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Abstract: Many studies on the diagnosis for machines have become important recently because of increased use of various complex 

industrial systems. The correlation information between sound and vibration is very important for machine diagnosis. Usually, 

vibration pickups are attached directly to the machine in order to measure vibration data. However, in some cases, the sensors can not 

be attached directly on highly precise devices. In this study, a method to estimate the fluctuation of sound and vibration is proposed 

based on the measurement data of sound emitted from the machine under existence of background noise. The effectiveness of the 

proposed theory is experimentally confirmed by applying it to the observed data emitted from a rotational machine driven by an 

electric motor. 
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1. Introduction  

The fault diagnose of the machine was examined by 

skilled workers using the abnormal noise (using their 

hearings), and/or unusual vibration (based on their 

feelings). For example, components weariness, 

degradation and loose screws etc., could be found by 

hitting a stopping machine with a hammer. However, 

it gradually becomes a serious problem that the fault 

diagnosis methods don’t keep the pace with the rapid 

development of modern social infrastructure. Our life 

is co-existing with industrial systems, and the machine 

fault leads to the inefficient production. 

For example, there are diagnosis imaging methods 

using machine learning [1, 2]. The accuracy rate is 

high, however, the tremendous training data are 

required. Furthremore, there exists the problem that it 

is difficult to verify the optimum value of parameters 

setting. Besides, there are diagnosis methods using of 

either of sound and/or vibration emitted from the 
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machine [3-5]. Previous studies have also shown that 

it is important to use the relationship between sound 

and vibration data [6]. Especially, the vibration 

usually contains important information on causes of 

the abnormal state. To measure vibration data, 

vibration pickups are attached directly to the machine. 

However, the sensors can not be attached directly on 

highly precise devices in some cases. 

In this study, based on measurement data in real 

environment under existence of background noise, the 

vibration are estimated using the sound generated 

from the machine. Specifically, considering the 

system characteristics of sound and vibration as the 

conditional probability distribution with unknown 

parameters, the vibration and the unknown parameters 

are estimated at the same time from the observation of 

sound by using Bayes’ theorem. The validity of 

proposed method is verified by experiment using the 

observed sound from rotational machine. 

2. Theory 

We consider the random vibration 𝑥𝑘 and sound 
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𝑦𝑘 emitted from a machine at discrete time 𝑘. The 

observed sound 𝑧k is contaminated by a background 

noise 𝑣k. Fig. 1 shows the relationship between sound 

and vibration emitted from a machine. 

 

Fig. 1  Observed data model. 
 

When we consider energy variables (e.g., sound 

intensity) for 𝑦𝑘 , 𝑣𝑘  and 𝑧𝑘, according to the additive 

property of energy variables, the following 

relationship can be established [7]. 

𝑧𝑘 = 𝑦𝑘 + 𝑣𝑘              (1) 

In order to derive the statistical relationship 

between 𝑥𝑘  and 𝑦𝑘 , the conditional probability 

distribution of 𝑥𝑘  is expressed as 

𝑃(𝑦𝑘 ∣ 𝑥𝑘) =
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where,  denotes the averaging operation with 

respect to the random variables. The orthogonal 

polynomials 𝜃𝑟
(1)(𝑥𝑘) and 𝜃𝑠

(2)(𝑦𝑘) are obtained by 

using Schmidt orthogonalization [6]. 
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0

r i
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0
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Where 𝜆𝑟𝑖
(1)

 and 𝜆𝑠𝑖
(2)

 are coefficients. 

Since the instantaneous values of 𝑥𝑘  and 𝑦𝑘  are 

unknown, expansion coefficients 𝐵𝑟𝑠  in Eq. (3) have 

to be estimated on the basis of the observation 𝑍𝑘. 

Let’s regard the expansion coefficients Brs as unknown 

parameters 𝑎𝑘. 

In the case of paying attention to the variables 𝑥𝑘, 

𝑎𝑘  and 𝑍𝑘, all the information on mutual correlations 

among 𝑥𝑘, 𝑎𝑘  and 𝑍𝑘  is included in the conditional 

probability distribution 𝑃(𝑥𝑘 , 𝑎𝑘 ∣ 𝑍𝑘). By using the 

well-know Bayes’ theorem [8]. 

