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Abstract: In the recent years, TNCs (transportation network companies) and on-demand ridesharing services have grown rapidly. 
Given conflicting reports on TNC impacts, a need exists to study mode choice shifts in the presence of TNC services and their effects 
on urban congestion. Using Birmingham, AL (Alabama) as a case study, this paper showcases the feasibility of modeling TNC services 
using the MATSim (Multi-Agent Transport Simulation) platform, and evaluating the impact of such services on traffic operations. 
Data used for the study were gathered from Uber drivers and riders through surveys, as well as the US Census. The results indicate that 
when 200, 400, and 800 TNC vehicles are added to the network, the VKT (vehicle kilometers traveled) increase by 22%, 23.6%, and 
23.2%, respectively, compared to the baseline scenario (no TNC service). Analysis of hourly average speeds, hourly average travel 
times, and hourly volumes along study corridors further indicate that TNC services increase traffic congestion, in particular, during the 
AM/PM peak periods. Moreover, the study shows that the optimal TNC fleet size for the Birmingham region is 400 to 500 active TNC 
vehicles per day. Such fleet size minimizes idle time and the number of TNC vehicles hovering, which have adverse impacts on TNC 
drivers, and the environment while ensuring TNC service availability and reasonable waiting times for TNC customers. 
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1. Introduction  

The availability of the GPS (global positioning 
system) and wireless services and the increase in the 
use of smartphones have contributed to the 
establishment of a new shared transportation mode 
option called on-demand ridesourcing. Within this new 
framework, TNCs (transportation network companies) 
such as Uber and Lyft promised to offer additional 
choices to travelers in their service area and even 
relieve the strain on existing transportation networks 
from automobile use [1]. However, to date, the impact 
of these services on travelers’ mode choices and 
transportation network performance is not clear. 

The proliferation of TNCs, mainly Uber and Lyft, 
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developed two perspectives on the potential impact of 
TNCs on urban congestion. The first perspective argues 
that TNCs motivate travelers to abandon their personal 
vehicles thus taking off vehicles from the network, 
which can result in lower levels of congestion and a 
reduction in the total VKTs (vehicle kilometers 
traveled). The second perspective claims that TNCs 
created a new group of transportation network users, 
the TNC vehicle drivers, who hover the network in an 
effort to pick up riders. This practice has the potential 
to increase the time that TNC vehicles occupy the 
network and VKTs, which in turn results in higher 
levels of congestion.  

Despite the importance of understanding the true 
impacts of TNC services on transportation network 
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performance, limited studies are available that 
examined and documented such impacts. This is 
attributed to two main reasons: first, the lack of 
available TNC trip data which TNC operators are 
reluctant to share citing privacy concerns, and second, 
the lack of commercially available simulation software 
programs that can be used to simulate TNC trips in 
conjunction with other transportation modes.  

The Birmingham, AL (Alabama) case study 
presented in this paper addressed those limitations by 
(a) collecting TNC trip data directly from Uber/Lyft 
drivers in the study area, (b) incorporating such data 
into a comprehensive agent-based simulation model of 
the Birmingham region, and (c) using the model to 
simulate traffic operations for various TNC fleet sizes 
and document their impacts on traffic network 
performance. This work builds on our earlier research 
efforts to develop a prototype agent-based model for 
the city of Birmingham [2] and incorporate public transit 
and shared mobility options in the same network [3-5]. 
In this study, we introduce innovative methods to 
extract detailed trip information from Uber/Lyft driver 
trip logs and to generate realistic travel plans of the 
Birmingham MATSim (Multi-Agent Transport 
Simulation) simulation model that incorporated TNC 
trips along with automobile, public transit, and walking 
trips. The Birmingham MATSim model was then used 
to simulate scenarios that incorporated various TNC 
fleet sizes. This allowed us to quantify the impacts of 
expanding TNCs fleet sizes on congestion in terms of 
changes in VKT, average speeds, average travel times, 
and hourly volumes along study corridors and the 
network as a whole. 

2. Literature Review 

The literature review identified several research 
studies that documented (a) transportation users’ 
preferences, attitudes, and practices toward TNC use 
based on questionnaire surveys, and (b) impacts of 
TNC service presence on traffic operations and traffic 
congestion. Representative studies are discussed next. 

