firm’s 

asset changes, conditions (3.10) are never satisfied. It explains the relative success of the BS option pricing 

formula and failure of the Merton formula for warrant pricing and his general equation for pricing any security 

(Merton, 1974; Section 4). The EMM (Shemetov, 2020) proves that the main cause making the BS formula 

ineffective for valuation of long-term securities is growing skewness in the firm’s return distribution caused by 

BSE payments and the default line. The actual situation with the long-period hedging portfolio is 

𝑊1
∗(𝛼 − 𝜇) +𝑊2

∗(𝛽 − 𝜇) < 0 

𝑊1
∗𝜎 +𝑊2

∗𝛾 < 0          (3.14) 

−𝑊1⁡
∗𝛿 +𝑊2

∗(𝜗 − 𝛿) < 0  

We will call conditions (3.14) the non-martingale no arbitrage conditions to distinguish them from 

martingale no arbitrage conditions (3.10). The principal difference between these two no-arbitrage conditions is 

that the firm’s return distribution satisfying conditions (3.10) and starting from a symmetric initial distribution 

remains always symmetric while the firm’s return distribution meeting conditions (3.14) and starting from a 

symmetric initial distribution becomes more and more skewed over time. An important consequence is that the 

martingale arbitraging keeps the initial portfolio value safe, while the non-martingale arbitraging erodes 

(decreases) the initial portfolio value the more, the higher the payments and the longer their period. If X = (Xn) is 

a martingale relative to filtration F = (ℱn) n≥0: 

𝐸(𝑋𝑛|ℱ𝑛−1) = 𝑋𝑛−1 

and Xn = x1 + x2 +…+ xn, x0 = 0, then x = (xn) is a martingale difference with properties: xn is ℱn—measurable, 

E|xn| < ∞, and E(xn|ℱn-1 ) = 0 (compare with conditions 3.10). On the other hand, if X = (Xn) is a stochastic 

sequence with filtration F = (ℱn) n≥0, Xn = x1 + x2 +…+ xn, x0 = 0, and x = (xn) has properties: xn is ℱn—measurable, 

E|xn| < ∞, and E(xn|ℱn-1) < 0 (see conditions 3.14), then  

𝐸(𝑋𝑛|ℱ𝑛−1) = 𝑋𝑛−1 − 𝜖, 𝜖 > 0 

The value of 𝜖 depends on time and parameters of the firm and market: for short-term options 𝜖 ≅ 0, for 

stocks or bonds of unstable firms it can be fairly large. Without interventions from the outside, ε-value grows 

continuously. The arbitrage property of financial markets means impossibility to make money out of nothing. 

Formally, we say that a self-financing strategy provides an arbitrage opportunity if and only if P(V0 = 0) = 1, 

P(VT ≥ 0) = 1 and 0 < P(VT > 0) < 1, here V0 is an initial value of the portfolio, VT is its value at time T > 0, P(A) 

is a probability of event A. A market is (martingale) arbitrage free if there is no such strategy. For the firm 

(portfolio) paying its BSEs, if P(V0 = 0) = 1, then P(VT < 0) = 1. The market of the firms paying their BSEs is 

arbitrage free. To succeed in the non-martingale no arbitrage market, one must work hard; single speculation for 

sufficiently long time will certainly ruin one’s wealth.  

The system (3.14) cannot be solved by the way used by Merton; thus, Equation (3.12a) is inconsistent with 

the default line and cannot be used for pricing long-term securities like warrants, bonds, stocks, etc. Equation 
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(3.12a) can be used for pricing short-term securities in the presence of default line, but in this case, it converts 

into the BS equation. Equation (3.12a) can be used without any limitation for pricing any securities but in the 

artificial market, where the firm and its securities can default only at the maturity of the firm’s debt.  

Merton concludes his paper optimistically:  

As suggested by Black and Scholes and Merton, the model can be used to price the various elements of the firm’s capital 

structure. Essentially, under conditions when the Modigliani-Miller theorem obtains, we can use the total value of the firm 

as a “basic” security and the individual securities within the capital structure (e.g. debt, convertible bonds, common stock, 

etc.) can be viewed as “options” or “contingent claims” on the firm and priced accordingly. (Merton, 1973, p. 178)  

We would never mention this statement claiming too much generality to a particular problem of pricing short-

term options if it were just evidence from the past. However, this statement has become a slogan aggressively 

proclaimed till now (e.g., Strebulaev & Whited, 2012, pp. 4-5; Sundaresan, 2013, p. 21), and the models based 

on the BSM model still appear in financial studies (e.g., Leland, 1994; Heston, 1993; Bates, 1996; Goldstein et 

al., 2001; Titman & Tsyplakov, 2007; Hugonnier et al., 2015) making sometimes bright but always practically 

useless contributions to financial literature.  

Empiric Testing of BSM Model  

Investigations of how well the BSM model works have started soon after the publication (Black & Scholes, 

1973). We consider assessments of the model’s validity following (Fortune, 1996), who compares the model’s 

predictions with historical data to determine whether the predictions are accurate or not. For this study, he uses 

the data for the 1992-1994 period from the Chicago Board Options Exchange’s Market Data Retrieval System. 

The author takes the S&P 500-stock index (SPX) as an underlying asset. The MDR reports the number of 

contracts traded, the time of the transaction, the premium paid, the option characteristics (put or call, expiration 

date, strike price), and the price of the underlying stock at its last trade. One can find the details of the data under 

study in the original paper.  

The key unobservable parameter in the BSM model is volatility of returns of the underlying asset (SPX). 

The BSM model assumes that investors know the true standard deviation of returns over the term of the option. 

However, actual volatility is an unobservable variable whose estimate can be inferred post factum from the option 

premia observations. Measuring the option’s stock price (S), its strike price (E), the remaining life of the option 

(τ - t), the riskless interest rate (r), and the dividend yield (q), one can estimate “implied volatility” initially 

suggested by Latane and Rendleman (1976). Implied volatility makes the predicted premium exactly equal to the 

actual premium.  

Implied volatility reveals several problems in the BSM model. First, the average forecast error (actual 

volatility less implied volatility) for the empirical data is (-0.7283), with a t-statistic of (-8.22). It means that 

implied volatility is a biased estimate of actual volatility. Another problem concerns the residuals of the implied 

volatility regressed on the forecasting variables. For a good forecast, its residuals (the forecast errors) should not 

depend on any information available at the time the forecast is made. The residuals must be random and 

uncorrelated with the information available before the forecast. However, the author reports that F-statistic for 

the significance of the regression coefficients is 4.20 with a significance level of 0.2% and concludes that this is 

strong evidence of violation of the residual information test.  

Another inference of the BSM model is that put options and call options identical in all aspects should have 

the same implied volatility and trade at the same premium. It follows from the arbitrage that enforces put-call 



NO-ARBITRAGE IN FINANCIAL ECONOMICS 

 

141 

parity. For each trading day in the 1992-1994 period, the differences between implied volatilities for the at-the-

money puts and calls having the same expiration dates are computed. The results show that although puts 

sometimes have implied volatility less than calls, the norm is for the higher implied volatility and price for puts. 

So, the experimental data cast a shadow of doubts on the put-call parity.  

An important factor affecting the option price is the price distribution of an underlying asset. B&S take the 

stock price distribution lognormal, but Simkowitz and Beedles (1980), Singleton and Wingender (1986), 

Badrinath and Chatterjee (1988), Fortune (1996), Harvey and Siddique (2000) argue that the distribution of 

changes in the logarithm of stock prices is skewed and has fatter tails than that of the normal distribution. Fortune 

(1996) takes a study of daily changes in the logarithm of the S&P 500 index for the period of 1980-1995. He 

reports the statistics for the pre-1987 crash period (January 2, 1980 to September 30, 1987), for the post-crash 

period (January 4, 1988 to March 31, 1995), and for the entire period (January 2, 1980 to March 31, 1995). The 

statistics for the stock returns during contiguous trading days presented by Fortune (1996, pp. 32-33): the mean 

return (percentage at annual rate) for the entire period is 21.48, for the pre-crash period 32.65, and for the post-

crash period 8.29. The standard deviation of returns for the entire period is 12.58, for the pre-crash period 12.40, 

and for the post-crash period 11.27. Skewness of the return distribution for the entire period is 0.07, for the pre-

crash period 0.21, and for the post-crash period -0.94. Kurtosis of the return distribution for the entire period is 

7.33, for the pre-crash period 1.80, and for the post-crash period 8.32. Surprisingly that daily volatility of the 

SPX measured by standard deviation remains about the same both for the pre-crash period and the post-crash 

period, that skewness of daily returns changes from a positive value before the crash to a negative value after the 

crash, and that kurtosis of daily returns increases from a relatively low value before the crash to a high value after 

the crash. The relative frequency distribution of SPX returns does not fit the normal distribution of returns but 

shows some skewness.  

Fortune explains the violation of the call-put parity by friction mechanisms involved in security trading, 

such as the uptick rule, premature termination of a short position, fees for stock lending, etc. He explains the non-

normality of stock price changes by occasional shocks hitting stock prices, following the jump-diffusion theory 

of the development of the fat-tailed return distribution suggested by Merton (1976). Fortune makes no comment 

on the bias in the volatility forecast, on failure of the residual information test, on a surprising change of skewness 

in the crash of 1987. Here we offer our explanations to the observed phenomena. 

The failure of the residual information test looks very natural because the BSM model does not use all 

information on the development of volatility, taking account of the diffusion expansion of the return distribution 

and missing the distribution distortion as a result of the firm’s payments. 

The first question about the observed bias in the volatility forecast (actual volatility less implied volatility 

equals (-0.7283) is why the implied volatility is so higher than the actual volatility. Is it specific for the options 

of the chosen underlying asset (the S&P 500 Index) or timing? Fortune thinks this error is due to shortcomings 

of the BSM model, and we agree with him. The BSM model supposes that the return distribution on an underlying 

asset remains normal all the time with its variance growing over time with the same variance rate. However, the 

return variance of the firms paying BSEs grows due to a symmetric diffusion expansion with a given variance 

rate and a distortion of the return distribution due to developing skewness.  
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Figure 1. Variance VAR(t; H0) - VAR0 as a function of time (years) for various initial conditions H0 = 2.0 (line 1), 1.8 

(line 2), 1.6 (line 3), 1.4 (line 4), and VAR(GBM) - VAR0 = C2t (line GBM); VAR0 = 0.02. 
 