𝑃(𝑥𝑘 , 𝑎𝑘 ∣ 𝑍𝑘) =
𝑃(𝑥𝑘 , 𝑎𝑘 , 𝑍𝑘 ∣ 𝑍𝑘−1)
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where 𝑍𝑘{= 𝑍1, 𝑍2, … , 𝑍𝑘}  is a set of observation 

variables up to time 𝑘. As the fundamental probability 

density functions 𝑃0(𝑥𝑘 ∣ 𝑍𝑘−1) , 𝑃0(𝑍𝑘 ∣ 𝑍𝑘−1) , 

which can be choose as the probability functions 

describing the dominant part of the actual fluctuation 

or as the well-known standard probability 

distributions, the gamma distribution suitable for 

energy variable is adopted. Furthermore, the functions 


𝑙
(1)(𝑥𝑘) , 

𝑛
(3)(𝑧𝑘)  are orthonormal polynomials of 

degrees 𝑙 and 𝑛 with weighting functions 𝑃0(𝑥𝑘 ∣

𝑍𝑘−1)  and 𝑃0(𝑍𝑘 ∣ 𝑍𝑘−1)  can be determined as 

Laguerre polynomials. 
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As an example of standard probability function 

𝑃0(𝑎𝑘 ∣ 𝑍𝑘−1), Gaussian distribution is adopted. 
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The orthonormal polynomial with the above 

weighting probability distribution is then specified as 

Hermite polynomial [9, 10]. 
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The estimates for mean and variance (i.e., 

conditional mean and variance) of 𝑥𝑘, 𝑎𝑘, which are 

the first and second order statistics, can be expressed 

as follows, 
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These estimates are derived by using the orthogonal 

condition. 
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Next, the estimation of sound 𝑦𝑘  is derived from 

the estimates of 𝑥𝑘 , 𝑎𝑘  by using the correlation 

information of sound and vibration in Eq. (2). 
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Coefficients in (16)-(19), (21)-(22) are appropriate 

constants satisfying the following equalities: 
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The expansion coefficients representing correlation 

information between 𝑥𝑘  and 𝑍𝑘 , 𝑎𝑘  and 𝑍𝑘  are 

specifically calculated by using Eq. (2). 

( ) ( )(1) (3)

101 1 1 1k k kA x z Z  −= ∣  

1

1
k k

k k k k

k k
x z k

x z x z

x z
m m Z

m m s s

 

−   

  
= − −  

  
  

∣  

1
k k

k k k k

k k
x z

x z x z

x y
m m

m m s s

 

   

  
= − −  

  
  

 

1k k

k k

k k
x z k

x z

x v
m m Z

s s

 

− 

  
− − −  

  
  

 

1 1
k k

k k k k

k
x z k k

x z x z

x
m m y x

m m s s

 

   

  
= − −  

  
  

∣  

1k k

k k

k k
x z k

x z

x v
m m Z

s s

 

− 

  
− − −  

  
  

 

1
k

k k k

k
x

x z x

x
m

m m s



  

 
= − 

 
 

 

(1) (1)

10 11 10 11

1
k k

k k

k
z k x

z x

x
m e a e s

s s
  

 

    
 − + +        

 

1k k

k k

k k
x z k

x z

x v
m m Z

s s

 

− 

  
− − −  

  
  

 

(1)

11 11

1
k

k

k k

x

k x

z z

m
a e s

m s




 

 
=                    (24) 

( ) ( )(1) (3)

102 1 2 1k k kA x z Z  −= ∣  

( )
2

1
k

kk k k

k
x

xx z z

x
m

sm m m



  

 
= − 

 +  

 

( ) ( ) ( )
1 1

1 1
2 k k k

k

z z z k k k

z

m m m y x v
s

  