2.1 Users’ Mode Choices and Attitudes toward TNCs  

Rayle et al. [6] conducted a study in the San 
Francisco area to understand preferences and use of 
TNC services in the region. Results from an analysis of 
380 responses to a questionnaire survey revealed that 
UberX provided the majority of the rides (53%), 
followed by Lyft (30%). With respect to the purpose of 
the trip, 67% of trips were for social reasons, 16% were 
for work purposes, 4% were rides to/from airports, 3% 
were for shopping, and 10% were for various other 
destinations (e.g., medical, to/from transit). If TNCs 
were unavailable, 39% of the people surveyed would 
take a taxi, 33% use transit, 8% walk, 6% would drive 
their own vehicles, 2% would use bikes, and the 
remaining 12% would use other modes of 
transportation. The study documented TNC users’ 
choices, but reported that the impact from TNCs on 
VKT remains uncertain.  

Bekka et al. [7] analyzed survey responses from 
1,966 Uber users in order to determine the effect that 
Uber had on car ownership in the Paris metropolitan 
region. According to the survey responses, 17% of 
households that had used Uber in the last four years had 
eliminated at least one personal vehicle due to TNC 
service availability. Furthermore, an investigation was 
conducted by Clewlow et al. [8] to examine users’ 
behaviors and attitudes toward the use of shared 
mobility services. It was reported that 26% of 
individuals expressed that they had lowered their 
driving distance by 10 miles every week since they 
began using ride-hailing services.  

2.2 TNC Services’ Impacts on Traffic Operations 

According to Qian et al. [9] there has been a 
continuous deterioration in traffic conditions in NYC 
(New York City) at different day times and locations 
based on two years of data analyzed linked to the 
availability of FHVs (for-hire-vehicles). The study 
reported an increase of over 48% in FHVs between 
2017 and 2019 coupled with a 22.5% reduction in speed 
recorded in NYC on weekdays during the same time 
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period. This conclusion is consistent with findings from 
Erhardt et al. [10] and Roy et al. [11] who examined the 
correlation between the TNCs advent and congestion 
increase in San Francisco between 2010 and 2016. 
Erhardt et al. [10] concluded that the presence of TNC 
vehicles on San Francisco’s streets contributed to an 
increase in delay for automobile users on weekdays by 
62% in 2016, compared to 2010. Roy et al. [11] also 
reported that TNCs were responsible for 47% of the 
increase in VMT (vehicle miles traveled) and that they 
were primarily responsible for nearly half of the 
congestion increase observed in San Francisco during 
the study period. A study by Henao and Marshall [12] 
in the Denver region also estimated that the presence of 
TNCs contributed to an increase of approximately  
83.5% in the number of vehicle miles driven compared 
to the number of VMT without the presence of TNCs. 
The authors attributed this sharp increase to mode 
replacement and driver deadheading. Tirachini et al. [13] 
investigated the impact of TNCs on VKT by using a 
Monte Carlo simulation model and inputs from a 
questionnaire survey of 1,600 responders mostly from 
Santiago, Chile. The results of the study confirm that 
TNC services increased VKT as a result of modal shifts 
from transit or generation of new trips by the TNCs. To 
avoid increases in VKT, the authors suggest that the 
average occupancy rate of ride-hailing trips should 
exceed 2.9 persons/veh. Beojone and Geroliminis [14] 
examined the effects of increasing the size of TNC 
fleets on urban congestion using the city of Shenzhen, 
China, as a case study. As fleet size increased from 
1,000 to 7,000 vehicles, a reduction in waiting times to 
pick up riders was observed. However, the fleet size 
increase also intensified congestion, which, in turn, 
prolonged the total travel time. Li et al. [15] proposed 
two hypotheses: (a) the introduction of Uber reduces 
traffic congestion in urban expanded areas, and (b) the 
introduction of Uber increases traffic congestion in 
compact areas of metropolitan areas. A difference-in-
differences method using a unique dataset was utilized 
by the authors to test those hypotheses. According to 

the study findings, rideshare services are significantly 
associated with an increase in traffic congestion in 
compact areas. Besides, the study found some indications 
that ridesharing services are related to a decrease in 
traffic congestion in sprawling metropolitan areas [16].  