 
Figure 2. Skewness SK(t, H0) as a function of time (years) for various initial conditions H0 = 2.0 (line 1), 1.8 (line 2), 

1.6 (line 3), and 1.4 (line 4). 
 

Here we present typical pictures of the firm’s return distributions with statistical moments. The moments 

VAR(t) and SK(t) are defined by Equations (i.6), DPR(t) by Equation (i.4).  

Figure 1 shows the variance development caused by pure diffusion (the line GBM; the volatility rate squared 

is 0.01, VAR(t) - VAR0 = C2t), and four variance lines generated by the EMM for different values of parameter 

𝐻0 = 〈𝑥(0)〉 = 〈ln⁡[𝑅𝑋(0)/𝑃0]〉, here R = 0.10 is the expected rate of return on firm’s assets, P0 is the rate of 

firm’s payments, X(0) is the initial distribution of the firm’s assets (normal).  
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Parameter H0 shows the height of the firm’s mean relative returns over the default line (in this example, DL 

= 0, no debt) and reflects the firm stability: the lesser H0, the faster grows the default probability in a given time 

interval. The firms with H0 = 2.0, 1.8, 1.6, and 1.4 are steady firms. See details in Shemetov (2020; 2022). The 

difference between the EMM-variance and the GBM-variance appears due to the effect of payments on the 

distribution distortion. It is clear that to achieve the same variance value in the BS model, one must use a greater 

variance rate:  

𝐶𝑒𝑓𝑓(𝑡) = √
𝑑𝑉𝐴𝑅

𝑑𝑡
> 𝐶  

 

Figure 3. Default probability DPR(t; H0) as a function of time (years) for various initial conditions H0 = 1.8 (line 1), 1.6 

(2), and 1.4 (3); VAR0 = 0.02. 
 

 
Figure 4. Evolution of the return distribution F(x, t; H0) for H0 = 1.4 and t = 0 (line 1), 5 (line 2), 10 (3), 15 (4), 20 (5); 

time is measured in years, VAR0 = 0.02. Mind the development of negative skewness. 
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It explains the negative difference between the EMM variance rate and the BSM variance rate for implied 

volatility and shows that the EMM variance rate is closer to the actual rate. Concerning the question what will 

happen to the bias of the volatility forecast if one takes another set of firms instead of the SPX, we can assume 

that the bias should increase because the top S&P 500 firms are expected to be more stable (have greater H0) 

compared to the firms from the middle of the exchange list, but of course, it must be verified.  
 

 
Figure 5. Variance VAR(t; H0) - VAR0 as a function of time (years) for various initial conditions H0 = 1.2 (line 1), 1.1 

(line 2), 1.0 (line 3), and 0.9 (line 4); VAR0 = 0.02. 
 

 
Figure 6. Skewness SK(t; H0) as a function of time (years) for various initial conditions H0 = 1.4 (line 1), 1.2 (line 2), 

1.1 (line 3), 1.0 (line 4), and 0.9 (line 5); VAR0 = 0.02. 
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Figure 2 demonstrates that steady firms (H0 = 2.0, 1.8, 1.6, 1.4) have low to moderate negative skewness 

and a low default probability (Figure 3); Figure 4 shows the development of a negatively skewed distribution 

from an initially symmetric (normal) distribution of relative returns for a steady firm. 

Figure 6 displays that for less steady firms (H0 = 1.2, 1.1, 1.0, 0.9), their skewness changes from negative 

to positive values and their default probability dangerously increases (Figure 7); the lesser H0, the greater the 

default probability. Figure 8 illustrates the development of a positively skewed distribution from an initially 

symmetric distribution. 

Now we are ready to explain the transition of the cumulative return distribution of the top S&P 500 from 

positive skewness (0.21 before the market crash) to negative (-0.94 after the crash). The high positive skewness 

indicates that before the crash, there were a lot of unstable firms among the top S&P 500 (Figure 6). The negative 

skewness is specific for more steady firms (Figure 2). After the crash, unstable firms drop out from the top S&P 

500, and new, more steady firms, who survived the crash, get in the top S&P 500. The great concern causes the 

cumulative skewness of the top S&P 500 close to zero (0.07) over the entire period of observation, giving evidence 

that even in a more or less “normal environment” there are a lot of firms of low stability among the top S&P 500.  

Figures 1 and 5 display clearly that variance can serve as a measure of volatility for steady firms only. For 

unstable positively skewed firms, variance is no good measure of volatility: the variances of the unsteady firms 

collect themselves in a tight bunch (Figure 5), while their default probabilities vary significantly (Figure 7). These 

pictures explain the paradoxical fact marked by Fortune that the volatility represented by variance does not 

change significantly in the crash: 12.40 before the crash and 11.27 after, while the true volatility characterizing 

the default probability is much higher before the crash relaxing somewhat after it. Shemetov (2022) shows that 

the true measure of volatility and risk is the intensity of default probability, but it is unobservable variable for 

which one needs a good observable proxy to obtain.  
 

 
Figure 7. Default probability DPR(t; H0) as a function of time (years) for various initial conditions H0 = 1.4 (line 1), 1.2 

(line 2), 1.1 (line 3), 1.0 (line 4), and 0.9 (line 5); VAR0 = 0.02. 
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Figure 8. Evolution of the return distribution F(x, t; H0) for H0 = 0.9 and t = 0 (line 1), 2 (line 2), 4 (line 3), 6 (line 4), 8 

(line 5), 10 (line 6), 12 (line 7); VAR0 = 0.02. Mind the development of positive skewness. 
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predictor of risk. Since the crisis of 2008-2009, the VIX is published in financial news along with stock market 

indices. It is considered as an overall barometer of the market risk weather (Kownatzki, 2016). The VIX concept 

uses a weighted average of implied volatility to find the variance rate as a measure of risk. The author asks how 

good the VIX is as a predictor of market risks. His empirical study embraces the period of January 1990 until 

December 2014 and traces the VIX moments (the mean, standard deviation, skewness, and kurtosis) and 

percentile ranges for daily closing levels, correlation of concurrent levels of the VIX and actual volatility, etc. 

Kownatzki compares the VIX moments with the moments of actual volatility and concludes that the VIX is 

unsuitable for many risk management applications because the VIX systematically overestimates actual volatility 

in non-crisis periods (compare it with the negative bias in volatility estimates reported by Fortune) and 

underestimates actual volatility in times of financial crises (because variance is no measure for volatility of 

unsteady firms, Figures 5 and 7). The author’s empirical conclusions and our theoretical results mutually support 

each other. It seems natural that the next S&P 500 volatility index will be founded on the EMM as a more precise 

and accurate model for estimating market volatility. 

Figures 2 and 6 demonstrate that skewness of the return distribution is a natural property of the firms paying 

their BSEs. There is no need to patch the BSM model introducing poorly motivated jumps in the GBM to achieve 

the desired skewness. One should remember that jump statistics must change over time following a special law 

which poses additional difficulties for jump-diffusion processes (JDPs) used to describe the return distributions 

of real firms.  
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Mandelbrot (1963) and Fama (1965). The author explains the phenomenon by jumps in the stock prices. However, 

the frequency distribution of the S&P 500 demonstrates significant changes in skewness from positive before the 

market crash in 1987 to negative after it. This fast change in the direction of random jumps has no explanation 
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in the frameworks of the JDP model of stock prices. Figures 2 and 6 show that the firm’s return distribution could 

be skewed negatively or positively, and zero skewness can appear only for a short time. Therefore, the rough 

symmetry of the S&P 500 distribution of the logarithm of stock prices can be explained by “diversification” of 

positively and negatively skewed distributions of individual firms in the top S&P 500. Before the 1987-crash, the 

number of positively skewed firms in the top S&P 500 prevails, provoking market instability. After the crash, 

when the unstable firms dropped out from the top, the top S&P 500 consist mostly of negatively skewed firms 

which survived the crash, and the market starts another cycle of its functioning. 

The cumulative return distribution of the top S&P 500 can serve as a barometer that shows the increasing 

general tension in the market. However, the market crash depends on return distributions of individual firms. All 

firms combine into business networks through their business relations; no one is by itself. On the eve of a crash, 

many firms in the market have noticeably skewed return distributions of low stability. When a weak link in a 

network fails and the firm defaults due to market fluctuations, the tension in the remaining network increases, 

making the other firms in this network less stable. Another default within the same network, increasing its strain 

even more, can cause the default in the entire network, and the market crash develops without any visible cause 

as an avalanche, purging unstable firms from the market.  

The statistics presented by Fortune and interpreted in the light of the EMM convincingly demonstrate that 

the BS formula can predict correct option prices with sufficient precision and accuracy only occasionally because 

the return distributions even in the top S&P 500 are skewed. It is good if they are negatively skewed that 

guarantees some market stability. It is much worse when the return distributions are positively skewed because 

such firms are in a tensed unstable state, but the traders and public estimate their shares of stock as good and 

reliable ones judging them by the stock variance. 

Progress in Option Pricing After 1973  

Since the publication by Black and Scholes (1973) and Merton (1973), the option/warrant valuation theory 

has made an impressive progress. Researchers react to the shortcomings of the BSM model discussed above by 

relaxing its rigid assumptions. Merton (1976) considers the problem of option pricing, when the price of an 

underlying stock is not continuous but can make random jumps, following the Poisson distribution with jump 

heights distributed normally. Merton derives a closed-form solution for that model, introducing the class of jump-

diffusion processes (JDPs) in option pricing. Kou (2002) develops this approach further, suggesting more flexible 

JDPs whose jumps in the prices of underlying stocks have a Poisson distribution, and jump heights have a double-

exponential distribution. Schwartz (1977) first applies numeric methods to solve option/warrant valuation 

problems for which closed-form solutions are unavailable, like valuation of an American warrant on a stock 

which pays discrete dividends. Heston (1993) attacks the constant volatility of the BSM model, introducing the 

class of stochastic volatility models in option pricing. He derives a closed-form solution for a European call 

option. Bates (1996) makes the next step and suggests a more general class of the option pricing models with 

stochastic volatility and jumps in the prices of underlying stocks.  

