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Effect of Corporate Debt on Firm Value 

Valery V. Shemetov 

“Truth does not do as much good in the world, as its counterfeits do evil.” 
Francois de La Rochefoucauld, Moral Maxims (64) 

 

We have shown that three classic works considering the effects of corporate debt on the firm value, namely, 

Modigliani and Miller (1958, 1963), Merton (1974), and Leland (1994), are wrong. Their main mistake is ignoring 

the business security expenses, BSEs. We suggest the model taking account of BSEs and apply it to the analysis of 

debt influence on the firm value and survival. Our modeling demonstrates that (1) the debt affects the firm value 

and its survival, (2) this influence is negative, diminishing the firm value and its chances to survive, (3) the pressure 

of the negative effect of debt increases as the debt grows, provoking the firm default. The debt can be beneficial for 

the firm if the loan is taken to improve its technology. The model helps estimate the chances to succeed in the 

technological modernization for various parameters of the firm and its business environment; and by that, to find 

the technology most suitable for the firm. It is shown that there is a serious problem in reading the market signals 

concerning a firm and using this information to control this firm. 

Keywords: Geometric Brownian model, Extended Merton model, business securing expenses, corporate debt, 

default probability 

Introduction and Critical Review 

The next important step in corporate debt pricing is made by Merton (1974), who suggests a model for the 
firm value development taking account of the firm’s debt and dividend payments. Assuming the standard 
conditions of the perfect market and applicability of MMP1 (1958), Merton starts with a portfolio consisting of 
the firm value, the value of a security issued by the firm, and the riskless cash account. The assets in the 
portfolio are composed in such a proportion that the total portfolio value is zero. Optimizing this portfolio, 

 
The questions of corporate debt pricing, effects of debt on the firm development, and the optimal asset 

structure are among the crucial problems in the theory and practice of financial management. Bitter discussions 
of the effects of debt on the firm value have got their first answers in Modigliani-Miller Propositions I (1958) 
and III (1963). MMP1 or, Theorem of irrelevance, proves that there is no relation between the firm’s capital 
structure and its value. MMP3 argues that in the presence of taxes, the value of the levered firm is equal to the 
value of the unlevered firm, identical to the levered firm in every respect but the asset structure, plus the present 
value of the tax shield. However, the general opinion is that although providing a solid theoretical basis for 
future investigations, MMPs have been less effective in practice, suggesting mainly qualitative guidance to the 
problem (Miller, 1988, Pagano, 2005).  
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Merton derives a continuous-time equation “which must be satisfied by any security whose value can be written 
as a function of the value of the firm and time” (p. 453). While complementing this equation with two boundary 
conditions and an initial condition, the author remarks that “it is precisely these boundary condition 
specifications which distinguish one security from the other”. Using this general equation, Merton considers the 
value of a zero-coupon bond issued by the firm. In this problem, he comes to the geometric Brownian model 
(GBM) for the firm value V and the option-like equation for the bond value F(V, t), together with the 
option-like boundary conditions and a condition at the date of debt maturity. No wonder that for the bond value, 
the author gets a closed-form solution similar to Black-Scholes’ one for the option value (1973). Mark that in 
Merton’s model, the firm can default on the day of debt maturity only, neglecting the relationship between the 
firm value and its debt before this date. Summing up, Merton concludes that “while options are highly 
specialized and relatively unimportant financial instruments [. . .] the same basic approach could be applied in 
developing a pricing theory for corporate liabilities in general” (1974, p. 449) because of “isomorphic 
correspondence between almost any corporate liability and options”. 

However, the assumption that the firm can default only at debt maturity is far from reality. Black and Cox 
(1976) have relaxed this assumption introducing a threshold triggering default when the firm’s assets hit the 
threshold line (more often called the default line). This line has a dramatic effect on the firm development: now 
the firm has a non-zero probability to default at any moment, and this probability grows on time. From the 
point of view of physical systems, the model without the default line is a conservative system whose number of 
Brownian particles remains the same all the time. The model with the default boundary is an open system 
continuously losing its particles. Therefore, without the inflow from the outside, the open system can exist only 
for a limited period. Unfortunately, this fact is not recognized by the economists evaluating financial risks. For 
example, Black and Cox, studying the development of the bond value in the Merton-type model supplied with 
an absorbing boundary, consider the behavior of a perpetual bond (t→∞) which just cannot exist in their model. 
Another effect of the default boundary, missed by the authors, is the development of negative skewness in the 
probability distribution caused by the continuous loss of particles (for details, see Shemetov, 2020a). Therefore, 
the GBM-solution presented by Black and Cox is valid only for limited time intervals. Since Black and Cox, 
(1976), no author using GBM with the default boundary has commented on this fact. 

The honor of making the next major step in the theory of debt and its effects on the firm value belongs to 
Leland (1994). He applies Merton’s general equation supplemented with Black-Cox’s default line to the 
analysis of the debt value and the optimal capital structure of the firm with corporate taxes and bankruptcy 
costs. Leland uses all Merton’s assumptions, plus a new one that capital structure decisions, once made, remain 
static. Leland’s model includes the firm and security representing a claim on the firm which continuously pays 
for a nonnegative coupon per instant of time when the firm is solvent. At that, the firm finances the net cost of 
this coupon by selling additional equity from outside of the firm’s portfolio. In these conditions, the asset value 
is described by GBM. The security value depending on the firm value and time follows Merton’s general 
equation with boundary conditions determined by payments at debt maturity and by payments in bankruptcy, 
should it happen before the maturity. Because the closed-form solution of this problem is unknown, Leland 
looks for the time-independent solution to this problem, tending time to infinity. He comes to a closed-form 
solution for this marginal case writing explicit equations for the firm’s debt, equity, and the firm value equal to 
the asset value, plus the tax deduction of coupon payments, less the value of bankruptcy costs. The last 
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expression makes the quantitative basis of the trade-off theory, which Leland uses to determine the optimal 
asset structure for the exogenous default line. If the firm management can choose the moment of default, they 
can do it, maximizing the firm’s equity at that moment (the endogenous default). Using his powerful formalism, 
Leland presents a multilateral analysis of various debt covenants and their influence on debt variables. However, 
his optimal asset structure occurs extremely high (75%-90%), which indicates that the author has missed 
important phenomena in his analysis of the firm development. The authors of succeeding articles, trying to 
improve the level of optimal asset structure, add to Leland’s model various mechanisms relaxing the perfect 
market conditions, like different kinds of friction, dynamic borrowing, etc. 