+ − + +



∣  

( )2 2

12

1
2

2
k

k k k k k k k

z

y x y x v v Z
s

−


+ + + 



∣ ∣

( )
2

1
k

k k k

x

x z z

m
m m m



  
= −

+
 

( ) ( ) ( )2 (1) 2 (1)

22 22 11 112

1 1
1 Γ 1

k k k k

k k

x a k x z k

z z

m a p s m a e
s s

     

 


+ + − +



( )( (1) 2 (1)

21 11 22 212

1
Γ

2 k k k

k

k x a k x

z

a p s a p s
s

    


+ + +  

)(1)

11 112
kk x ka e s v  +


         (25) 

( ) ( )(1) (3)

201 2 1 1k k kA x z Z  −= ∣  

( )
2

1
k k kx x zm m m  

=
+

 

( ) ( )
2

1 1
1 1

2 2k k k

k k

k k
x x x

x x

x x
m m m

s s

  

 

     
+ − + +       

     

( ) 1

1
k

k

z k k k k

z

m y x v Z
s



−

 
− + 

 
 

∣  

0=                                     (26) 

( ) ( )(1) (3)

202 2 2 1k k kA x z Z  −= ∣  

( ) ( )
4

1 1
k k k kx x z zm m m m   

=
+ +

 

( ) ( )
2

1 1
1 1

2 2k k k

k k

k k
x x x

x x

x x
m m m

s s

  

 

     
+ − + +       

     



State Estimation for Sound and Vibration Emitted from a Machine Based on Sound Measurement Under 
Existence of Background Noise 

 

5 

( ) ( ) ( )
1 1

1 1
2 k k k

k

z z z k k k

z

m m m y x v
s

  




+ − + +



∣  

( )2 2

12

1
2

2
k

k k k k k k k

z

y x y x v v Z
s

−


+ + + 



∣ ∣  

( )
( )

( )2 (1) 2

22 222

1 1
Γ

1

k k

k k

kk k

x x

a k x

zz z

m m
a p s

sm m


 

 

 

+
= +

+
 (27) 

( ) ( )(2) (3)

011 1 1 1k k kA a z Z  −= ∣  

1

1

Γ k

k kk

k k k
z k

z za

a a z
m Z

m s




− 

  −
 = − 

  
  

∣  

( )( )(1)

10 11 1 1

1 1

Γ k

k kk

k k
z k k k k

z za

a a
m e a e x v Z

m s





− 

   −  
 = − + + 
     

∣

( )

2

(1)

11 1

1 1
Γ

Γ k

k kk

k k
a k

z za

a a
e x

m s




 

   −  
 = − 
     

 

( )( )(1)

10 11 1 1

1

Γ k

kk

k k
z k k k k

za

a a
m e a e x v Z

s



 

−

   −  
 + − + + 
     

( )(1) (1)

11 10 11

1 1
Γ

k

k k

a k

z z

e x
m s

  

 

  
= − + 

  

      (28) 

( ) ( )(2) (3)

012 1 2 1k k kA a z Z  −= ∣  

( )
( ) ( )(1)

11 1 1

2 1
1 Γ

1
k k

kk k

z a k k

zz z

m e x Z
sm m



− 


= − +

+ 

∣  

( ) (1)

21 1 12

1
Γ

2 k

k

a k k

z

p x Z
s

 −
+ ∣  

( )(1)

22 2 12 Γ
ka k k ka p x Z

−+ ∣  

( ) (1)

11 1 12 Γ
ka k k ke x Z v −

+


∣           (29) 

( ) ( )(2) (3)

021 2 1 1k k kA a z Z  −= ∣   

2

1
1

2 Γ
k k

k k

z a

a a

m





  − 
 = − 
    

 

( )( )(1)

10 11 1 1

1
k

k

z k k k k

z

m e a e x v Z
s



−

  
− + + 

  

 

= 0                                     (30) 

( ) ( )(2) (3)

022 2 2 1k k kA a z Z  −= ∣  

( )

2

2
1

Γ2 1
kk k

k k

az z

a a

m m



 

  − 
 = − 
 +    

 