At the same time, the variety of options in use in financial practice continuously expands. Although the 

greatest part of all options traded make European and American options, there exist more complicated options 

whose pricing is impossible without using numeric methods. We have no intension to give a comprehensive 

review of exotic options and constrain ourselves with three of them: the Bermuda, Asian, and Swing options. As 

one knows, holders of European options can exercise their rights at the option expiration date only. Holders of 
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American options can exercise their rights at any time before the expiration date, and, therefore, they meet the 

optimal stopping time problem. Holders of Bermuda options can exercise their rights on some specified dates 

until the expiration, having to solve another optimal stopping problem.  

Sometimes the payoff function of an option depends on the path of an underlying asset price and its value 

at the expiration date. The Asian option is an example of such path-dependent options because its payoff function 

is determined by the mean price of an underlying asset over a specific time interval (e.g., Kemna & Vorst, 1990; 

Foufas & Larson, 2008). Asian options are traded mostly on oil products, agricultural commodities, and 

currencies.  

Swing options are commonly used in the energy market. Widely varying demands for energy consumption 

and limited facilities for its storage make energy prices highly volatile. To control energy expenses, consumers 

use various financial tools to reduce market risks related to energy volatility, such as forwards, futures, swaps, 

and swing options. A swing option secures the option holder with an instrument to control the delivery timing 

and the amount of energy delivered. A swing option contract contains a base load agreement representing a set 

of forward contracts with different expiry dates. Each forward contract offers a fixed amount of a commodity. At 

each expiry date, the option holder has the right to purchase an excess amount of the commodity or decrease  

the base load volume. Thus, the amount of the commodity purchased at a predetermined price (the strike price) 

by the option holder can swing within a range. If the swing is positive/negative, the option exercised by the  

holder at an opportunity time is called upswing/downswing. So, the upswing is a buy option, and a downswing 

is a sell option. In other words, a swing option includes a set of pure forward contracts and a fixed number of 

exercise rights for buying or selling the commodity. Usual restrictions in the swing option are: (a) the total  

number of upswings and downswings is limited, (b) any two points of the right exercising are separated by a 

minimum waiting time, (c) if the overall volume of energy purchased during the option life exceeds a 

predetermined quantity, the option holder can be penalized. Dahlgren and Korn (2005) have developed a 

continuous time model for swing option pricing based on the BSM model and dynamic programming. One can 

find a mathematical framework for swing options in the papers by Carmona and Dayanik (2008), and Carmona 

and Touzi (2008). 

Assessing the progress in theoretical extensions of the BSM model and its numerous applications in the 

sphere of exotic options, one must remember that all these developments are superstructures on the BSM 

basement, and, therefore, they inherit all the shortcomings of the BSM model. A lack of understanding of a 

financial instrument (an option, a share of stock, etc.) and its behavior might create a false feeling of assurance 

in a dangerous position leading to unexpected losses. 

Merton’s General Equation for Any Security Pricing 

Merton extends the Black-Scholes model believing that “while options are highly specialized and relatively 

unimportant financial instruments, […], the same basic approach could be applied in developing a pricing theory 

for corporate liabilities in general” (Merton, 1974, p. 449). Merton claims the development of a general model 

for pricing any financial instrument whose value can be written as a function of the firm value and time. To 

demonstrate an application of this universal model to the valuation of a specific security, he selects a zero-coupon 

bond. 

The Black-Scholes-Merton pricing model (BSM) is based on the following assumptions: 

(1) There are no transactions costs, taxes, or problems with indivisibilities of assets. 
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(2) There are a sufficient number of investors with comparable wealth levels so that each investor believes 

that he can buy and sell as much of an asset as he wants at the market price. 

(3) There exists an exchange market for borrowing and lending at the same rate of interest. 

(4) Short-sales of all assets, with full use of the proceeds, is allowed. 

(5) Trading in assets takes place continuously in time. 

(6) The Modigliani-Miller theorem that the value of the firm is invariant to its capital structure is obtained. 

(7) The term structure is “flat” and known with certainty. The price of a riskless discount bond which 

promises a payment of one dollar at time t in the future is P(t) = exp(-rt) where r is the (instantaneous) riskless 

rate of interest, the same for all time. 

(8) The dynamics for the value of the firm, V, through time can be described by a diffusion-type stochastic 

process with stochastic differential equation: 

𝑑𝑉 = (𝛼𝑉 − 𝐶)𝑑𝑡 + 𝜎𝑉𝑑𝑧  

where α is the instantaneous expected rate of return on the firm per unit time, C is the total dollar payout by the 

firm per unit time to either its shareholders or liabilities-holders, 𝜎2 is the instantaneous variance rate of returns 

on the firm per unit time, 𝑑𝑧 is a standard Gauss-Wiener process. 

(9) There exists a security whose market value, Y, can be presented as a function of the firm value and time, 

Y = F(V, t). Merton writes the dynamics of this security’s value as: 

𝑑𝑌 = (𝛼𝑌𝑌 − 𝐶𝑌)𝑑𝑡 + 𝜎𝑌𝑌𝑑𝑧𝑌 

where 𝛼𝑌 is the instantaneous expected rate of return per unit time on this security, 𝐶𝑌 is the dollar payout per 

unit time to this security, 𝜎𝑌
2 is the instantaneous variance rate of returns per unit time, 𝑑𝑧𝑌 is a standard 

Gauss-Wiener process.  

(10) The firm defaults if its value V is less than the outstanding debt D at the date of debt maturity T: 𝑉𝑇 ≤

𝐷. Default is observable only at the debt maturity date since only at that time it is checked whether the firm can 

discharge its debt or not. 

To derive a general model for pricing financial instruments whose value Y can be presented as a function of 

the firm value and time, Y = F(V, t), Merton repeats his technique (1973) of a three-security portfolio containing 

the firm, the particular security, and riskless debt such that the aggregate investment in the portfolio is zero. The 

author introduces three variables W1, W2, and W3 = -(W1 + W2), where W1 is the number of dollars of the portfolio 

invested in the firm, W2 is the number of dollars invested in the security, and W3 is the number of dollars invested 

in the riskless debt. The instantaneous dollar return to the portfolio, dx, is then: 

𝑑𝑥 = 𝑊1
𝑑𝑉+𝐶𝑑𝑡

𝑉
+𝑊2

𝑑𝑌+𝐶𝑌𝑑𝑡

𝑌
+𝑊3𝑟𝑑𝑡       (4.1) 

= [𝑊1(𝛼 − 𝑟) +𝑊2(𝛼𝑌 − 𝑟)]𝑑𝑡 + (𝑊1𝜎 +𝑊2𝜎𝑌)𝑑𝑧  

The author looks for a triple 𝑊1
∗, 𝑊2

∗, and 𝑊3
∗ for which the zero-value portfolio is a hedging one:  

𝑊1
∗𝜎 +𝑊2

∗𝜎𝑌 = 0         (4.2a) 

𝑊1
∗(𝛼 − 𝑟) +𝑊1

∗(𝛼𝑌 − 𝑟) = 0         (4.2b) 

A nontrivial solution to this system exists if and only if: 

         
𝛼−𝑟

𝜎
=

𝛼𝑌−𝑟

𝜎𝑌
           (4.3) 

Substituting expressions for 𝛼𝑌 and 𝜎𝑌: 
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𝛼𝑌𝑌 = 𝛼𝑌𝐹 = 𝐹𝑡 + (𝛼𝑉 − 𝐶)𝐹𝑉 +
1

2
𝜎2𝑉2𝐹𝑉𝑉 + 𝐶𝑌     (4.4a) 

𝜎𝑌𝑌 = 𝜎𝑌𝐹 = 𝜎𝑉𝐹𝑉        (4.4b) 

Merton comes to the equation which must be satisfied by any security whose value can be written as a 

function of the firm value and time:  

𝐹𝑡 + (𝑟𝑉 − 𝐶)𝐹𝑉 + 0.5𝜎2𝑉2𝐹𝑉𝑉 − 𝑟𝐹 + 𝐶𝑌 = 0     (4.5) 

The no-arbitrage conditions (Eq. (4.2)) are an exact analogue of the martingale no-arbitrage conditions of 

(3.10). We remind that Eq. (4.5) is derived in the case when the firm can default at the debt maturity only. 