Our objective is to reveal the principal error in these three seminal articles and, correspondently, in all 
succeeding studies based on and developing their ideas. We plan to show that the main mistake comes from 
ignoring the firm’s payments, as in Modigliani-Miller Propositions and Leland (1994), or a mere declaration of 
taking account of the firm’s payoffs without actually doing it (Merton, 1974). We start with revisiting the 
Merton model (1974): 

𝑑𝑑𝑑𝑑 = (𝜇𝜇𝑑𝑑 − 𝑃𝑃)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝑑𝑑𝐶𝐶, 𝑑𝑑(0) = 𝑑𝑑0, (1.i) 
𝑃𝑃 = 𝐷𝐷𝑃𝑃 + 𝐷𝐷𝐷𝐷𝐷𝐷. (1a.i) 

Here X(t) is the firm value at time t, constant μ is the rate of instantaneous expected returns on the firm per 
unit time, P is the total dollar payouts by the firm per unit time to either its shareholders or liabilities-holders 
(dividend DIV or interest DP payments), constant C is the process volatility and C2 is the instantaneous 
variance of returns, W is a Gauss-Wiener process. (For the sake of consistency with the further discussion, we 
use our symbols for the variables and parameters in the model keeping original Merton’s interpretation of all 
symbols.)  

Merton includes the income 𝜇𝜇𝑑𝑑 and two exterior payments to shareholders and bondholders, but from the 
accountant’s point of view, one must consider all inflows and outflows when describing the firm value 
dynamics. Here the firm has one inflow 𝜇𝜇0𝑑𝑑 from its sales and five types of outflows: the variable costs 𝐷𝐷𝐶𝐶𝑖𝑖 =
𝛿𝛿𝑖𝑖𝑑𝑑, 𝛿𝛿𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑(𝑑𝑑) > 0, i = 1, 2, …, n, fixed costs FC, debt payments DP, dividends DIV, and corporate taxes 
TAX. One can take account of the variable costs by adjusting the expected rate of return as 𝜇𝜇 = 𝜇𝜇0 − ∑ 𝛿𝛿𝑖𝑖𝑖𝑖 . The 
other four outflows compose the business security expenses (BSEs), 𝑃𝑃 = 𝐹𝐹𝐶𝐶 + 𝐷𝐷𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑑𝑑 + 𝐷𝐷𝐷𝐷𝐷𝐷, and the 
failure to pay any of them sooner or later brings the firm to default. So, the revised model is 

𝑑𝑑𝑑𝑑 = (𝜇𝜇𝑑𝑑 − 𝑃𝑃)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝑑𝑑𝐶𝐶, 𝑑𝑑0 = 𝑑𝑑(0), (1.i) 
𝑃𝑃 = 𝐹𝐹𝐶𝐶 + 𝐷𝐷𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑑𝑑 + 𝐷𝐷𝐷𝐷𝐷𝐷, 

P(t) = P0 π(t), P(0) = P0> 0, π(0) = 1. 
(2.i) 

P is a piecewise continuous function of time; P0 is a positive constant. The time dependence of FC and DP 
reflects changes in business conditions; the dollar values of TAX and DIV depend on their rates and year returns. 
Hereafter we refer to the process (1.i), (2.i) as the Extended Merton model (EMM). 

EMM for a stochastic variable 𝑥𝑥 = ln⁡(𝑅𝑅0𝑑𝑑/𝑃𝑃0)  by Ito’s Lemma transforms to  
𝑑𝑑𝑥𝑥 = 𝑅𝑅0(1− 𝜋𝜋(𝑑𝑑)𝑒𝑒−𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝐶𝐶, (3.i) 

𝑥𝑥(0) = 𝑥𝑥0 = ln⁡(𝑅𝑅0𝑑𝑑0/𝑃𝑃0), 𝑅𝑅0 = 𝜇𝜇 − 𝐶𝐶2/2. (3a.i) 
This equation represents an ordinary diffusion with a drift whose rate R(x, t) depends on the location of the 

Brownian particles on the x-axis and time. For the uniform mode of payments, 𝜋𝜋(𝑑𝑑) ≡ 1, the drift rate is: R(0) 
= 0, 0 < R(x) < R0 for x > 0, and – ∞ < R(x) < 0 for x < 0. When a part of the distribution of Brownian particles 
V(x, t) gets below the line x = 0, its particles are transported to the negative infinity with an ever-increasing 
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drift rate, creating a deficit of particles below this line. The diffusion force compensates this deficit with 
particles from the upper part of the distribution, and the process continues until there are no more particles left 
above the line x = 0. For the normal initial distribution: 

𝐷𝐷(𝑥𝑥, 0) = 𝑁𝑁(𝑥𝑥;𝐻𝐻0,𝜎𝜎0
2), 𝐻𝐻0 = 〈𝑥𝑥0〉 = 〈ln⁡(𝑅𝑅0𝑑𝑑0/𝑃𝑃0)〉, 𝜎𝜎0

2 = 〈(𝑥𝑥 − 𝐻𝐻0)2〉, 
one can see the influence of the initial parameters on the process. The increase in the expected rate of return 𝑅𝑅0 
and/or the initial asset value 𝑑𝑑0 rise a location of the distribution center 𝐻𝐻0 over the line x = 0, while the rise 
in payments 𝑃𝑃0 brings it closer to this line, providing a greater part of the distribution 𝐷𝐷(𝑥𝑥, 0) under the line x 
= 0. A similar effect makes the initial variance 𝜎𝜎0

2. The greater the variance, all other parameters equal, the 
greater part of distribution 𝐷𝐷(𝑥𝑥, 0) occurs under the line x = 0, the faster grows the negative tail of the 
distribution. The intrinsic property of EMM is the development of negative skewness even at an initially 
symmetric distribution. Unfortunately, the closed-form solution for EMM is unknown even in the case of the 
time-independent drift rate. See Shemetov (2020a) for the details. 

The geometric Brownian model (GBM) 

𝑑𝑑𝑑𝑑/𝑑𝑑 = 𝜇𝜇𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝐶𝐶, 0)0( XX =  (4.i) 

has a closed-form solution named the economic exponent (Samuelson, 1965) 
𝑑𝑑(𝑑𝑑) = 𝑑𝑑0exp⁡(𝑅𝑅0𝑑𝑑 + 𝐶𝐶𝐶𝐶𝑑𝑑)⁡, 𝑅𝑅0 = 𝜇𝜇 − 𝐶𝐶2/2 (4a.i) 

whose distribution is lognormal 

𝑈𝑈(𝑑𝑑, 𝑑𝑑) =
1

𝑑𝑑√2𝜋𝜋𝜎𝜎2
𝑒𝑒𝑥𝑥𝑒𝑒 �−

(𝑙𝑙𝑐𝑐𝑑𝑑 − 𝐻𝐻)2

2𝜎𝜎2 � (4b.i) 

𝐻𝐻(𝑑𝑑) = 𝐻𝐻0 + 𝑅𝑅0𝑑𝑑, 𝜎𝜎2(𝑑𝑑) = 𝜎𝜎0
2 + 𝐶𝐶2𝑑𝑑. (4c.i) 

This distribution is symmetric about the logarithmic variable 𝑧𝑧 = ln⁡(𝑑𝑑/𝑑𝑑0). Here 𝐻𝐻0 and 𝜎𝜎0
2 are the 

mean and variance of the initial normal distribution 𝑁𝑁0(𝑧𝑧;𝐻𝐻0,𝜎𝜎0
2) . The intrinsic property of the 

GBM-distribution is to stay normal about z all the time.  