It is worth noting that most studies on the impact of 
TNC services on traffic operations were conducted in 
big cities such as NYC [9], San Francisco [10], 
Shenzhen [14], and suggest that TNC services intensify 
congestion. However, there is a need to examine 
whether TNC services impacts are similar in moderate-
sized cities, as well. The aim of this paper is twofold: 
(a) to develop a mesoscopic agent-based simulation 
model including the TNC module; and (b) to quantify 
the impacts of TNCs fleet sizes on congestion in 
Birmingham, AL, a medium-sized city where Uber and 
Lyft services are available. 

3. Methodology 

3.1 Study Approach 

Simulation modeling was employed in order to 
quantify the impacts of TNC operations on the 
performance of the Birmingham transportation network 
under various TNC fleet sizes. First, an appropriate 
simulation platform had to be selected. Then the simulation 
model had to be developed, tested and refined to allow 
for the modeling of TNC trips. Data had to be collected 
to properly reflect the study network characteristics, 
and travel demand. Scenarios were developed and used 
to simulate traffic operations for (a) baseline conditions 
(without TNC operation) and (b) with TNC service 
availability for a variety of TNC fleet sizes (i.e., 200, 
400, and 800 TNC vehicles). Finally, the simulation outputs 
were analyzed to determine the optimal Uber/Lyft fleet 
size to serve the TNC needs in the Birmingham region 
by hour-of-the-day and the impact of Uber trips on 
traffic operations along selected corridors.  

3.2 Simulation Model 

Earlier research by the authors compared various 
transportation simulation options in terms of their features, 
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capabilities, and limitations [16] and concluded that the 
MATSim platform is the most promising and well-
established traffic simulation platform available for 
modeling ridesourcing and shared mobility services 
(such as Uber and Lyft). Consequently, the MATSim 
simulation platform was adopted in this study to 
simulate the impact of TNC services on traffic 
operations in Birmingham, AL. 

MATSim is an open-source software that requires: 
(a) a configuration file; (b) a network file, and (c) a 
population/plans file in order to run. The configuration 
file contains a list of settings that influence how the 
simulation behaves. The network file defines the 
transportation network nodes and links. Coordinates 
are used to define the nodes and attributes are described 
for each link including the link length, number of lanes, 
capacity, and speed. The population file provides 
information about travel demand which is described in 
terms of daily plans of each agent (traveler). The 
population file contains a list of transportation users 
and their daily plans, activities, and legs.  

MATSim simulates the population’s travel plans on an 
underlying road network. MATSim’s simulation job is 
run in iterations as shown in  

Fig. 1. In order to start the analysis, MATSim requires 
inputting the initial population demand (also known as 
plans), in the study area. During each iteration, MATSim 
executes its “mobsim” simulation executor and runs the 
selected plans of the agents on the roadway network. 
Following the execution of each plan, a score is assigned 
based on the experiences of the agent and the 
performance of the plan. Based on the plan scores in each 
agent’s plan, a plan is selected for each agent in the 
replanning step, and this plan may be modified for 
execution in the next iteration. 

At the last iteration, a linkstats file is generated that 
provides hourly trip counts and travel times for every 
network link at user specified intervals. This feature 
allows for the evaluation of the operational 
performance of individual links, in addition to the study 
network as a whole. Details about MATSim are 
available in Horni et al. [17] and online at 
https://www.matsim.org/. 

To speed up the computational performance, and 
similar to earlier studies that used the MATSim platform 
[5, 18, 19], 10% of the total population was used for the 
simulation. Thus, for the Birmingham MATSim model, 
plans were executed using a population size of 69,826. 

In order to effectively implement the MATSim 
platform for traffic simulation modeling, it is essential 
to generate a realistic synthetic population and their 
daily travel plans. The authors used a combination of 
user surveys and public data sources to generate realistic 
day plans for the Birmingham network. Starting with 
automobile trips first, the simulation model was then 
enhanced to incorporate public transportation trips   
[2, 20, 21]. In this study, the Birmingham MATSim 
simulation model was further upgraded to incorporate 
Uber trips into the day plans. This was achieved     
by  utilizing  the  Taxi  extension  in  MATSim 
(org.matsim.contrib.taxi). As available TNC services 
in Birmingham did not offer ride sharing options such 
as Uber Pool or Lyft Line, the Taxi extension was 
selected over the DRT (demand responsive transport) 
as it closely modeled the local TNC operations. In order 
to utilize this extension, the authors had to specify the 
number of Uber/Lyft drivers as well as their starting 
location. More details on this effort are available in 
[22]. These model upgrades and extensions resulted in 
a comprehensive Birmingham MATSim model capable  

 

 
Fig. 1  The co-evolutionary algorithm of MATSim [17]. 
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of generating realistic background automobile traffic, 
TNC trips, as well as transit and walking trips and 
suitable of meeting the modeling needs of this study. 