Merton applies Eq. (4.5) for pricing a zero-coupon bond, 𝐹(𝑉, 𝑡), setting CY = 0 because there are no coupon 

payments and C = 0 because the firm cannot issue any new senior or equivalent rank claims on the firm nor it 

can pay cash dividends or do share repurchase prior to maturity date T of debt B. Using time 𝜏 measured from 

the maturity T to a current moment t: 𝜏 = 𝑇 − 𝑡, he comes to the equation: 

−𝐹𝜏 + 𝑟𝑉𝐹𝑉 + 0.5𝜎2𝑉2𝐹𝑉𝑉 − 𝑟𝐹 = 0       (4.6a) 

with the initial and boundary conditions:  

𝐹(𝑉, 𝜏 = 0) = min⁡(𝑉, 𝐵)        (4.6b) 

𝐹(𝑉, 𝜏) ≤ 𝑉          (4.6c) 

The author deduces the equation for the value of equity, 𝑓(𝑉, 𝑡), considering Eq. (4.6a) and the balance 

𝑉 = 𝐹(𝑉, 𝜏) + 𝑓(𝑉, 𝜏): 

−𝑓𝜏 + 𝑟𝑉𝑓𝑉 + 0.5𝜎2𝑉2𝑓𝑉𝑉 − 𝑟𝑓 = 0       (4.7a) 

with the same boundary condition and the initial condition:  

𝑓(𝑉, 0) = max⁡[0, 𝑉 − 𝐵]        (4.7b) 

The problem (Eq. (4.7)) is identical to the Black-Scholes equation for the European call option on a non-

dividend-paying common stock where the firm value V in the problem (4.7) corresponds to the stock price and B 

corresponds to the exercise price. Thus, the equity value is determined as:  

𝑓(𝑉, 𝜏) = 𝑉𝛷(𝑥1) − 𝐵𝑒−𝑟𝜏𝛷(𝑥2)        (4.8a) 

𝛷(𝑥) = (2𝜋)−1/2 ∫ exp⁡(−𝑧2/2)𝑑𝑧
𝑥

−∞
       (4.8b) 

𝑥1 = [ln(𝑉/𝐵) + (𝑟 + 0.5𝜎2)𝜏⁡]/𝜎√𝜏        (4.8c) 

𝑥2 = 𝑥1 − 𝜎√𝜏          (4.8d) 

Merton argues that precisely these boundary condition specifications for the general equation (Eq. (4.5)) 

distinguish one security from another (e.g., debt from equity). The idea that the contingent claim on the firm’s 

cash flows is equivalent to a call on the cash flows with the exercise price equal to the face value of the debt 

becomes dominating in financial economics since that time (e.g., Ross, 1985; Leland, 1994; Strebulaev & Whited, 

2012; Sundaresan, 2013). 

However, there is a dramatic difference between options, on the one hand, and corporate liabilities, such as 

stocks or bonds, on the other. The option is a short-term financial instrument whose existence is guaranteed within 

its expiration period, making typically a few months. The short expiration period makes the option insensitive to 

slow changes in the state of the underlying firm. The stocks and bonds are long-term instruments which can 



NO-ARBITRAGE IN FINANCIAL ECONOMICS 

 

151 

default at any moment. Considering zero-coupon bonds independently of the firm’s state, Merton naturally comes 

to a result identical to that of Black and Scholes. 

Conditions (4.2) describe the case of short-term securities like options when the firm’s return does not 

change. Considering the behavior of long-term objects like a firm or its stocks or bonds in the market with default 

lines and firms paying their BSEs, one cannot expect that conditions (4.2) will be met at least to some satisfactory 

degree. The true no-arbitrage conditions for long-term objects are:  

𝑊1
∗𝜎 +𝑊2

∗𝜎𝑌 < 0         (4.9a) 

𝑊1
∗(𝛼 − 𝑟) +𝑊1

∗(𝛼𝑌 − 𝑟) < 0       (4.9b) 

and Equation (4.5) cannot be derived using Merton’s logic. It is important to emphasize that the general equation 

for pricing any security is valid in a special market where the firm can default only at the maturity of its debt. For 

more realistic markets with the default lines and firms paying their expenses, Equation (4.5) is effective for 

pricing short-term securities in whose lifetimes the underlying firm makes no payments. In this case, Equation 

(4.5) reduces to the BS equation. The general Equation (4.5) cannot be applied for pricing the long-term securities 

in the market with the default line and firm payments.  

There are vast empirical data that asset distributions and portfolios composed of those assets are skewed 

(e.g., Simkowitz & Beedles, 1980; Singleton & Wingender, 1986; Badrinath & Chatterjee, 1988; Fortune, 1996; 

Harvey & Siddique, 2000), and this skewness is due to payments made by firms in their business activities. 

Merton needs Eq. (4.2) both for economic and mathematical reasons, but these equations significantly restrict the 

setting of his original problem (C = CY = 0) and, consequently, its solution. For C = CY = 0, Eq. (4.5) becomes 

exactly the Black-Scholes equation. To understand this result, one must remember that the approach used by 

Black, Scholes, Merton, Samuelson, and other researches before them is limited with the case of self-financing 

portfolios. This approach has provided a relative success in the case of short-term, no-payment European call and 

put options but failed in the case of long-term securities like stocks and bonds, in a life time of which the 

underlying firm makes multiple payments. 

It is interesting that Merton assumes the MMP1 obtains (A6, the firm value is invariant to its capital structure) 

just for convenience, to simplify the derivation and the structure of his general security pricing equation (Eq. 

(4.5)). It is clear from our analysis that the MMP1 is consistent with this approach: the MMP1 is true if and only 

if the firm makes no payments, and in Merton’s approach, one has C = CY = 0 because of Eq. (4.2). No wonder 

that Merton succeeds in proving the MMP1 theorem with bankruptcy sharing the honor of success with Stiglitz 

(1969).  

Merton just cannot come to the general equation for security pricing other than the Black-Scholes equation 

using “natural” conditions (Eq. (4.2)). Since that time, the basic model for the firm value, the self-financing 

geometric Brownian model (GBM):  

𝑑𝑉/𝑉 = 𝛼𝑑𝑡 + 𝜎𝑑𝑧         (4.10) 

has been generally recognized as the model describing various contingent claims instead of Merton’s original 

equation (𝐶 ≠ 𝛿𝑉, 0 ≤ 𝛿 < 𝛼): 

𝑑𝑉 = (𝛼𝑉 − 𝐶)𝑑𝑡 + 𝜎𝑉𝑑𝑧        (A.8) 

However, the choice that Merton has made between models (A.8) and (4.10) brings a lot of problems. Firstly, 

it meets an objection from the theory of differential equations. This theory proves that if two differential equations 
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differ in their structures (like Eq. (A.8) and Eq. (4.10)), they must have different solutions, and solutions of (Eq. 

(A.8)) can never be the same as solutions of (Eq. (4.10)). (Different solutions for each of these two equations 

come from different boundary conditions reflecting specific features of securities under study.) The contradiction 

between the theory of differential equations and Merton’s conclusion on isomorphic correspondence between 

almost any corporate liability and options definitely points to an inconsistence in logic of derivation of the general 

equation for pricing any security.  

Secondly, the GBM describes the self-financing firms; this property makes the GBM unsuitable for analysis 

of real firms paying their taxes, dividends, debts, etc. To reconcile the GBM with the firm’s payments, researchers 

sometimes invent exotic funding sources and methods (see examples in Sections 5 and 6), which, of course, 

decrease reliability of their conclusions and recommendations.  

Thirdly, the GBM generates solutions with normally distributed returns and default probabilities much lesser 

than probabilities observed in practice. To decrease the difference between theoretical probabilities and 

probabilities observed in practice, three main classes of heuristic models have been suggested. The first class 

consists of so-called calibrated models like the Moody’s KMV (Bohn, 2006), matching GBM characteristics (e.g., 

the distance-to-default) with databases of actual defaults. The model is used for estimating default risks at a one-

year horizon. Shemetov (2022) presents a detailed discussion of calibrated models and shows that those models 

might deliver correct estimations only occasionally. The jump-diffusion processes (JDPs) make the second class 

of heuristic models that bring theoretical default probabilities closer to the observed probabilities. Here the GBM 

is supplemented with jumps having a Poisson distribution and their lengths having a normal distribution (Merton, 

1976) or a double-exponential distribution (Kou, 2002). The endogenous process of developing skewness in the 

firm’s returns is simulated with an exogenous process of jumps in the stock prices. To tune JDP statistics to a 

particular firm, one must use the data averaged over market (with another calibrated procedure). Therefore, the 

likelihood of a success in describing correctly the return distribution of a specific firm by the JDP model is very 

low. The third class embraces the GBMs with stochastic volatility. These models meet the same problem as the 

JDP models: volatility statistics are unknown and must be extracted from averaged market data. 

An outstanding Merton’s contribution to the financial risk literature consists of his brilliant analysis of the 

security pricing problem and the axiomatic Equation (A8) describing the balance of the firm’s cash flows in 

stochastic conditions. The axiomatic approach, verified by extensive scientific observations, experiments, and 

practice, is widely used in modern science. Merton’s Equation (A8), joined with the default line, could make a 

solid basis for a new period of financial economics, but, alas, the default line appears in financial theory two 

years later. Following the logic of his problem setting (no default line), the author uses the no-arbitrage principle 

as the martingale no arbitrage, which has confined the space of possible distributions to symmetric ones only. 

Symmetric distributions are consistent with the MMPs, and keeping the relation of his model with the MMP1 

(Assumption 6), Merton does not decrease the generality of his solution. However, the Equation (A8) is consistent 

with the martingale no-arbitrage principle and the MMPs for zero payments only. In a difficult choice between 

the martingale no arbitrage and Equation (A8), Merton prefers to reduce his model to the GBM. Under pressing 

of Merton’s crystal logic, economists have recognized the GBM as an adequate model for the financial risk 

analysis. The undisputable merits of the GBM are that it often helps to achieve intuitively clear closed-form 

solutions, and that GBM problems can be analyzed using risk-neutral approach, which significantly simplifies 

risk analysis. These merits appeal to the majority of economists, and the GBM soon becomes the dominating 

model for estimating financial risks.  
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Default Line Appears in Asset Pricing 

Black and Cox (1976) continue the development of bond valuation models started by Merton (1974). They 

argue that Merton’s assumption that a firm can only default at debt maturity is far from reality. They suggest a 

threshold, triggering default when the firm’s assets hit the threshold line (the default line). Black and Cox 

(hereafter B&C) repeat all assumptions made by Merton and build up their model using the general equation for 

security pricing (Merton, 1974): 

𝐹𝑡 + (𝑟𝑉 − 𝑃)𝐹𝑉 + 0.5𝜎2𝑉2𝐹𝑉𝑉 − 𝑟𝐹 + 𝑄 = 0      (5.1) 

here F is a generic label for any of the firm’s securities, V is the firm value, P(V, t) is the net total payout made 

or inflow received per unit of time, Q(V, t) is the payout received or payment made by security F, r is the expected 

interest rate, σ2—the instantaneous variance rate of the firm’s returns, t—time. If the firm has outstanding equity 

and a single bond issue with a promised final payment of D, then, at the time of bond maturity, T, the bonds will 

have the value min (V, D), and the stock will have the value max (V - D, 0). The authors consider the effect of 

indenture agreements introducing the boundary DL(t) at which the firm will be reorganized (the absorbing barrier 

or the default line). This barrier has a profound effect: the firm risks to default at any moment, and the default 

probability grows over time. The firm’s payments and the absorbing boundary break the spatial symmetry of the 

Merton’s setting, reflecting the asymmetry of the firm’s return distribution (the distribution skewness). We 

remind the reader that (Eq. (5.1/4.5)) has been derived for the problem settings without default line, when the 

firm can default at the debt maturity only. Equation (5.1/4.5) cannot be transferred mechanically to the B&C 

problem setting. 