Modigliani-Miller Propositions (1958, 1961, 1963) 
The idea of proof of Modigliani-Miller Propositions (MMPs) consists of constructing an analog of the 

Marshallian industry for firms’ cash flows and then applying the one price principle to the market of perfect 
substitutes. Modigliani and Miller (1958) consider firms at the perfect market described with the assumptions: 

1. The firm value is determined only by the mean cash flow generated by the firm; 
2. All investors have complete information about firms’ cash flows; thus, the investors have homogenous 

expectations on corporate cash flows and their riskiness;  
3. There is an “atomistic” competition and no market friction of any kind. That implies, among other 

things, that at the market of corporate stocks and bonds (a) there are no agency costs, (b) bankruptcy entails no 
liquidation costs, and (c) all investors, both individuals and institutions, can borrow at the same rate as 
corporations; 

4. The debt of firms and investors is riskless, so the interest rate of all debts is the risk-free rate for all 
possible amounts of debt; 

5. There are no corporate or personal taxes. 
The authors argue that all “firms can be divided into “equivalent return classes” such that the return on the 

shares issued by any firm in any given class is proportional to (and hence perfectly correlated with) the return 
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on shares issued by any other firm in the same class” (1958, p. 266). They insist that “all relevant properties of 
a share are uniquely characterized by specifying (1) the class to which it belongs and (2) its expected return”, 
and by that, they create “an analog to the industry in which it is the commodity produced by the firms is taken 
as homogenous” (Ibid., p. 266). In a later paper, Miller confirms that for the “equivalent return class” (here he 
calls it the “risk class”) “the uncertain, underlying future cash flow streams of the individual firms within each 
class could be assumed perfectly correlated, and hence perfect substitutes”, and further: “at the practical level, 
the risk class could be identified with Marshallian industries” (Miller 1988, p. 103). Modigliani and Miller 
claim by the method of proof that Propositions are invariant to the firm value distribution and, therefore, 
Propositions are universal at the perfect market in its state of equilibrium. Now we know that the firm value 
distribution must meet EMM (1.i)-(2.i). The assumed capability of the two identical levered and unlevered 
firms to get into and stay long enough in the same risk class (or equivalent return class) for any asset structure 
means that the firm value distributions are lognormal. (The levered firm is identical to the unlevered one in any 
respect, but the structure of its assets.) Really, the mean returns of the levered firm must be equal to the mean 
returns of the unlevered firm at all times: 𝐻𝐻𝐿𝐿(𝑑𝑑) =  𝐻𝐻𝑈𝑈𝐿𝐿(𝑑𝑑), 𝑑𝑑 ≥ 0. (From Assumption A, it follows that all 
other firm characteristics are of no importance.) It is possible for the lognormal distribution only, for which one 
has the relation 𝐻𝐻(𝑑𝑑) = 𝐻𝐻0 + 𝑅𝑅0𝑑𝑑, Eq. (4c.i). From the identity of two firms and the distribution lognormality, 
one has the following conditions 𝐻𝐻0

𝐿𝐿 = 𝐻𝐻0
𝑈𝑈𝐿𝐿 = 𝐻𝐻0,𝑅𝑅0

𝐿𝐿 =  𝑅𝑅0
𝑈𝑈𝐿𝐿 = 𝑅𝑅0. Therefore, the assumption that the levered 

and unlevered firms have the same mean returns implies that both firms have lognormally distributed values. 
The lognormal distribution is a GBM-solution neglecting BSEs (P = 0), or using BSEs of a specific form, P = 
δX, δ = cons(t), 0 < δ < R0. We consider these two cases separately. 

The condition P = 0 means that neither the levered firm nor the unlevered firm pays any BSE, including 
fixed costs, too. Because there are no dividend payments for both firms (DIV = 0), the dividend policy does not 
affect the firm value (MMP2, 1961). Because there are no debt payments (DP = 0), the asset structure of the 
levered firm does not influence the firm value (MMP1, 1958). Because the “levered” firm does not pay for   
its debt but presumably enjoys the tax shield, its mean after-tax value is higher than the mean after-tax value of 
the unlevered firm by the present value of the tax shield (MMP3, 1963). However, the following argument 
shows that MMP3 is a logical error. Because the levered firm does not pay for its debt, it is indistinguishable 
from the identical unlevered firm, and, therefore, its tax shield must be zero! The revised version of MMP3 
must run as: in the presence of corporate taxes, the value of the levered firm equals the value of the unlevered 
firm (MMP1 with corporate taxes). As we demonstrate below, this is the maximum effect of the tax shield on 
the levered firm value; for all other cases, the debt contribution to the firm value is negative even with the tax 
shield.  

Now we address the case of GBM with proportional payments, P =δX. We consider two GBM-firms (no 
fixed costs), which BSEs consist of dividends DIV or debt payments DP, Eq. (4.i). For the variable 𝑧𝑧 =
ln⁡(𝑑𝑑/𝑑𝑑0), Eq. (4.i) transforms to 

𝑑𝑑𝑧𝑧 = (𝑅𝑅0 − 𝛿𝛿)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝐶𝐶, 𝑃𝑃𝑐𝑐 = 0. (5.i) 
Suppose that there are two identical unlevered firms with different dividend policies P1 = DIV1 = δ1X and 

P2 = DIV2 = δ2X, R0 > δ2 > δ1 (in this case, the dividend policy is reduced to the choice of δ). The log-value 
means for these firms are  

H1(t) = H0 + (R0 – δ1)t, H2(t) = H0 + (R0 – δ2)t, and H1(t) > H2(t). (6.i) 
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We see that the dividend policy affects the mean returns and value of the firm, and MMP2 (1961) is false 
for GBM with 𝑃𝑃 = 𝛿𝛿𝑑𝑑. The same logic can be applied to the case of debt payments only, P1 = DP1 = δ1X and 
P2 = DP2 = δ2X, R0 > δ2 > δ1, proving that MMP1 (1958) is also false. 