3.3 Data Collection 

Due to the difficulty in obtaining TNC trip data for 
the Birmingham region directly from Uber and Lyft, 
the research team recruited local Uber drivers and 
worked with them to extract trip records from their logs. 
In doing so, a brief questionnaire survey was developed 
and used to: (a) provide information about the study 
including survey purpose, compensation, privacy 
considerations, and consent for participation, and (b) 
verify eligibility and enroll interested Uber drivers to 
the study. To be eligible for participation, drivers had 
to have driven Uber/Lyft in the Birmingham 
metropolitan region (Jefferson and Shelby counties) 
during 2019 and/or 2021, prior and after the surge of 
the COVID pandemic.  

After signing up, drivers met in person with trained 
study personnel who manually captured and stored 
screenshots of each Uber trip in the Uber app. Each 
image captured provided exact information about the 
trip date, start and end time of the trip, trip duration and 
approximate location of the trip’s origin and destination. 
The data collection yielded a total of 4,229 Uber trip 
records. A spreadsheet was prepared and used to record 
information about the study participants and to 
document their trip records by year and month.  

The data captured required detailed post-processing 
in order to determine the GPS coordinates of the origin 
and destination (O-D) of each trip based on the trip 
details and map provided in the image. Georeferencer2 
was used for easy image-to-map alignment. The 
coordinates of trajectory points were extracted directly 
from the map after it was aligned with the screenshot 
image with the help of crowdworkers. Detailed 
crosschecking of the information entered ensured that 
the proper addresses were captured and all data were 
entered accurately in the spreadsheet. A total of 3,922 
Uber trip records remained in the database after 

removing trip records that were missing destination 
information as well as canceled rides. 

The study network for Birmingham, AL metro area 
was obtained using OpenStreetMap and then converted 
into MATSim nodes and links with the help of the 
MATSim plugin in Java OpenStreetMap Editor. 
Despite the wide use of the WGS84 (World Geodetic 
System 84) coordinate system (e.g., GPS data), the 
complexity of the WGS84 makes it unsuitable for 
MATSim due to the difficulty of calculating the 
distance between points [23, 24]. Earlier studies [24, 25] 
recommended the UTM (Universal Transverse 
Mercator) coordinate system, which was adopted for 
this study. Accordingly, the Birmingham metro area is 
located in zone 16 north of the UTM coordinate system.  

The use of synthetic population to generate travel 
plans for travelers in the network is a result of the 
difficulty in obtaining travel diaries for all travelers in 
the network (population). In this study, we used daily 
diaries from 451 travelers in the Birmingham metro 
area to generate the daily plans of travelers along with 
open-source data sources, such as the US Census data, 
OpenStreetMap, OpenAddresses, and the Birmingham 
Business Alliance. The PDFs (probability density 
functions), and KDE (kernel density estimation) were 
applied to generate travel plans that utilized these open 
data sets to create a realistic population [20, 21]. The 
synthetic population process has been extended by 
Khalil et al. [22] to incorporate Uber travel daily plans 
based on the travel logs of local Uber drivers. As a 
result of the Uber driver survey, valid trajectories were 
used to generate the daily plans for TNC drivers [22].  

3.4 Experimental Design 

In spite of the lack of detailed TNC data from the 
Birmingham region, we estimated the TNC ridership to 
be approximately 3,500 TNC trips/day. Thus, we 
generated 3,200 initial TNC trip plans over the 24-h 
simulation. In our simulation experiments, we varied 
the number of Uber drivers from 0 to 800. In addition 
to the baseline scenario (i.e., 0 Uber drivers; no TNC 
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service), three scenarios were considered in detail with 
gradually increased Uber fleet size (200, 400, and 800 
Uber drivers respectively). The simulation of these 
scenarios allowed for the comparison of outputs, which 
enabled the identification of the optimal TNC fleet size 
and quantification of the impacts of TNC presence on 
traffic congestion. VKT over the entire study network, 
along with hourly average speeds, hourly average 
travel times, and hourly volumes at select network 
locations were used as MOEs (measures of 
effectiveness) for the evaluation of the designated 
scenarios. The results are summarized next. 