B&C revisit Merton’s valuation of a zero-coupon bond (1974) when the firm can default only on debt 

maturity, applying the general approach with indenture agreements. B&C consider the effect of safety covenants 

on the value and behavior of the bond. The safety covenants are contractual provisions which give the 

bondholders the right to bankrupt or force reorganization of the firm if it falls short of agreed standards. The 

authors analyze the case when stockholders are allowed to receive a continuous dividend payment proportional 

to the firm value, aV. The bond value B(V, t) satisfies the model:  

𝐵𝑡 + (𝑟 − 𝑎)𝑉𝐵𝑉 + 0.5𝜎2𝑉2𝐵𝑉𝑉 − 𝑟𝐵 = 0      (5.2a) 

𝐵(𝑉, 𝑇) = min⁡(𝑉, 𝐷)        (5.2b) 

𝐵(𝐷𝐿(𝑡), 𝑡) = 𝐷𝐿(𝑡)        (5.2c) 

The stock value, S(V, t), satisfies another model: 

𝑆𝑡 + (𝑟 − 𝑎)𝑉𝑆𝑉 + 0.5𝜎2𝑉2𝑆𝑉𝑉 − 𝑟𝑆 + 𝑎𝑉 = 0      (5.3a) 

𝑆(𝑉, 𝑇) = max⁡(𝑉 − 𝐷, 0)       (5.3b) 

𝑆(𝐷𝐿(𝑡), 𝑡) = 0         (5.3c) 

B&C find the probability for 𝑉 ≥ 𝐾 and the valuation formula for bond B and stock S in the form of the 

direct signal determined by the BS formula (Black & Scholes, 1973) for European call option and the BS signal 

reflected from the absorbing boundary. We do not reproduce their results here because these results will take a 

lot of space, and the BS option pricing formula does not cover the case of bond/stock pricing in the B&C problem 

setting.  
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Using the same approach, B&C study the firm that has interest paying bonds outstanding. Understanding 

self-financing restrictions of the GBM, B&C underline the importance of methods of raising the money to make 

payments to bondholders. A method used in theoretical studies of interest paying bonds (but not in practice!) is 

to sell an asset to get the funds and make those payments. However, many bonds have contractual provisions 

limiting the extent of such sales. Focusing on the effect of these restrictions, B&C suggest issuing new securities 

to raise funds for payment of interests and dividends. To protect the value of their claim, the bondholders require 

that the new securities be equity or subordinated bonds. The authors concentrate their attention on the 

subordinated bonds, when the indenture agreement subordinates the claims of holders of junior bonds to the 

claims of holders of senior bonds. At the maturity date of the bonds, payments to the holders of junior bonds are 

made only after the full promised payment to the holders of senior bonds. The B&C results in valuation of the 

subordinate bonds paying interest need independent verification because they are achieved in the frameworks of 

Merton’s model unsuitable for this case. B&C use the following model to describe the bond value: 

𝐵𝑡 + 𝑟𝑉𝐵𝑉 + 0.5𝜎2𝑉2𝐵𝑉𝑉 − 𝑟𝐵 + ∑ 𝑐𝑗𝛿(𝑡 − 𝑡𝑗)
𝑛
𝑗=1 = 0    (5.4a) 

𝐵(𝑉, 𝑇) = min⁡(𝑉, 𝐷)        (5.4b) 

𝐵(𝐷𝐿(𝑡), 𝑡) = 𝐷𝐿(𝑡)        (5.4c) 

Here 𝑐𝑗 is the jth interest payment made at time 𝑡𝑗, n is total number of such payments, and δ(.) is the Dirac 

delta function. The authors explain how a solution to this problem can be obtained by the recursive technique 

developed for the problem (5.2). However, they want to give a better perspective on the behavior of B. For that 

objective they consider the case of a perpetual bond (𝐵𝑡 = 0) with continual interest payments of c per unit time. 

It reduces problem (5.4) to: 

0.5𝜎2𝑉2𝐵𝑉𝑉 + 𝑟𝑉𝐵𝑉 − 𝑟𝐵 + 𝑐 = 0      (5.5a) 

𝐵(𝐷𝐿) = 𝐷𝐿         (5.5b) 

B&C solve the problem (5.5) and analyze its solution. They show that function B(V, c) is an increasing 

concave function of V and c and a decreasing function of σ2, etc. However, this solution and information about 

its properties are of a low value because the valuation problem involving the default line and firms paying BSEs 

has no time-independent solution. In B&C problem setting, the firm has a non-zero probability to default at any 

moment. From the point of view of physical systems, a model without the absorbing boundary is a conservative 

system whose number of Brownian particles remains the same all the time (the firms making the market have an 

infinite longevity). A model with the absorbing boundary is an open system continuously losing its particles at 

this boundary (the firms default and leave the market). With no inflow, the open system can exist only for a 

limited period of time. This fact rejects the existence of perpetual bonds, stocks, warrants, etc. in the market 

where the firms pay their BSEs and are subjects to default at any time. Perpetual securities can appear in the 

imaginary market of self-financing firms consistent with the BSM model.  

To analyze the effect of indenture agreements on valuation of a zero-coupon bond, B&C use Merton’s 

general equation for asset pricing, which is, effectively, the Black-Scholes equation for option pricing. Therefore, 

their bond and stock valuation formulas are wrong. Nevertheless, Black and Cox have made a major contribution 

to the asset pricing literature. Their default line makes the problem definition in security pricing more realistic 

compared against the problem setting suggested by Merton (1973; 1974), bringing us closer to the true security 

valuation theory.  
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Recipe for Achieving Optimal Capital Structure and Trade-Off Theory 

The story of search for the optimal capital structure starts with Modigliani-Miller Propositions (the MMPs, 

Modigliani & Miller, 1958; 1963) stating that in the perfect market with taxes, the higher the firm’s debt, the 

greater the firm value. Kraus and Litzenberger (1973) suggest a single-period valuation model of a firm paying 

corporate taxes and bankruptcy penalties in a complete market. They conclude that the firm market value, in 

general, is not a concave function of debt leverage. Scott (1976) works out a multi-period model to determine the 

optimal capital structure, taking into account tax benefits related to debt and bankruptcy costs. He supports the 

conclusion of Kraus and Litzenberger (1973) that the firm’s market value is not necessarily a concave function 

of debt leverage.  

Discussing the optimal capital structure and the effect of debt on the firm value, one cannot pass by the 

famous article by Leland (1994) that won the first-ever Stephen A. Ross Prize (2008) for its achievements “in 

explaining underpinnings of corporate finance and capital markets” (Newswise, 2008). Leland’s objective (1994) 

is to estimate the corporate debt value and determine the optimal capital structure of the firm paying corporate 

taxes and bankruptcy costs. The author follows a capital structure theory suggested by Modigliani and Miller 

(1958; 1963), expanding it with arguments of Kraus and Litzenberger (1973) that as the debt leverage increases, 

the tax advantage of debt is offset by the firm’s losses related to increasing risks of bankruptcy. (The thesis that 

growing debt increases default probability cannot be proved within the GBM frameworks, but it is supported by 

many empirical studies.) Leland considers two bankruptcy scenarios. The first is the endogenous bankruptcy 

triggered by the firm management, when it cannot raise sufficient equity capital to meet the firm’s debt 

obligations. The second scenario is the exogenous bankruptcy triggered, when the firm value falls to the debt 

principal value (the firm value hits the default line).  

The program of Leland’s study includes the questions most important for financial theory and practice: 

 How do yield spreads on corporate debt depend on leverage, firm risk, taxes, payouts, protective covenants, 

and bankruptcy costs? 

 Do high-risk bond values behave in qualitatively different ways than investment-grade bond values? 

 What is the optimal value of leverage, and how does it depend on risk-free interest rates, firm risks, taxes, 

protective covenants, and bankruptcy costs? 

 How does a positive net-worth covenant affect the potential for agency problems between bondholders and 

stockholders? 

 When can debt renegotiation be expected prior to bankruptcy, and can renegotiation achieve results that debt 

repurchase cannot? 

To achieve these ambitious goals, Leland applies Merton’s general equation for security pricing 

supplemented with Black-Cox’s default line. The author uses all Merton’s assumptions (see Section 4), plus a 

new one that capital structure decisions, once made, remain static. He needs this assumption for technical reasons. 

To justify the time-independent level of debt, the author refers to Modigliani and Miller (1958), Merton (1974), 

Black and Cox (1976), and Brennan and Schwartz (1978), who consider debt of infinite maturity and argues that 

for debt of sufficiently long maturity, the relative value of principal becomes low and can be neglected compared 

against the total debt value. Another case of time-independent environment uses the following scheme. When the 

debt matures, it is rolled over at a fixed interest rate unless terminated when the firm value hits the default line. 
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One must remember that Merton’s general equation for security pricing cannot be used with the default line, and 

the time-independent environment is possible only in the BSM market of self-financing firms. 

Leland’s model includes the firm and security representing a claim on the firm, which continuously pays for 

a nonnegative coupon per instant of time when the firm is solvent. To satisfy the payment restrictions of the GBM 

(the firm must be self-financing, that is, make no payment or receive no funds from outside), Leland suggests 

that the firm finances the net cost of this coupon by selling additional equity from outside of the firm’s portfolio 

to be consistent with the bond covenants that restrict firms from selling assets. The artificial nature of this scheme 

is obvious. 