What is the effect of taxes on the values of two identical levered and unlevered firms? The payments of 
the unlevered firm consist of dividends only, PUL = DIV = δ1X, δ1 > 0, while the payments of the levered firm 
consist of dividends and debt payments, PL = DIV + DP = δ2X, R0 > δ2 > δ1. The log-values of both firms, 
described by Eq. (5.i), can be considered as the log-values of two unlevered firms (𝑃𝑃𝑐𝑐𝐿𝐿 = 𝑃𝑃𝑐𝑐𝑈𝑈𝐿𝐿 = 0) with 
different effective rates of return. Correspondingly, the returns of the second firm are lesser (δ2 > δ1) than 
returns of the first firm. As the unlevered firm, the second firm has no right on the tax shield, and it pays a tax 
of the same rate as the first firm. Therefore, the after-tax mean value of the second firm is lesser than the 
after-tax mean value of the first firm. This conclusion rejects MMP3 (1963). It means that debt does a negative 
effect on the after-tax mean value. So, all kinds of the trade-off theory, supposing after MMP3 a positive effect 
of debt on the after-tax mean value, are wrong for GBM, 𝑃𝑃 = 𝛿𝛿𝑑𝑑(e. g. Kraus & Litzenberger, 1973; Leland, 
1994; Ju et al., 2005; Frank & Goyal, 2007; Strebulaev & Whited, 2012). All papers on the optimal capital 
structure, using MMP3 and now popular GBM, P = δX (e. g. Leland & Toft, 1996; Goldstein et al., 2001), are 
self-contradictory because GBM, P = δX, is inconsistent with Modigliani-Miller Propositions.  

Now let us consider the EMM case with the levered and unlevered firms identical in all respects, but asset 
structure, both having a normal initial distribution of the same variance. Suppose that both firms do not pay 
dividends and taxes, so 𝑃𝑃𝑈𝑈𝐿𝐿 = 𝐹𝐹𝐶𝐶 ≡ 𝑃𝑃0 and 𝑃𝑃𝐿𝐿 = 𝐹𝐹𝐶𝐶 + 𝐷𝐷𝑃𝑃 = 𝑃𝑃0 + 𝐷𝐷𝑃𝑃 = 𝑃𝑃1 > 𝑃𝑃0 and all parameters shown 
in Eq. (1.i)-(2.i) are the same. Then one has 

𝐻𝐻0
𝑈𝑈𝐿𝐿 = 〈𝑥𝑥0〉 = 〈ln⁡(𝑅𝑅0𝑑𝑑0/𝑃𝑃0)〉, 𝐻𝐻0

𝐿𝐿 = 〈𝑥𝑥0〉 = 〈ln⁡[𝑅𝑅0𝑑𝑑0/(𝑃𝑃0 + 𝐷𝐷𝑃𝑃)]〉, 𝐻𝐻0
𝑈𝑈𝐿𝐿 > 𝐻𝐻0

𝐿𝐿; (7.i) 
which means that the levered firm and the unlevered firm belong to different “risk classes” from the very 
beginning and the deformation of their distributions runs with different rates. The skewness of the levered firm 
grows faster than the skewness of the unlevered firm, the log-value mean of the unlevered firm is always 
greater than the log-value mean of the levered firm, and this difference increases over time (see Eq. (3.i)-(3a.i) 
and comments to them). So, one can conclude that in EMM, the asset structure influences the mean firm value 
and mean returns rejecting MMP1. The same line of reasoning proves that two identical firms exercising 
different dividend policies have different mean values. The value of the firm paying more dividends will be 
lesser than the value of the other firm in the long run if the management of the firms can read market signals 
correctly and act consistently with this information. Our study (see Section 2) reveals a problem in reading and 
interpreting the market information. It is clear from the conclusion on MMP3 for GBM, P = δX, that in EMM, 
the mean value of the unlevered firm is more than the mean value of the levered firm in the presence of 
corporate taxes. However, the question of how taxes and dividends affect the mean value of the firm is most 
interesting for practice, and later we will present EMM-results for this problem.  

Proving a theorem is wrong, it is sufficient to demonstrate one counterexample for which this theorem 
does not hold, and GBM, P = δX, δ = const(t), 0 < δ < R0, is such a counterexample for MMPs. In general, all 
three MMPs are wrong and misleading. However, MMP1 is true for short-term deals (t << 1), when the mean 
firm value remains about constant, and one can neglect payments. The other two Propositions consider the time 
intervals longer than a year. For such intervals BSEs are essential, GBM always invalid, and MMP2 and 
MMP3 are never good. The failure of Modigliani-Miller Propositions casts a shadow of profound mistrust 
towards the method of their proof which is now generally accepted (Miller, 1988). 
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Merton (1974) “On the Pricing of Corporate Debt” 
To develop a Black-Scholes pricing model, Merton makes the following assumptions about the market and 

the firm: 
1. There are no transaction costs, taxes, or problems with the indivisibility of assets; 
2. There is a sufficient number of investors at the market who can buy or sell as much of an asset as they 

want; 
3. There is an exchange market for borrowing and lending at the same interest rate; 
4. Short-sales of all assets with full use of the proceeds are allowed; 
5. Trading in assets is continuous in time; 
6. The Modigliani-Miller Theorem of invariance (MMP1) that the value of the firm is invariant to its 

capital structure obtains; 
7. The term-structure is “flat” and its riskless rate of interest, r, the same for all time is known with 

certainty; 
8. The dynamics of the firm value, V, is described by the equation 

𝑑𝑑𝐷𝐷 = (𝛼𝛼𝐷𝐷 − 𝐶𝐶)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝐷𝐷𝑑𝑑𝑧𝑧 , (8a.i) 
𝛼𝛼 is the instantaneous rate of return on the firm per unit time, C is the total dollar payouts by the firm per unit 
of time to either its shareholders or liability-holders if positive, and it is the net dollars received by the firm if 
negative, 𝜎𝜎2 is the instantaneous variance of the return per unit of time, 𝑑𝑑𝑧𝑧 is a standard Gauss-Wiener 
process. Mark that A.6 (MMP1) is necessary to write A.8 in the form insensitive to the debt structure.  

Next, Merton introduces a security whose market value, Y = F(V, t), depends on the firm value and time 
and follows the equation 

𝑑𝑑𝑑𝑑 = (𝛼𝛼𝑑𝑑𝑑𝑑 − 𝐶𝐶𝑑𝑑)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑 (8b.i) 
where 𝛼𝛼𝑑𝑑 is the instantaneous rate of return on this security per unit time, CY is the total dollar payouts by the 
firm per unit of time to this security, 𝜎𝜎𝑑𝑑2 is the instantaneous variance of the return per unit of time, 𝑑𝑑𝑧𝑧𝑑𝑑 is a 
standard Gauss-Wiener process. Then the author forms a portfolio consisting of the firm, the particular security, 
and the riskless asset taken in such a proportion that the total investment in the portfolio is zero. Using the 
relations connecting the investments in the optimal portfolio with a riskless asset, Merton comes to the equation 

𝐹𝐹𝑑𝑑 + (𝑟𝑟𝐷𝐷 − 𝐶𝐶)𝐹𝐹𝐷𝐷 + 0.5𝜎𝜎2𝐷𝐷2𝐹𝐹𝐷𝐷𝐷𝐷 − 𝑟𝑟𝐹𝐹 + 𝐶𝐶𝑑𝑑 = 0 (9.i) 
which, as he claims, “must be satisfied by any security whose value can be written as a function of the value of 
the firm and time”. The author insists that this equation, supplied with two boundary conditions and an initial 
condition, completely specifies each security, distinguishing one security from another. Merton uses this 
equation for pricing zero-coupon bonds (𝐶𝐶𝑑𝑑 = 0, 𝐶𝐶 = 0) and presents a closed-form solution to the problem. 
He assumes that the firm can default only at the debt maturity and comes to the option-type condition 

𝐹𝐹(𝐷𝐷,𝑇𝑇) = max⁡(0,𝐷𝐷 − 𝐵𝐵) (10.i) 
where B is the debt value, V is the firm value at the debt maturity T. In these settings, the problem of 
zero-coupon bond pricing is mathematically identical to the option-pricing problem. No wonder that a solution 
of the bond-pricing problem is similar to the result of Black and Scholes. 