( ) ( )
2

1

1 1
1 1

2 2k k k

k k

k k
z z z k

z z

z z
m m m Z

s s

  

− 

     
+ − + +       

     

 

( )
222

1 1
Γ

21
k

kk k

a

zz z

p
sm m

 
=

+
 

( )

4

(1)

1 2 1
Γ

k

k k
k k k

a

a a
Z x Z



− −

 −
 
 
 

∣ ∣  

( )
222

1 3
Γ

21
k

kk k

a

zz z

p
sm m

 
=

+
  

( ) (1) (1) (1) 2

20 21 22 Γ
kk x kx x   + + +           (31) 

In order to derive the predicted values of the 

vibration 𝑥𝑘, the time transition of the vibration 𝑥𝑘  is 

set as follows. 

1k k kx Fx Gu+ = +                (32) 

where, 𝑢𝑘  is a random input with mean 0 and 

variance 1. Parameters 𝐹 and 𝐺 are calculated from 
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time correlation information between 𝑥𝑘  and 𝑥𝑘+1: 

( )2 21
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Therefore, 
1

*
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1
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follows: 
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Since the parameter 𝑎𝑘  is a constant, the following 

time transition model is introduced for the recursive 

estimation. 
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By using the above relationship, the predictions are 

given as follows, 

1
ˆ

k ka a

+ =                   (37) 

1
Γ

k ka aP
+
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2. Experiment 

The proposed method was applied to estimate 

simultaneously sound and vibration emitted from 

rotating machine by observing the noisy sound 

contaminated by background noise. The observation 

sound 𝑧 were measured by use of a microphone. We 

experimented on the estimation by dividing 3000 

observation data into 12 data sets with 250 

observation data in normal situation without faults. In 

order to confirm the effectiveness of the proposed 

method involving a nonlinear model, we compared it 

with extended Kalman filter (EKF) [11]. The EKF is 

an extension of the well-known Kalman filter (KF), 

applicable to nonlinear models. 

Figures 1 and 4 show the estimated results of 

vibration for data sets 1 and 2. The EKF cannot 

estimate the first part of fluctuation. However the 

proposed method can estimate through the whole of  

 
Fig. 1  Estimation results of vibration in for data set 1. 

 
Fig. 2  Estimation results of parameter 𝒂𝒌 in for data set 1. 

 

fluctuation data. The Root Mean Square (RMS) errors 

the proposed method and EKF are shown in Tables 1 

and 2. 

Next, the sound 𝑦𝑘  emitted from machine was 

estimated by use of estimates of 𝑥𝑘  and 𝑎𝑘 . The 

estimated results are shown in Figures 3 and 6. The 

proposed method precisely estimated the whole 

fluctuation wave without diffusion. 

The RMS errors were calculated using true 

vibration values and estimated values by Eqs. (16) and 

(21). 

Figures 2 and 5 show the estimation process of the 

unknown parameter 𝑎𝑘  of the proposed method for 

data sets 1 and 2. From the above estimated results, it 

is clearly obvious that the proposed method is more 
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effective than the well-known EKF. 

 
Fig. 3  Estimation results of sound in for data set 1. 

 

 
Fig. 4  Estimation results of vibration in for data set 2. 

 

 
Fig. 5  Estimation results of parameter 𝒂𝒌 in for data set 

2. 

 
Fig. 6  Estimation results of sound in for data set 2. 

 

Table 1  RMS error of vibration (m/s2). 

 1-250 251-500 501-750 751-1000 

Proposed 

method 
0.3198 0.3711 0.2854 0.2449 

EKF 0.3549 0.4043 0.2112 0.2956 

 1001-1250 1251-1500 1501-1750 1751-2000 

Proposed 

method 
0.3446 0.4171 0.3838 0.3322 

EKF 0.2417 0.3643 0.4981 0.3919 

 2001-2250 2251-2500 2501-2750 2751-3000 

Proposed 

method 
0.3530 0.4970 0.4635 0.4268 

EKF 0.4345 0.5013 0.2821 0.4111 
 

Table 2  RMS error of sound (dB). 