Leland argues that a security value depending on the firm value and time follows Merton’s general equation 

with boundary conditions determined by payments at debt maturity or by payments in bankruptcy, should it 

happen before the maturity. Because the closed-form solution of this problem is unknown, Leland looks for its 

time-independent solution, tending time to infinity. He comes to a closed-form solution for this marginal case 

writing explicit equations for the firm’s debt, equity, and the firm value equal to the firm’s asset value, plus the 

tax deduction of coupon payments, less the value of bankruptcy costs. The last relation makes the quantitative 

basis of the trade-off theory, which Leland uses to determine the optimal asset structure for the exogenous default. 

If the firm management can choose the moment of default, they can do it, maximizing the firm’s equity at that 

moment (the endogenous default). Using his powerful formalism, Leland presents a multilateral analysis of 

various debt covenants and their influence on debt variables. However, his optimal asset structure occurs 

extremely high (75%-90%), which definitely indicates that the author has missed important phenomena in his 

analysis. Authors of succeeding articles, trying to bring the optimal debt level to the levels observed in practice, 

supplement Leland’s model with various mechanisms, relaxing the perfect market conditions, like different kinds 

of friction, dynamic borrowing, etc. 

Leland (1994) starts his analysis of the corporate debt value accepting Merton’s assumptions (A.1-A.9, 

Section 4). He describes dynamics of the firm value, V, with the GBM:  

𝑑𝑉/𝑉 = 𝜇𝑑𝑡 + σ𝑉𝑑𝑊          (6.1)  

where 𝜇 is the expected rate of return, 𝜎2 is the instantaneous variance of the return per unit of time, 𝑑W is a 

standard Gauss-Wiener process. To use Equation (6.1), Leland assumes (A.10) that “any net cash outflows 

associated with the choice of leverage must be financed by selling additional equity” (Leland, 1994, p. 1217). At 

that, this equity must be external to the firm because “bond covenants restrict firms from selling their assets.”  

The value of a claim F(V, t) on the firm that continuously pays a nonnegative coupon, C, per instant of time 

when the firm is solvent, Leland describes with Merton’s general equation for security pricing: 

𝐹𝑡 + 𝑟𝑉𝐹𝑉 + 0.5𝜎2𝑉2𝐹𝑉𝑉 − 𝑟𝐹 + 𝐶 = 0      (6.2) 

with boundary conditions determined by payments at maturity, and by payments in bankruptcy should it happen 

prior to maturity. We have shown (Section 4) that Merton’s general equation is effective for pricing short-term 

securities only when no arbitrage assumes the form of the martingale no arbitrage (see Eqs. (4.1-4.6) and (4.9) 

and a corresponding discussion). So, the coupon payment in Eq. (6.2) must be zero (C = 0), and Eq. (6.2) is just 

the Black-Scholes equation. The general equation for pricing long-term securities in the Leland’s problem setting 

does not exist. 

The author remarks that there is no closed-form solution for Eq. (6.2) for arbitrary boundary conditions. 

Thus, he decides to look for the time-independent solution when 𝐹𝑡 = 0 and the claim value depends explicitly 
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on the firm value only, F(V) (he makes a marginal transition with 𝑡 → ∞): 

𝑟𝑉𝐹𝑉 + 0.5𝜎2𝑉2𝐹𝑉𝑉 − 𝑟𝐹 + 𝐶 = 0       (6.3) 

We have already explained that this transition is possible in the BSM environment only; on the contrary, in 

the market where firms pay their taxes, dividends, debts, etc. and can default at any time, any firm has finite 

longevity and C = 0. On the other side, if one admits that the coupon payment is non-zero, C > 0, then one needs 

an infinite-value asset for coupon payments during the infinite time interval, which is absurd. 

Leland, following Black and Cox (1976), writes a general solution of (6.3) as: 

𝐹(𝑉) = 𝐴0 + 𝐴1𝑉 + 𝐴2𝑉
−𝑋        (6.4) 

𝑋 = 2𝑟/𝜎2 

with constants A0, A1, and A2 to be determined by boundary conditions. Having the general solution for pricing any 

time-independent claim, Leland turns to examining specific securities determined by their boundary conditions. 

He denotes the debt value as D(V, C), the level of asset value at which bankruptcy is declared as VB, the 

fraction of value which is lost to bankruptcy as α (0 ≤ 𝛼 ≤ 1), leaving stockholders with nothing and debtholders 

with a value of (1 - α)VB. So, boundary conditions for the debt value are:  

at V = VB, D(V, C) = (1 - α)VB, and as 𝑉 → ∞, 𝐷(𝑉, 𝐶) → 𝐶/𝑟. Leland derives for the debt value: 

𝐷(𝑉, 𝐶) = 𝐶/𝑟 + [(1 − 𝛼)𝑉𝐵 − 𝐶/𝑟](𝑉/𝑉𝐵)
−𝑋      (6.5) 

Next, he writes the boundary conditions for bankruptcy costs, BC(V, C), as: at V = VB, BC(V, C) = αVB, and 

as 𝑉 → ∞, 𝐵𝐶(𝑉, 𝐶) → 0. The solution of Equation (6.4) for these boundary conditions is: 

𝐵𝐶(𝑉, 𝐶) = 𝛼𝑉𝐵(𝑉/𝑉𝐵)
−𝑋        (6.6) 

Then Leland estimates the value of tax benefits, TB(V, C), associated with debt financing. The tax benefit 

meets the boundary conditions: at V = VB, TB(V, C) = 0, and as 𝑉 → ∞, 𝑇𝐵(𝑉, 𝐶) → 𝜏𝐶/𝑟; here 𝜏𝐶 is the tax-

sheltering value when the firm is solvent. The tax-benefit function is: 

𝑇𝐵(𝑉, 𝐶) = (𝜏𝐶/𝑟)[1 − (𝑉/𝑉𝐵)
−𝑋]       (6.7) 

The author remarks that tax benefits are an increasing, strictly concave function of V. Leland argues that the 

total value of the firm, 𝑣(𝑉, 𝐶), consists of three components: the firm’s asset value, plus the value of tax 

deduction of coupon payments, less the value of bankruptcy costs: 

𝑣(𝑉, 𝐶) = 𝑉 + 𝑇𝐵(𝑉, 𝐶) − 𝐵𝐶(𝑉, 𝐶)       (6.8) 

and determines the value of the firm’s equity as: 

𝐸(𝑉, 𝐶) = 𝑣(𝑉, 𝐶) − 𝐷(𝑉, 𝐶)       (6.9) 

Equation (6.8) reveals that the firm pays nothing for debt coupons, else this equation will include (infinite) 

expenses for coupon payments. On the other side, when the firm pays nothing for its debt but receives tax returns 

for debt payments, it becomes a classic arbitrage machine generating arbitrage profits. This circumstance 

explains the surprising result that the greater the debt, the greater the total firm value (compare it to the MMP3, 

Section 2), and that the firm gets full benefits when its debt leverage is 100 percent if there is no bankruptcy cost. 

The bankruptcy costs make the total value function a concave down function, securing the existence of optimal 

leverage. The arbitrage catastrophe makes void all presented results. To the best of our knowledge, this 

catastrophe remains unnoticed by economists till now (June 2023).  
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Equation (6.8) makes the quantitative basis of the trade-off theory. With its help, Leland determines the 

optimal asset structure for the exogenous default boundary VB. He also puts forward the idea of the endogenous 

default and evaluates the optimal value of the default boundary, maximizing the firm’s equity at the time of 

default, if the firm management can choose the moment of default. The author gives the most detailed analysis 

of the behavior of bond prices and optimal debt-equity ratios, the asset value, risk, taxes, interest rates, bond 

covenants, payout rates, and bankruptcy costs change. Unfortunately, all these results are false. Errors in Leland’s 

method and trade-off theory make void all following studies using them, like Hackbarth et al. (2007) analyzing 

the optimal structure of debt, Hackbarth et al. (2006) considering the effect of macroeconomic conditions on 

dynamic capital structure choice, Hackbarth and Mauer (2010) studying the interaction between financing and 

investment decisions with an extension of Leland’s model (1994), etc. 

Analyzing the optimal leverage, the author comes to a conclusion that  

leverage of about 75 to 90 percent is optimal for firms with low-to-moderate levels of asset value risk and moderate 

bankruptcy costs. Even firms with high risks and high bankruptcy costs should leverage on the order of 50 to 60 percent 

when the effective tax rate is 35 percent. (Leland, 1994, p. 1230)  

The authors of the following papers, accepting Leland’s model as a base, try to decrease his extremely high 

optimal leverage by introducing various kinds of friction in their models. However, market friction cannot change 

a sign of the debt effect on the firm value from the positive one (the MMP3, Leland, 1994) to the negative one 

(the EMM; the GBM, 𝑃 = 𝛿X); it only decreases the “optimal” leverage and tax benefits of debt. A series of 

papers on the optimal capital structure based on the GBM (e.g., Leland & Toft, 1996; Goldstein et al., 2001; 

Strebulaev, 2007; Titman & Tsyplakov, 2007; Hugonnier et al., 2015) convincingly demonstrate it. These papers 

do achieve optimal debt levels comparable to that observed in practice, but because they replicate all errors of 

Leland’s model, their seeming success increases misunderstanding of the effect of corporate debt on the firm 

value, confusing their readers even more.  