4. Results 

4.1 Impact of Number of Drivers on TNC Service 

Fig. 2 shows Uber ride plans in the presence of 200 
and 400 active Uber drivers in Birmingham. En route, 
departing, and arriving Uber rides during each hour of 
the day are clearly marked (green, red, and blue lines, 
respectively). Each MATSim simulation accounts for 
trips that have taken place during a 24-h period. Thus, 
during the simulation model set up, Uber drivers have 
been set to stop working after the 24th hour of the day. 
This is reflected in Fig. 2 by the number of en route 
plans remaining unchanged after the end of the 24-h 
study period (i.e., green curve becomes flat). When a 
fleet of 200 Uber drivers is available on a given day, 

approximately 500 ride requests cannot be satisfied at 
the end of the day. Thus, in order for all customer ride 
requests to be accommodated by the end of the day, a 
minimum fleet of 400 Uber drivers should operate per 
day in Birmingham. 

Fig. 3 shows the variation of TNC vehicle status 
from hour to hour in the presence of varying TNC fleet 
sizes (i.e., 200, 400, and 800 active TNC vehicles). At 
any point in time a driver may be on an empty drive, 
occupied drive, picking up, dropping off, or idle. When 
200 TNC vehicles operate in the network, we see   
that nearly all TNC vehicles are occupied (gray), 
between 8 AM and 9 PM. Most of the TNC drivers are 
on idle (green) and tend to stay at their last drop-off 
location outside of those hours. When 400 TNC 
vehicles operate in the network, nearly all TNC 
vehicles are occupied between noon and 8 PM, whereas 
during the morning hours many TNC vehicles are not 
occupied. A similar trend can be seen when 800 TNC 
vehicles operate in the Birmingham network, with a 
peak that can be seen between 4 PM and 7 PM. In order 
to strike a balance between reducing the drivers’ idle 
time and ensuring TNC service availability with 
reasonable waiting times in the region, a fleet of 400 to 
500 TNC drivers is deemed optimal in Birmingham and 
medium-sized cities with similar travel demand 
characteristics. 

 

 
 

 
Fig. 2  Number and status of Uber rides by hour. 
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Fig. 3  TNC vehicle status statistics. 
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4.2 Impact of TNC Service Availability on Modal 
Choice 

Table 1 summarizes the distribution of trips by mode 
for the four study scenarios (0, 200, 400, and 800 TNC 
vehicles) considered in the Birmingham study. A total 
of 151,834 plans were generated in the baseline 
scenario that were distributed between transit, walk, 
and private automobile modes. Over 144,000 trips were 
performed by private automobiles (94.85% of total). 
This is consistent with earlier studies in the Greater 
Birmingham region including a 2016 commuter  
survey by Sisiopiku et al. [26] that reported that over 
90% of transportation users travel by private 
automobile. As Table 1 shows, the introduction of 
TNCs led to a shift of trips from private automobiles to 
other modes, including TNC trips. This resulted in a 
reduction of private automobile trips to 127,440 
(84.08%). However, when adding the TNC trips, which 
are also vehicle trips, the total trips by private 
automobile and TNC combined reached 139,399 
(91.98% of total) under the 200 TNC vehicle scenario. 
This reflects a reduction of 3.2% of the total number  
of car trips (i.e., private automobile and TNC  
combined) as compared to the baseline. It should be 
noted that as TNC vehicles increase to 400, the    
TNC trips also increase, leading to a total of 143,981 
trips by private automobile and TNC combined. This 
reflects a negligible change in the total number of car 
trips as compared to the baseline. Further increase of 
the TNC fleet size to 800 vehicles resulted in an 
increase in TNC trips and the total trips by private 

automobile and TNC combined. The simulation results 
show that the increase in TNC trips as the number of 
TNC drivers increases from 400 to 800 is small (from 
16,540 to 17,092, or 3%). This indicates that the 
demand for TNC service has almost reached a 
saturation point below a TNC fleet size of 800 and that 
adding more TNC vehicles to the network would not 
benefit the TNC provider or the users. One can 
conclude that the optimal number of TNC vehicles for 
the Birmingham network is just over 400, both in terms 
of transportation network operation and potential 
benefits for TNC providers. 