However, this result seems unsatisfactory because it does not explain why the values of two such different 
financial instruments as options and bonds behave so similarly. The option is a short-living financial instrument 
whose existence is guaranteed within its expiration period, making typically 60 or 90 days. The short expiration 
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time makes the option insensitive to changes in the value of the firm which has issued the corporate liability. 
Pricing the option, one can think of the firm value as making no effect on the option price. On the contrary, 
bonds are long-living financial instruments that theoretically can default with the firm at any moment. Their 
market position depends strongly upon the state of the firm. Merton expresses this dependence as a function 
relating the bond value Y and the firm value V, Y = F(V, t). 

A more careful analysis of Merton’s article shows that his solution could be accepted at best as a 
GBM-approximation of the bond-pricing problem. First, to write an equation of the firm value dynamics in the 
form neutral to the asset structure (A.8), the author assumes that MMP1 holds and the firm value does not 
depend on the asset structure (A.6). However, we have shown that MMP1 is correct in one case only when the 
firm’s payments are zero. Therefore, following Merton’s line of reasoning, one must remember that by A.6 the 
firm payments C are always zero, and A.8 is really GBM (5.i). The same is valid for CY and equation (8b.i). 

To relate the values of the debt and the firm, the author uses the mean-variance analysis of the optimal 
portfolio containing a riskless asset (Markowitz, 1952; Sharpe, 1964). The mean-variance portfolio theory is 
quasi-static (thus, strictly speaking, it does not meet A.5) and considers the assets in the portfolio as uniquely 
determined by their expected returns and variances. To meet this requirement, the firm’s returns must be 
normal, and the firm’s assets must follow GBM. So, while deriving his general equation (9.i) describing any 
security, Merton remains all the time within the GBM-frames, and we can consider this equation as the 
GBM-approximation of the firm’s security whose value depends on the firm value and time. 

To apply the developed technique to a particular security, Merton selects a zero-coupon bond because, 
within his formalism, this choice reduces the general security equation to the option-pricing equation (Black & 
Scholes, 1973). 

𝐹𝐹𝑑𝑑 + 𝑟𝑟𝐷𝐷𝐹𝐹𝐷𝐷 + 0.5𝜎𝜎2𝐷𝐷2𝐹𝐹𝐷𝐷𝐷𝐷 − 𝑟𝑟𝐹𝐹 = 0 (9a.i) 
The author removes terms with CY and C because there are no coupon payments (𝐶𝐶𝑑𝑑 = 0 ) and because 

the firm cannot issue any senior- or equivalent-rank claim on the firm before the debt maturity date (𝐶𝐶 = 0). 
(As one remembers, CY = C = 0 automatically because of A.6.) With condition (10.i) at the debt maturity and 
the assumption that the firm can default at this date only, Merton comes to the option-like solution for the price 
of zero-coupon bonds. The author mistakes the similarity of his findings and Black-Scholes’ results as an 
argument for the “option hypothesis” that pricing of any firm’s liability can be solved using the option-pricing 
technique. Merton insists that “while options are highly specialized and relatively unimportant financial 
instruments [. . .] the same basic approach could be applied in developing a pricing theory for corporate 
liabilities in general” (p. 449). This idea that close kinship between the firm and its liabilities on the one side, 
and the options on the other side, is helpful for pricing various securities, now prevails among financial 
economists. In a comprehensive review on the dynamic structural models (the authors call them the contingent 
claims models), Strebulaev and Whited (2012, pp. 4-5) state that “they (dynamic structural models) start with 
the acknowledgment that any claims on corporate cash flow streams are derivatives on underlying firm value or 
firm cash flows. This means that we can apply option pricing methods to value these claims.” The authors insist 
also that GBM can be used for describing the “stock price in the Black-Scholes model; firm value, firm cash 
flows, or prices of firm output and input in other corporate finance settings.” Sundaresan (2013, p. 21) asserts 
that “since its publication, the seminal structural model of default by Merton (1974) has become the workhorse 
for gaining insights about how firms choose their capital structure, a “bread-and-butter” topic for financial 
economists.” As one can see now, these praises are a bit excessive. 
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Leland (1994) “Corporate Debt Value, Bond Covenants, and Optimal Asset Structure” 
Leland (1994) starts his analysis of the corporate debt value accepting all Merton’s assumptions (A.1-A.8 

in the preceding section). As a descriptor of the dynamics of the firm value, V, Leland uses GBM  
𝑑𝑑𝐷𝐷/𝐷𝐷 = 𝜇𝜇𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑑𝑑𝐶𝐶, 𝐷𝐷(0) = 𝐷𝐷0 (4a.i) 

where 𝜇𝜇 is the expected rate of return, 𝜎𝜎2 is the instantaneous variance of the return per unit of time, 𝑑𝑑𝐶𝐶 is 
a standard Gauss-Wiener process. As we have shown, GBM is consistent with the assumptions A.1-A.8. To 
keep Eq.(4a.i) and Eq. (9.i) valid, Leland assumes (A.9) that “any net cash outflows associated with the choice 
of leverage must be financed by selling additional equity” (p. 1217). At that, this equity must be external to the 
firm because “bond covenants restrict firms from selling their assets.” It makes the whole problem settings 
quite unreal. 