The next paper on the optimal capital structure by Leland and Toft (1996) examines the effect of debt size 

and maturity on bond prices, credit spreads, and the optimal capital structure. To study the debt of finite debt 

maturity, the authors following (Merton, 1974; Black & Cox, 1976; Brennan & Schwartz, 1978) describe the 

firm’s productive asset, V, by continuous diffusion process with constant proportional volatility σ:  

𝑑𝑉/𝑉 = [𝜇(𝑉, 𝑡) − 𝛿]𝑑𝑡 + σ𝑉𝑑𝑧         (6.10)  

where 𝜇(𝑉, 𝑡) is the total expected rate of return on asset value V, δ is the constant fraction of the value paid out 

to security holders, and dz is a standard Gauss-Wiener process. The process continues until V falls to a default-

triggering value VB. The authors consider a bond issue with maturity t from the present, which has principal p(t) 

and continuously pays a constant coupon flow c(t). In the event of bankruptcy, the debt of maturity t receives the 

fraction ϱ(t) of asset value VB. Introducing the density of the first passage time τ from V to VB, 𝑓(𝜏; 𝑉, 𝑉𝐵), and 

its cumulative distribution, 𝐹(𝜏; 𝑉, 𝑉𝐵), and using the risk-neutral technique, the authors get the equation for the 

debt value of maturity t: 

𝑑(𝑉; 𝑉𝐵, 𝑡) = ∫ 𝑒−𝑟𝜏𝑐(𝑡)[1 − 𝐹(𝜏; 𝑉, 𝑉𝐵)]𝑑𝜏 + 𝑒−𝑟𝑡𝑝(𝑡)[1 − 𝐹(𝑡; 𝑉, 𝑉𝐵)]
𝑡

0

 

+∫ 𝑒−𝑟𝜏𝜌(𝑡)𝑉𝐵𝑓(𝜏; 𝑉, 𝑉𝐵)𝑑𝜏
𝑡

0
        (6.11) 
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The first term in Eq. (6.11) represents the discounted expected value of the coupon flow paid at time τ with 

the probability 1 - F(τ), the second term shows the expected discounted value of principal repayment, and the 

third term represents the expected discounted value of the asset fraction which goes to debt of maturity t if 

bankruptcy occurs. 

The authors do not discuss the sources and methods of financing coupon flow c(t), although those sources 

and methods are of great importance for the GBM problems. However, one can restore the source and method of 

firm financing, taking account of the authors’ evidence that Formula (6.11) for the debt value of maturity t 

converts to Formula (6.5) for the debt value of infinite maturity when 𝑡 → ∞ and 𝜌 = 1 − 𝛼. It becomes clear 

that the method of the coupon flow financing remains the same as it is in Leland (1994, p. 1217): “any net cash 

outflows associated with the choice of leverage must be financed by selling additional equity”. At that, this equity 

must be external to the firm because “bond covenants restrict firms from selling their assets.” This financing 

method makes the firm an arbitraging machine generating arbitrage profits and, correspondently, makes void all 

results by Leland and Toft (1996). One should remember that the risk-neutral technique is equivalent to the BSM 

model considering self-financing firms only. Therefore, all results derived within this framework have very little 

to do with the market of real firms paying their BSEs.  

Debt and Its Effect on the Firm’s Value in EMM Framework  

To illustrate the effect of debt on the firm development in the EMM frameworks (Shemetov, 2021), we 

consider the following settings. Suppose there is a business promising an expected annual rate of return of       

𝜇 percent on the firm’s assets, to enter which, a firm must have assets of no less than 1000 dollar units.    

Suppose also that a firm has asset X = 1000 and enters this business immediately (the unlevered firm). The 

unlevered firm pays its BSEs in the form of fixed costs only, 𝑃𝑈 = 𝑃0. We do not include corporate taxes and 

dividend payments at this stage, and we also suppose the continuous mode of BSE payments. Another firm, 

identical to the first one in all aspects but the size of assets, has assets of X = 1000 - A units. To enter the business, 

the firm borrows A units of capital for Tm years at the annual interest rate of r percent (the levered firm). The total 

debt of this firm is 𝑋𝐷 = 𝐴𝑒𝑥𝑝(𝑟𝑇𝑚). Suppose also that the debt is discharged with a constant flow 𝐷𝑃 =

(𝐴/𝑇𝑚)𝑒𝑥𝑝(𝑟𝑇𝑚) . The total BSEs for the levered firm are now 𝑃𝐿 = 𝑃0 + 𝐷𝑃 = 𝑃0(1 + 𝛽) , 𝛽 =

(𝐴/(𝑃0𝑇𝑚))𝑒𝑥𝑝(𝑟𝑇𝑚).⁡ 

The equation for the return distribution of the unlevered firm V(x, t) is (𝑥 = ln⁡(𝑅𝑋/𝑃0), 𝑁(𝑥;𝐻0, 𝜎0
2) is a 

normal function): 

 𝑉𝑡 + 𝑅(1 − 𝑒−𝑥)𝑉𝑥 − 0.5𝐶2𝑉𝑥𝑥 + 𝑅𝑒−𝑥𝑉 = 0 (6.12a) 

𝑉(𝑥, 0) = 𝑁(𝑥;𝐻0, 𝜎0
2), 𝐻0 = 〈𝑥0〉 = 〈ln⁡(𝑅𝑋0/𝑃0)〉, 𝜎0

2 = 〈(𝑥 − 𝐻0)
2〉    (6.12b) 

𝑉(𝐷𝐿, 𝑡) = 0, 𝐷𝐿 = 0; 𝑅 = 𝜇 − 𝐶2/2  (6.12c) 

Distribution moments H(t), VAR(t), SK(t) are defined by Equations (i.6), DPINT(t) and DPR(t) by Equations 

(i.3) and (i.4).  

The equation for the return distribution U(x, t) of the levered firm is: 

 𝑈𝑡 + 𝑅[1 − (1 + 𝛽)𝑒−𝑥]𝑈𝑥 − 0.5𝐶2𝑈𝑥𝑥 + 𝑅(1 + 𝛽)𝑒−𝑥𝑈 = 0 (6.13a) 

𝑈(𝑥, 0) = 𝑁(𝑥;𝐻0, 𝜎0
2)        (6.13b) 

𝑈(𝐷𝐿(𝑡), 𝑡) = 0, 𝐷𝐿(𝑡) = max⁡[0, ln⁡(𝑅𝑋𝐷(𝑡)/𝑃0)]      (6.13c) 
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𝑋𝐷(𝑡) = 𝑋𝐷(0)(1 − 𝑡/𝑇𝑚), 0 ≤ 𝑡⁡ ≤ 𝑇𝑚       (6.13d) 

𝑋𝐷(𝑡) = 0, 𝑡 > 𝑇𝑚   

For demonstration of the debt effect on the firm value and stability, we select steady firms with H0 = 2.0, 

𝜎0
2 = 0.02, R = 0.10, C2 = 0.01. 

We start our demonstration with a levered firm taking a small-size loan of A = 50 units, r = 0.05, with debt 

maturity Tm = 3 (the initial debt leverage is 0.0576, β = 0.4811), and compare its results against the results of 

unlevered firm. It is easy to verify that for loan of A = 50, Tm = 3, the default line is zero, DL = 0. The slope of 

the mean return H(t) (Figure 9) shows the effective rate of return on the firm’s assets after all payments. For 

example, the effective rate of return of the unlevered firm in Figure 9 is 0.087. As one can see, the mean return 

of the levered firm has a lesser slope during the first three years of the firm development because of higher 

payments in this period. When the payments return to the payment level of the unlevered firm, the slope of H(t) 

of the levered firm rises close to that of H(t) of the unlevered firm. However, the mean return H(t) and its slope 

of the levered firm remains lesser than that of the unlevered firm for all time.  

The variance VAR(t) (Figure 10) of the levered firm grows faster in the interval of debt maturity than the 

variance of the unlevered firm. After discharging the debt, the growth rate of the variance declines, but VAR(t) 

of the levered firm remains greater than VAR(t) of unlevered firm. The development of skewness (Figure 11) 

demonstrates the same behavior: SK(t) of the levered firm grows faster during the maturity period than SK(t) of 

the unlevered firm. Then the growth rate declines, but SK(t) of the levered firm remains greater by absolute value 

than SK(t) of the unlevered firm.  

Due to the choice of steady firms (H0 = 2.0, 𝜎0
2 = 0.02) and low debt, the intensity of default probability 

(Figure 12) of the levered firm is about 10-15 times greater than the intensity of unlevered firm, but still remains 

low. The general conclusion from the graphs is that the debt does affect the firm development, and its effect is 

negative. The variance, skewness, default probability, and its intensity of the levered firm grow faster than the 

similar variables of the unlevered firm. On the other side, the mean return grows slower than that of the unlevered 

firm. The effect of a small debt on a steady firm is small. 
 

 
Figure 9. Evolution of mean returns H(t) - H0 for unlevered firm (line 1) and levered firm (line 2), A = 50, Tm = 3. 
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Figure 10. Variances VAR(t) - VAR0 for unlevered firm (line 1) and levered firm (line 2), A = 50, Tm = 3.  

 

 
Figure 11. Evolution of skewness SK(t) for unlevered firm (line 1) and levered firm (line 2), A = 50, Tm = 3. 

 

 
Figure 12. Intensities of default probability DPINT(t) for unlevered firm (line 1) and levered firm (line 2), A = 50, Tm = 3. 
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Now we consider the effects of a medium-size loans A = 150, r = 0.05, with maturities Tm = 10 and 15 years 

(the initial debt leverages make 0.2254 and 0.2720). Other problem parameters remain the same: R = 0.10, C2 = 

0.01, 𝜎0
2 = 0.02 , H0 = 2.0. The first distinction between a small-size debt and a medium-size debt is a non-zero 

level of the default line (Figure 13). The time, when the default line descends from the top to zero, is tDL0 = 8.671, 

and β = 1.580 for the debt maturity of Tm = 15. The BSE payments of the levered firm are 2.580 times greater 

than the BSE payments of the unlevered firm over debt maturity, and both firms pay the same BSEs outside the 

maturity. Those high payment rates explain low slopes of the mean returns in Figure 14 (lines 2 and 3) and the 

fast growth of the intensities of default probability in Figure 15. 
 

 
Figure 13. Level of default line DL(t) of levered firm with debt parameters A = 150, Tm = 15, tDL0 = 8.671. 