4.3 Impact of TNC Service Availability on Network-
Wide Operations 

4.3.1 VKTs 
Using MATSim network wide outputs and Eq. (1), 

the total daily VKT was calculated for each TNC fleet size 
scenario. The results are summarized in Table 2. 𝑉𝐾𝑇஽௔௬

= ෍ 𝐻𝑜𝑢𝑟𝑙𝑦 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐶𝑜𝑢𝑛𝑡 𝑥 𝐿𝑖𝑛𝑘 𝐿𝑒𝑛𝑔𝑡ℎ (𝑚)1000 𝑚𝑘𝑚
ℎ=23
ℎ=0  

(1)

Compared to the baseline scenario, an increase in the 
total VKT was observed when TNC service was 
available, ranging from 22.0% to 23.6% for 200 to 800 
TNC vehicles respectively. Further analysis indicated 
that the total hourly VKT for TNC vehicle scenarios 
peaked during the AM and PM traffic peak periods (7 
to 9 AM and 4 to 6 PM), compared to the baseline 
scenario (Fig. 4) and the differences in VKT from one 
scenario to another were small.  

 

Table 1  Statistics of executed plans-trips by mode. 

Scenario No. of TNC 
vehicles 

Transit 
trips Walk trips Private 

auto trips TNC trips
Trips by private 
auto and TNC 
combined 

Change in 
private auto  
and TNC trips 
(Baseline: TNC) 

% Change total 
private auto  
and TNC trips 
to baseline

Baseline  
(No TNC) 0 TNC  2,648 5,172 144,014 - 144,014 - - 

TNC service 
available 

200 TNC Veh 3,837 8,317 127,440 11,959 139,399 4,615 -3.20% 
400 TNC Veh 2,532 5,124 127,441 16,540 143,981 33 -0.02% 
800 TNC Veh 2,312 4,806 127,432 17,092 144,524 -510 0.35% 
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Table 2  Total daily VKT for each scenario. 

Scenario No. of TNC vehicles Total daily VKT Change in total daily VKT 
(Baseline: TNC) VKT % diff. to baseline 

Baseline (No. TNC) 0 TNC  2,265,716 -   

TNC service available 
200 TNC Veh 2,764,169 -498,453 22.0% 
400 TNC Veh 2,801,092 -535,376 23.6% 
800 TNC Veh 2,790,519 -524,803 23.2% 

 

 
Fig. 4  Total VKT by hour of the day. 
 

4.3.2 Impact of TNC Service Availability on 
Corridor-Specific Operational Performance 

MATSim simulation outputs were also used to 
evaluate the operational performance of a number of 
network links under baseline conditions as well as in 
the presence of TNC service. The operational 
performance was assessed in terms of hourly average 
speeds, hourly average travel times, and hourly 
volumes. The linkstats file in the MATSim output was 
used to obtain the hourly average travel times and 
hourly volume for all the corridors within the study. 
The hourly average speeds for each corridor were 
calculated as a function of the hourly travel time and 
the link length along each corridor. As shown in Fig. 5, 
a sample of four study corridors was selected for 
demonstration purposes. They are: 
 I-65 (NB; between University Blvd and 1st Ave 

North) (0.72 miles) 
 University Blvd (WB; between I-65 and US 31) 

(1.29 miles) 
 20th Street South (SB; between 3rd Ave South and 

1st Ave North) (0.35 miles), and 
 3rd Avenue West (US 11/US78) (EB; between 

Center Street North and Arkadelphia Road) (0.74 
miles). 

Fig. 6 depicts Hourly Average Speeds (in meters per 
second) over a 24-h period along the four sample study 
corridors for baseline (no TNC) conditions as well as 
the three TNC service scenarios considered. It can be 
observed that baseline average speeds are just slightly 
higher than those reported from the TNC scenarios, with 
the exception of peak times (8:00 to 9:00 AM and 5:00 
to 7:00 PM) when average speeds in the TNC scenarios 
were noticeably lower than the baseline scenario.  
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Fig. 5  Location of sample study corridors. 
 