Next, the author considers a claim of the value F(V, t) on the firm that continuously pays a non-negative 
coupon, C, per instant of time when the firm is solvent. The last phrase means that following (Black & Cox, 
1976), Leland introduces the default line in his problem settings. The development of the claim value is 
described by Merton’s general equation (9.i) in the form  

𝐹𝐹𝑑𝑑 + 𝑟𝑟𝐷𝐷𝐹𝐹𝐷𝐷 + 0.5𝜎𝜎2𝐷𝐷2𝐹𝐹𝐷𝐷𝐷𝐷 − 𝑟𝑟𝐹𝐹 + 𝐶𝐶 = 0 (9b.i) 
where r is the rate of return on the riskless asset (the interest rate). The author remarks that there is no 
closed-form solution for Eq. (9b.i) for arbitrary boundary conditions. Thus, he decides to look for the 
time-independent solution when 𝐹𝐹𝑑𝑑 = 0 and the claim value depends explicitly on the firm value only, F(V). 
In other words, he makes a marginal transition with 𝑑𝑑 → ∞. Black and Cox (1976), making the same transition, 
speak about finding a solution for the corresponding perpetuity. Unfortunately, this transition in both problems 
does not exist, and Eq. (9b.i) has no informative time-independent form. The value of the claim F(V, t) exists as 
far as the firm value exists. The default line is the absorbing boundary; if the firm value touches or crosses this 
line, the firm ceases to exist. According to properties of the diffusion motion, the probability that a diffusion 
process starting at the time t = 0 from a point M in the plane (V, t) will cross an arbitrary straight line, V = a, in 
that plane at a finite time T(M, a) is unit almost for sure: P(T(M, a) < ∞) = 1 a. s. (Shiryaev, 1998, pp. 302-303). 
If the line V = a is the default line, then the firm longevity is finite almost for sure. Because after time T(M, a), 
the firm and the claim on the firm do not exist, the time-independent version of Eq. (9b.i) is meaningless. 
Another detail, making Leland’s construction void, is that coupon payments C must be zero (because of 
Merton’s assumption A6, see Eq. 8a.i and 8b.i). Equation (9b.i) could be partially excused by its utility 
provided that it can generate the optimal debt leverage comparable with the levels of debt observed in practice, 
but it cannot. 

For marginal equation (9b.i), Leland derives closed-form solutions for the debt value D(V, C), the 
bankruptcy costs BC(V, α), the value of tax benefits associated with debt financing TB(V, τC), the total value of 
the firm 

v(V) = V + TB(V, τC) – BC(V, α), (11.i) 
and the value of the firm’s equity E(V). Here α is a share of the firm value lost in bankruptcy, and τ is the 
corporate tax rate. Equality (11.i) makes the quantitative foundation of the trade-off theory. Using it, Leland 
finds the optimal asset structure for the exogenous default boundary VB. He also introduces the idea of the 
endogenous default and evaluates the optimal value of the default boundary, maximizing the firm’s equity at 
the time of default if the firm management can choose the moment of default. The author gives the most 
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detailed analysis of the behavior of bond prices and optimal debt-equity ratios, the asset value, risk, taxes, 
interest rates, bond covenants, payout rates, and bankruptcy costs change. Unfortunately, all these results are 
dubious because they are constructed on a shaky foundation: the equation (9b.i) is not as general as Merton 
claims, the way of financing the coupon payments of the claim on the firm is unreal, the marginal transition 
providing for the closed-form solution to the problem is mathematically illegal, and the estimates of firm value, 
optimal capital structure, and endogenous default are founded on the false Modigliani-Miller Propositions. No 
wonder that the author comes to a bizarre conclusion that “leverage of about 75 to 90 percent is optimal for 
firms with low-to-moderate levels of asset value risk and moderate bankruptcy costs. Even firms with high 
risks and high bankruptcy costs should leverage on the order of 50 to 60 percent when the effective tax rate is 
35 percent” (p. 1230). The authors of the succeeding papers non-critically accepting the main construction of 
Leland’s model try to improve his final results by introducing various kinds of friction into his model. However, 
market friction cannot change the sign of the debt effect on the firm value from the positive one (MMP3) to the 
negative one (EMM; GBM, 𝑃𝑃 = 𝛿𝛿𝑑𝑑). A series of papers on the optimal capital structure based on GBM 
(Leland, 1994; Leland & Toft, 1996; Goldstein et al., 2001; Strebulaev, 2007; Titman & Tsyplakov, 2007; 
Hugonnier et al., 2015, etc.) convincingly demonstrate it. Their authors believe in the positive effect of debt on 
the firm value. They use different types of friction trying to adjust the optimal asset structure from the 
extremely high 90% closer to the asset structures observed in practice. 

Summing up our review of the three seminal articles that have determined the development of financial 
economics for a long time, we cannot help noticing their significant methodological difference. 
Modigliani-Miller Propositions represent a classic example of a thought experiment extensively used by 
antique Hellenistic philosophers (for example, Democritus and his atomic hypothesis), who introduce a set of 
hypothetic principles without testing them and, using these principles, try to explain the phenomena of the real 
world. Modigliani and Miller in their study suppose that the firm market is similar to the commodity 
(Marshallian) market, and the firm (mean) value is determined by the mean cash flows only. Assuming also 
that the levered and unlevered firms can get into one risk class and stay there long enough for the equilibrium 
distribution to settle down over the market, they come to their conclusions coined as the famous 
Modigliani-Miller Propositions. The esthetically and morally attractive non-arbitraging principle used in their 
proof made the Propositions looking even more plausible and convincing for the broad circles of economists for 
more than sixty years.  

To study the financial risks of the levered firm, Merton brilliantly introduces an axiomatic equation 
expressing the asset balance in the firm cash flows in stochastic conditions. The axiomatic approach, verified 
through extensive scientific observations, experiments, and practice, is, for example, widely used in modern 
physics. Merton’s axiomatic equation, correctly interpreted, could make a solid basis for a new stage in the 
financial economics development, but, alas, the author understands the firm’s payments too narrowly as the 
payments to debtholders and shareholders only. Second, Merton decides to keep the relationship of his model 
with the Modigliani-Miller Propositions. This relationship has no logical ground within the frames of his 
axiomatic approach, and it is absolutely unnecessary methodologically. As we have shown, Merton’s equation 
is consistent with MMPs for zero payments only, which reduces his model to GBM. The undisputable merit of 
GBM is that it often helps to achieve intuitively clear closed-form solutions, which appeal to many economists 
studying corporate financial risks. 
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On the contrary to the bright revolutionary papers of Modigliani and Miller (1958, 1961, 1963) and 
Merton (1974), Leland’s paper (1994) is a compilation by its nature. Following the ideas of most reputable 
economists (Black, Cox, Merton, Miller, and Modigliani), Leland constructs his model accumulating all the 
achievements and, alas, errors of his scholar predecessors (the GBM equation for the firm value and the 
“general” equation for the claim value from Merton, the MMP3 relation between the value of the levered firm 
and the value of unlevered firm in the presence of taxes, the time-independent equation for the claim value with 
the default line from Black and Cox). He also makes an unjustifiable assumption that “any net cash outflows 
associated with the choice of leverage must be financed by selling additional equity”. All these errors have 
brought Leland to his unrealistic conclusions. However, the width and depth of Leland’s analysis of the debt 
effect on the firm paying taxes and bankruptcy costs, his intuitively clear results have deeply impressed the 
economic community. Many attempts to improve Leland’s conclusions by introducing various types of friction 
into his model have been made since 1994, reporting new optimal debt levels close to the levels observed in 
practice. Because these papers replicate the errors of Leland’s model, their seeming success only increases the 
confusion and misunderstanding of the problem. 