 1-250 251-500 501-750 751-1000 

Proposed 

method 
0.1140  0.1006 0.1116 0.1540 

EKF 0.1605  0.1369 0.1460 0.1827 

 1001-1250 1251-1500 1501-1750 1751-2000 

Proposed 

method 
0.1509  0.1325 0.1345 0.1393 

EKF 0.1545  0.1429 0.1922 0.1512 

 2001-2250 2251-2500 2501-2750 2751-3000 

Proposed 

method 
0.2218  0.1849 0.1323 0.1241 

EKF 0.1819  0.1793 0.1712 0.1270 

3. Conclusion 

In this paper, an estimation method of sound and 

vibration based on the measuring noisy sound data has 

been proposed the proposed method can get the 

necessary data to diagnose of the machine without any 
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restriction of measuring instruments. By using the 

correlation information between sound and vibration, 

the vibration can be estimated from sound 

contaminated by background noise. It was confirmed 

that the proposed method showed more precise 

estimation than the well-known extended Kalman 

filter. However, the proposed method is still at the 

early stage of study. Thus, there are a great number of 

problems in the future. For example, (1) The practical 

method should be developed at the actual environment 

existing background vibration, and (2) The diagnosis 

method should be proposed by using estimates of 

sound and vibration. 

References 

[1] Tsun-Kuo Lin (2018). “An 

Edge-Feature-Description-Based Scheme Combined with 

Support Vector Machines for the Detection of 

Vortex-Induced Vibration.” International Journal of 

Innovative Computing, Information and Control 14 (3): 

833-845. 

[2] Kamada, S., and Ichimura, T. (2000). “An Embedded 

System for Imagebased Crack Detection by using 

Fine-Tuning model of Adaptive Structural Learning of 

Deep Belief Network.” In: Proc. of IEEE TENCON 2020, 

pp.1203-1208. 

[3] Kanai, H., Abe, M., and Kido, K. (1986). “Detection and 

Discrimination of Flaws in Ball Bearings by Vibration 

Analysis.” J. Acoustical Society of Japan (E) 7 (2): 

121-131. 

[4] Bonnardot, F., Randall, R. B., and Antoni, J. (2004). 

“Enhanced Unsupervised Noise Cancellation Using 

Angular Resampling for Planetary Bearing Fault 

Diagnosis.” International J. Acoustics and Vibration 9 (2): 

51-60. 

[5] Alexandros, M. (2013). “Classification of Fault Diagnosis 

Methods for Control Systems.” SAGE Journals 

Measurement and Control 46 (10). 

[6] Orimoto, H. (2016). “Statistical Fault Diagnosis Methods 

by Using Higher-Order Correlation Information between 

Sound and Vibration.” Intelligent Information 

Management 8 (4). 

[7] Orimoto, H., and Ikuta, A. (2012). “Prediction of 

Response Probability Distribution by Considering 

Additive Property of Energy Variable and Evaluation in 

Decibel Scale for Sound Environment System with 

Unknown Structure.” The Society of Instrument and 

Control Engineers 48 (12): 830-836. 

[8] Ohta, M., and Yamada, H. (1984). “New Methodological 

Trials of Dynamical State Estimation for the Noise and 

Vibration Environmental System.” Acustica 55 (4): 

199-212. 

[9] Ohta, M., and Koizumi, T. (1968). “General Statistical 

Treatment of the Response of a Non-Linear Rectifying 

Device to a Stationary Random Input.” IEEE Trans. Inf. 

Theory 14 (4): 595-598. 

[10] Ohta, M., and Ikuta, A. (1983). “A Basic Theory of 

Statistical Generalization and Its Experiment on the 

Multi-variate State for Environmental Noise — A 

Unification on the Variate of Probability Fluctuation 

Characteristics and Digital or Analogue Type Level 

Observations.” J. Acoustical Society of Japan (39) 

592-603. 

[11] Kushner, H. J. (1967). “Approximations to Optimal 

Nonlinear Filter.” IEEE Trans. on Automatic Control 12 

(5): 546-556. 

 