  
 

  
Fig. 6  Hourly average speed over 24 h for sample study corridors. 
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Fig. 7 illustrates Hourly Average Travel Times (in 
seconds) along the four sample study corridors for 
baseline conditions and TNC scenarios. The findings 
are consistent with those reported for Hourly Average 
Speeds. Specifically, compared to the baseline scenario, 

the hourly average travel times during peak hours are 
higher in the TNC scenarios than the baseline scenario.  

Fig. 8 illustrates the Hourly Average Volume (in 
vehicles per hour) along the four sample study corridors 
for baseline conditions and TNC scenarios. When TNC  

 

  
 

  
Fig. 7  Hourly average travel time over 24 h for sample study corridors. 
 

  
 

  
Fig. 8  Hourly average volume over 24 h for sample study corridors. 
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vehicles are added to the network, the hourly average 
volume is higher than the baseline scenario in the 
AM/PM peak periods. This finding is in line with the 
hourly average speed and hourly average travel time 
discussed above, specifically in the peak periods, when 
the hourly average volume increased, the hourly 
average speed decreased and the hourly average travel 
time increased, indicating increased traffic congestion. 

5. Conclusions and Recommendations 

This paper examined the impact of TNC services on 
traffic operations in the Birmingham, Alabama metro 
area, a medium sized city in the southeastern US. Using 
the MATSim simulation platform, a baseline scenario 
(no TNC vehicles) and three TNC scenarios were 
simulated. The latter represented the operation of a TNC 
fleet of 200, 400, and 800 vehicles. The impacts of 
various TNC fleets on traffic operations were quantified 
using a variety of MOEs including VKT, speed, travel 
time, and volume. Network wide VKTs were obtained 
from the MATSim’s output for each scenario and used 
to document performance impacts of TNC presence on 
the Birmingham network for the entire study network 
over a 24-h period. Hourly VKTs were also obtained 
and used to identify time periods during the 24-h study 
period when TNC impacts on traffic congestion are the 
greatest. Localized impacts of TNC operation on local 
congestion were also examined by inspection of 
average hourly speed, travel time, and volume data 
obtained from the MATSim simulation runs for 
selected study corridors over a 24-h period. 

According to the study results, TNC scenarios 
increase the network wide VKT by up to 23.6% as 
compared to the baseline scenario. It should be noted 
that the VKT for the 800 TNC vehicle scenario is 
slightly lower (0.4%) than that of the 400 TNC vehicle 
scenario. One possible explanation is that the TNC 
demand has peaked between 400 and 800 TNC vehicles, 
and the stay/idle vehicle percentage is higher in the 800 
TNC vehicle scenario than in the 400 TNC vehicle 
scenario, as it is visually evident from Fig. 3. 
Furthermore, the study findings show that TNCs 
contribute to traffic congestion, especially during 

AM/PM peak periods. It is evident from Fig. 4 that the 
hourly total VKT values increased more sharply 
between 7-8 AM and 4-7 PM for all TNC scenarios 
considered. The study further revealed that when TNC 
vehicles are added to the network, the hourly average 
volumes and hourly average travel times increase while 
the average hourly speeds decrease, compared to the 
baseline scenario, and those changes are more 
pronounced during AM/PM peak times as shown in  
Figs. 6-8. While results vary from location to location as 
expected, the general trends of the MOEs described 
above are observed at the majority of study corridors. 

In addition to quantifying the impact on TNC 
services on traffic congestion, the study findings 
indicated that the optimal TNC fleet size for the 
Birmingham region is 400 to 500 active TNC vehicles 
per day. Such fleet size is adequate to serve the current 
demand for ride hailing services in the study area while 
minimizing idle time and the number of TNC vehicles 
hovering while waiting for TNC customer requests.  

This study considered ride hailing TNC services 
where each customer reserved one TNC vehicle for 
their trip. This reflects accurately the TNC service 
operation in the study area, where ride pooling services 
are not available. In follow up work, the authors plan to 
investigate the effect that ride pooling (such as Uber 
Pool and Lyft Line) can have on traffic operations in 
Birmingham, Alabama.  

Overall, the study findings provide valuable insights 
on TNC impacts on traffic congestion in the study area 
and medium sized cities like Birmingham and help 
local authorities and TNC service providers to optimize 
TNC operations and better serve the needs of the 
traveling public. 
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