Unfortunately, all three seminal investigations constituting the cornerstone of financial economics in the 
twentieth century and rewarded with the most prestigious academic prizes (it suffice to mention three Nobel 
Prizes) occur to be wrong and misleading. Below we consider the debt effect on the firm value, addressed the 
first time in MMP1 (1958), using a new approach based on EMM.  

Model Description 
The firm value, X, is described as 

𝑑𝑑𝑑𝑑 = (𝜇𝜇𝑑𝑑 − 𝑃𝑃)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝑑𝑑𝐶𝐶, 0)0( XX = , (1a.1) 

P = FC + DP + TAX + DIV, (1b.1) 
P(t) = P0 π(t), P(0) = P0> 0, π(0) = 1,  

where X(t) is the firm market value at the time t, constant μ is the rate of instantaneous expected returns on the 
firm per unit time, P is the business securing expenses (BSEs), dollars per unit time, including fixed costs FC, 
debt payments DP, corporate tax TAX, and dividends DIV; constant C2 is the instantaneous growth rate of the 
variance of returns, dW is a Gauss-Wiener process representing a cumulative effect of normal shocks. BSE is a 
piecewise continuous function of time.  

Equations (1.1) for random variable 𝑥𝑥 = ln⁡(𝑅𝑅𝑑𝑑/𝑃𝑃0) by Ito’s Lemma transform to  
𝑑𝑑𝑥𝑥 = 𝑅𝑅(1 − 𝜋𝜋(𝑑𝑑)𝑒𝑒−𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝐶𝐶𝑑𝑑𝐶𝐶, (2a.1) 

𝑥𝑥(0) = 𝑥𝑥0 = ln⁡(𝑅𝑅𝑑𝑑0/𝑃𝑃0), R = μ – C2/2. (2b.1) 
Writing a Fokker-Plank equation for Eq. (2.1), one comes to an equation for the probability distribution 

V(x, t), or x-distribution; Vy is a partial derivative over the variably y: 
𝐷𝐷𝑑𝑑 + 𝑅𝑅(1 − 𝜋𝜋(𝑑𝑑)𝑒𝑒−𝑥𝑥)𝐷𝐷𝑥𝑥 − 0.5𝐶𝐶2𝐷𝐷𝑥𝑥𝑥𝑥 + 𝑅𝑅𝜋𝜋(𝑑𝑑)𝑒𝑒−𝑥𝑥𝐷𝐷 = 0. (3.1) 

The initial condition is 
𝐷𝐷(𝑥𝑥, 0) = 𝐷𝐷0(𝑥𝑥;𝐻𝐻0,𝜎𝜎0

2), (4.1) 
𝐻𝐻0 = 〈𝑥𝑥(0)〉, 𝜎𝜎0

2 = 〈(𝑥𝑥 − 𝐻𝐻0)2〉, 
where 𝐷𝐷0(𝑥𝑥;𝐻𝐻0,𝜎𝜎0

2) is a normal distribution. There is also a boundary condition implying that the firm will 
default when its value falls to XD (0 < XD < X0) 
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V(DL, t) = 0,  𝐷𝐷𝐿𝐿 = 𝑙𝑙𝑐𝑐⁡(𝑅𝑅𝑑𝑑𝐷𝐷/𝑃𝑃0). (5a.1) 
If XD is an outstanding debt as it is in (Black & Cox, 1976), Eq. (5.1) makes an exogenous constraint. If 

the firm is free of debt, there is another constraint. The line x = 0 separates the business profitable in average 
from the business suffering losses in average. In this case, it is reasonable to introduce a soft endogenous 
boundary 

𝐷𝐷(0, 𝑑𝑑) = 0, (5b.1) 
and watch the probability of crossing the line 𝐷𝐷𝐿𝐿 = 0. Under the line, 𝑥𝑥 < 0, the firm loses its assets, and its 
activities are possible only if selling the firm’s equity. The nature of this boundary is close to the default line 
introduced in (Kim et al., 1993), where the firm defaults at this line if it runs out of cash. The boundary 
conditions (5a.1) and (5b.1) can be joined as 

𝐷𝐷(𝐷𝐷𝐿𝐿, 𝑑𝑑) = 0,𝐷𝐷𝐿𝐿 = max⁡[0, ln⁡(𝑅𝑅𝑑𝑑𝐷𝐷/𝑃𝑃0)] . (5.1) 
A solution of the boundary problem (3.1), (4.1), (5.1) is the firm log-value distribution; it is denoted 

as 𝐷𝐷� (𝑥𝑥, 𝑑𝑑),𝑥𝑥 ≥ 𝐷𝐷𝐿𝐿. If one knows an open-space solution 𝐷𝐷(𝑥𝑥, 𝑑𝑑),−∞ < 𝑥𝑥 < ∞, then a solution of the boundary 
problem can be written as  

𝐷𝐷�(𝑥𝑥, 𝑑𝑑) = 𝐷𝐷(𝑥𝑥, 𝑑𝑑) − 𝐷𝐷(2𝐷𝐷𝐿𝐿 − 𝑥𝑥, 𝑑𝑑). (6.1) 
The probability distribution 𝐷𝐷�(𝑥𝑥, 𝑑𝑑) is the conditional distribution referring to the firms still active at time 

t: 𝑥𝑥(𝜏𝜏) > 𝐷𝐷𝐿𝐿 for all times 0 ≤ 𝜏𝜏 ≤ 𝑑𝑑. The intensity of default probability DPINT is  

𝐷𝐷𝑃𝑃𝐷𝐷𝑁𝑁𝑇𝑇(𝑑𝑑,𝐷𝐷𝐿𝐿) = 2∫ 𝐷𝐷(𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑥𝑥𝐷𝐷𝐿𝐿
−∞  . (7.1) 

The first three conditional moments and the mean assets are calculated along with the distribution 𝐷𝐷�(𝑥𝑥, 𝑑𝑑) 

𝐻𝐻�(𝑑𝑑) = ∫ 𝑥𝑥𝐷𝐷�(𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑥𝑥∞
𝐷𝐷𝐿𝐿 , 𝐷𝐷�𝑎𝑎𝑟𝑟(𝑑𝑑) = ∫ (𝑥𝑥 − 𝐻𝐻�)2𝐷𝐷�(𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑥𝑥∞

𝐷𝐷𝐿𝐿  , (8.1) 

�̂�𝑆(𝑑𝑑) = ∫ (𝑥𝑥 − 𝐻𝐻�)3𝐷𝐷�(𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑥𝑥∞
𝐷𝐷𝐿𝐿  , 𝑀𝑀𝑑𝑑� (𝑑𝑑) = ∫ 𝑒𝑒𝑥𝑥𝐷𝐷�(𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑥𝑥∞

𝐷𝐷𝐿𝐿  

�̂�𝑆(𝑑𝑑) shows the development of the distribution asymmetry, and 𝑀𝑀𝑑𝑑� (𝑑𝑑) characterizes the mean value of the 
firm. One of the central objectives of the credit risk analysis is estimating the default probability over a chosen 
time interval (e. g. over the debt maturity) 

𝐷𝐷𝑃𝑃𝑅𝑅(𝑑𝑑0,𝑇𝑇) = ∫ 𝐷𝐷𝑃𝑃𝐷𝐷𝑁𝑁𝑇𝑇(𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑0+𝑇𝑇
𝑑𝑑0

, (9.1) 

here 𝑑𝑑0 is the time when the credit is issued, 𝑑𝑑0 + 𝑇𝑇 is the moment of credit maturity, and 𝐷𝐷𝑃𝑃𝑅𝑅(𝑑𝑑0,𝑇𝑇) is the 
default probability over the credit maturity period T starting at 𝑑𝑑0. Here we set 𝑑𝑑0 = 0.  