 

 
Figure 14. Evolution of mean return H(t) - H0 for unlevered firm (line 1) and two levered firms, A = 150, Tm = 10 (line 

2), Tm = 15 (line 3). 
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When the rate of payments of the levered firm decreases to the unlevered firm level, the slope of function 

H(t) returns close to its unlevered value (Figure 14). As one can see in Figures 14-16, the effect of a medium-

size debt is not small, it influences the firm development for the rest of its life, and the longer the maturity, the 

greater the effect. (Actually, for any firm state and debt value acceptable for the firm, there is an optimal maturity 

providing the minimum default probability. However, this optimum is not critical, and there is an interval of 

maturities securing a suboptimal mode of debt discharging.) The default probability for a medium-size debt 

increases to levels of 0.10-0.15 in 25 years, while the default probability of the unlevered firm is about 10-5 for 

the same period. Any payment, including taxes and dividends, decreases the firm’s profitability and survivability.  
 

 
Figure 15. Intensities of default probability DPINT(t) for two levered firms with A = 150, r = 0.05 and maturities Tm = 

10 (line 1) and 15 years (line 2). 
 

 
Figure 16. Default probabilities DPR(t) for two levered firms with A = 150, r = 0.05 and maturities Tm = 10 (line 1) and 

15 years (line 2). 
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The model presented above does not include taxes and tax returns, and, therefore, cannot be directly 

compared against the trade-off theory. However, according to this theory, if there are no taxes, corporate debt 

makes no effect on the firm’s value and returns. On the contrary, the EMM shows that debt makes a negative 

effect on the firm’s value and returns. At that, the greater the debt, the stronger the effect of debt; it never 

disappears and can be detected many years after the debt maturity by reduced mean returns and an increased 

default probability. The negative effect of moderate debt develops slowly; it makes it difficult to see the relation 

between the deteriorating state of the firm at present and the debt financing decision made 10 years ago. In our 

opinion, debt financing should be considered as a strong medicine having serious collateral effects. It must be 

prescribed very cautiously taking into account possible distant complications. 

The trade-off theory assumes that capital structure can be optimized with management weighting up the 

relative advantage of the tax-shield benefits of debt against the increased likelihood of incurring debt-related 

bankruptcy costs. Leland (1994) tries to develop a quantitative method of finding the optimal debt leverage in 

this problem. We demonstrate that the optimal capital structure calculated by Leland is an imaginary result of the 

BSM model for firms with no payments, Leland’s unrealistic method of financing the firm’s expenses, and his 

mathematically illegal transition to the time-independent equation. So, the trade-off theory, supposing debt 

neutrality to the firm value when there is no tax and debt benefits in the presence of taxes, is false. Sarkar and 

Zapatero (2003) present empirical evidence of the strong inverse relationship between profitability and leverage, 

supporting the EMM conclusions. On the other side, there is a wide flow of the papers based on the MMP3 by 

Modigliani and Miller (1963) and Leland (1994), defending the trade-off theory (e.g., Brealey & Myers, 1996, 

pp. 474-509; Leland & Toft, 1996; Goldstein et al., 2001; Fama & French, 2002; Strebulaev, 2007; Titman & 

Tsyplakov, 2007; Hugonnier et al., 2015; etc.). When the economists cannot come to a general opinion on the 

subject, the practitioners have no reliable recommendations on the debt leverage choice. Empiric studies by 

Beattie, Goodacre, and Thomson (2006) show that about half of the respondent firms seek to maintain a target 

debt level or a target range consistent with the trade-off theory. We explain this influence of trade-off theory on 

financial decision made by prolonged psychological suggestion, which financial theorists exert on corporate 

management. It is another illustration of a propaganda thesis that a lie repeated many times becomes (almost) the 

truth in the public opinion. 

Does it mean that debt always makes negative effects on the firm, its value, and stability and must be avoided 

by all means? Not really. Shemetov (2021) shows that when the firm buys on credit a new technology increasing 

its future returns, it can be beneficial for the firm; the result of that project depends on details of the contract 

agreement, the state of the firm, and market. 

Conclusion 

Analyzing the seminal papers of Modigliani and Miller (1958; 1963), Black and Scholes (1973), Merton 

(1973; 1974), Black and Cox (1976), Leland (1994), and Leland and Toft (1996), we have shown that all of them 

are wrong. Because these classic works lay the foundation for the following financial studies, a significant branch 

of financial economics based on these papers is now in a crisis: no conclusions except the most general ones are 

correct, and no recommendation is reliable. To be specific, we have shown theoretically and Fortune (1996) 

empirically that the Black-Scholes option pricing formula cannot be sufficiently precise and accurate because the 

return distributions of the underlying stocks are skewed even for the top S&P 500, while Black and Scholes 

assume the stock return distribution to be normal. As a consequence, all theoretical extensions of the Black-
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Scholes formula (Merton, 1976; Kou, 2002; Heston, 1993) and theoretical studies of exotic options based on this 

formula inherit its shortcomings. 

We have shown theoretically and Kownatzki (2016) empirically that the S&P 500 Volatility Index (VIX) 

using a weighted average of implied volatility is unsuitable for many risk management applications because the 

VIX systematically overestimates actual volatility in non-crisis periods and underestimates actual volatility in 

times of financial crises (when the variance ceases to be a good measure for the volatility of unsteady firms). The 

volatility estimations made with the EMM are more adequate than the current volatility estimations made by the 

VIX and could be recommended for the next version of the Volatility Index. We have also explained a strange 

behaviour of the variance and skewness of stock returns before and after the crisis of 1987. 

We have shown that Merton’s general equation for security pricing is effective only when the firm can 

default at debt maturity. In a more realistic market where the firm pays its BSEs and theoretically can default at 

any moment, Merton’s general equation is equivalent to the Black-Scholes equation, which is good for pricing 

short-term securities and unsuitable for pricing long-term securities and assets. As a result, all succeeding stock 

and bond pricing formulas are wrong, and the stock and bond traders nowadays are close to a position of traders 

at the dawn of security trading with very few theoretical reference points.  

In contrast to the trade-off theory looking for the optimal capital structure under the MMP3 (Modigliani & 

Miller, 1963) that argues debt brings tax benefits to the firm, we have shown that debt negatively affects the 

firm’s value, returns, and stability supporting the empirical study by Sarkar and Zapatero (2003). All papers 

teaching how to choose debt leverage in static or dynamic conditions (e.g., Leland, 1994; Leland & Toft, 1996; 

Goldstein et al., 2001; Strebulaev, 2007) are false and can only damage the firms if they take risks to use their 

theoretical recommendations as a practical guidance.  

How could it happen that so many bright minds occurred to be so wrong? The error is so subtle that nobody 

can doubt that this idea is not the absolute truth. We show that the error hides in the interpretations of no arbitrage. 

Modigliani and Miller, Samuelson, Black and Scholes, and Merton interpret the no-arbitrage property of financial 

markets that no one can make money out of nothing (“no free lunches”) neither regularly, no through stochastic 

speculations. One can say that a self-financing strategy provides an arbitrage opportunity if and only if P(V0 = 0) 

= 1, P(VT ≥ 0) = 1, and 0 < P(VT > 0) < 1, here V0 is an initial portfolio value, VT is its value at time T > 0. A 

market is arbitrage free if there is no such strategy, understanding that P(VT = 0) = 1 (having no capital, one can 

make no profit and no debt over time T). We call this interpretation the martingale no arbitrage. The martingale 

no arbitrage puts strong constraints on the return distributions of portfolio assets: they must be symmetric. That 

restriction causes no problem for pricing short-term securities like options, but it lays heavily on pricing long-

term assets and securities. The martingale interpretation of the no-arbitrage principle made Merton choose the 

geometric Brownian model (GBM) as a descriptor of the firm and its long-term securities. In its turn, this choice 

leads to conflicts with observable facts: (1) the theoretical return distribution is always normal while in practice 

it is skewed; (2) theoretical default probabilities are always much less than that in practice; (3) the GBM describes 

the self-financing firms only; it makes the GBM unsuitable for analysis of real firms paying their taxes, dividends, 

debts, etc. Economists respond to this challenge by mending the theory with calibrated models, jump-diffusion 

processes, stochastic volatility processes, etc., to bring the predicted default probability closer to the probabilities 

observed in practice and add skewness to the return distributions of stocks and underlying firms.  

The true solution to those problems consists in rejection of the martingale interpretation of the no-arbitrage 

principle. A qualitative analysis and a numeric solution of the original Merton equation for the firm with payments 
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(Merton, 1974) in the presence of Black-Cox’s absorbing boundary (the default line) shows that the development 

of a skewed return distribution is a natural consequence of payments of the firm’s expenses (the firm stops to be 

self-financing). Because of a continuous mass leak at the default line, the market of firms paying their expenses 

(BSEs) has no martingale property. The rate of mean returns of those firms continuously decreases, reducing 

future values of the firms and their securities. This leak runs slowly (its characteristic time is about a year); 

therefore, it affects the pricing of long-term assets, securities, and portfolios. Mind that the decrease in mean 

portfolio returns has no relation with market speculations; it is due to the slow degradation of the long-term assets 

constituting the portfolio. These changes in the firm state and the states of its securities correspond to organism 

aging in biology. Investors keeping long-term portfolios should regularly re-estimate their assets and portfolios 

as a whole. The short-time market speculations (one day, week, month) with any securities is a good martingale 

process making no changes in their activities. The new situation presents additional problems to long-term 

investors such as big firms, mutual and pension funds, saving and investment funds, etc., which now have to 

estimate and re-estimate assets in their portfolios, taking into account asset aging.  

We hope we managed to show that an important branch of financial economics is in a crisis. It is bad news 

for those who have contributed to the current state of economics and those who have to solve practical problems 

with very few theoretical reference points left (but with no false recipes, too!). The good news is we know that 

this branch of financial economics must be reconstructed on new principles, and we know some of them. We 

hope that there are a lot of capable and creative economists who will do their best to fill theoretical gaps as soon 

as possible. The first step on this way could be organizing a cooperation of those who can and will make their 

contribution. 
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