Effects of Debt on the Firm Development  
We consider the influence of debt on the firm development in the following settings. Suppose, there is a 

business promising the expected annual rate of return of 𝜇𝜇 percent on the firm’s assets, to enter which a firm must 
have assets of no less than 1000 dollar units. Suppose also that a firm has the necessary assets and joins this 
business immediately. Because this firm enters the business free of debt, we call it the unlevered firm. The unlevered 
firm pays its BSEs in the form of fixed costs, 𝑃𝑃𝑈𝑈 = 𝐹𝐹𝐶𝐶 =  𝑃𝑃0𝜋𝜋𝑈𝑈(𝑑𝑑). We do not include the corporate taxes and 
dividend payments into consideration at this stage, and we also suppose the continuous mode of BSE payments. 

Another firm identical to the first one in all respects but the size of assets has at its disposal the assets of 
1000-A units. To enter the business, the firm borrows at the market A units of capital for Tm years at the annual 
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interest rate of r percent (hereafter we refer to this firm as the levered one). Thus, the total debt of this firm is  
𝑑𝑑𝐷𝐷 = 𝑇𝑇𝑒𝑒𝑥𝑥𝑒𝑒(𝑟𝑟𝑇𝑇𝑚𝑚 ) , 

and the corresponding debt payments make 
𝐷𝐷𝑃𝑃 = (𝑇𝑇/𝑇𝑇𝑚𝑚 )𝑒𝑒𝑥𝑥𝑒𝑒(𝑟𝑟𝑇𝑇𝑚𝑚 )𝜋𝜋𝐷𝐷(𝑑𝑑) ≡  𝑃𝑃𝐷𝐷𝜋𝜋𝐷𝐷(𝑑𝑑), 

∫ 𝜋𝜋𝐷𝐷(𝑑𝑑)𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑚𝑚
𝑇𝑇𝑚𝑚

0 , 𝑃𝑃𝐷𝐷 = (𝑇𝑇/𝑇𝑇𝑚𝑚 )𝑒𝑒𝑥𝑥𝑒𝑒(𝑟𝑟𝑇𝑇𝑚𝑚 ) 
(1.2) 

where 𝜋𝜋𝐷𝐷(𝑑𝑑) is the debt payment schedule. The total BSEs for the levered firm now are 
𝑃𝑃𝐿𝐿 = 𝑃𝑃0𝜋𝜋𝑈𝑈(𝑑𝑑) + 𝑃𝑃𝐷𝐷𝜋𝜋𝐷𝐷(𝑑𝑑) = 𝑃𝑃0(𝜋𝜋𝑈𝑈 + 𝛽𝛽𝜋𝜋𝐷𝐷), (2.2) 

𝛽𝛽 = 𝑃𝑃𝐷𝐷
𝑃𝑃0

= 𝑇𝑇
𝑃𝑃0𝑇𝑇𝑚𝑚

𝑒𝑒𝑥𝑥𝑒𝑒(𝑟𝑟𝑇𝑇𝑚𝑚 ) . (3.2) 

Suppose that fixed costs for both levered and unlevered firms remain the same all the time, 𝜋𝜋𝑈𝑈(𝑑𝑑) ≡ 1, 
and the levered firm pays out its debt in equal installments each year, 𝜋𝜋𝐷𝐷(𝑑𝑑) ≡ 1. BSEs of the unlevered firm 
make  𝑃𝑃𝑈𝑈 = 𝑃𝑃0  , and the payments of the levered firm are  𝑃𝑃𝐿𝐿 = 𝑃𝑃0(1 + 𝛽𝛽). The probability distribution 
equation for the unlevered firm is (𝑥𝑥 = ln⁡(𝑅𝑅0𝑑𝑑/𝑃𝑃0)) 

𝐷𝐷𝑑𝑑 + 𝑅𝑅0(1 − 𝑒𝑒−𝑥𝑥)𝐷𝐷𝑥𝑥 − 0.5𝐶𝐶2𝐷𝐷𝑥𝑥𝑥𝑥 + 𝑅𝑅0𝑒𝑒−𝑥𝑥𝐷𝐷 = 0, (4u.2) 
and for the levered firm this equation is 

𝑈𝑈𝑑𝑑 + 𝑅𝑅0[1− (1 + 𝛽𝛽)𝑒𝑒−𝑥𝑥]𝑈𝑈𝑥𝑥 − 0.5𝐶𝐶2𝑈𝑈𝑥𝑥𝑥𝑥 + 𝑅𝑅0(1 + 𝛽𝛽)𝑒𝑒−𝑥𝑥𝑈𝑈 = 0, (4l.2) 
𝑅𝑅0 = 𝜇𝜇 − 𝐶𝐶2/2 .  

The initial condition for both equations is 
𝐷𝐷(𝑥𝑥, 0) = 𝑁𝑁(𝑥𝑥;𝐻𝐻0,𝜎𝜎0

2), 𝑈𝑈(𝑥𝑥, 0) = 𝑁𝑁(𝑥𝑥;𝐻𝐻0,𝜎𝜎0
2), (5.2) 

𝐻𝐻0 = 〈𝑥𝑥0〉 = 〈ln⁡(𝑅𝑅0𝑑𝑑0/𝑃𝑃0)〉, 𝜎𝜎0
2 = 〈(𝑥𝑥 − 𝐻𝐻0)2〉,  

where 𝑁𝑁(𝑥𝑥;𝐻𝐻0,𝜎𝜎0
2) is a normal function. 

The boundary conditions are 
𝐷𝐷(𝐷𝐷𝐿𝐿, 𝑑𝑑) = 0, 𝐷𝐷𝐿𝐿 = 0 ; (6u.2) 

𝑈𝑈(𝐷𝐷𝐿𝐿(𝑑𝑑), 𝑑𝑑) = 0, 𝐷𝐷𝐿𝐿(𝑑𝑑) = max⁡[0, ln⁡(𝑅𝑅0𝑑𝑑𝐷𝐷(𝑑𝑑)/𝑃𝑃0)] , (6l.2) 
𝑑𝑑𝐷𝐷(𝑑𝑑) = 𝑑𝑑𝐷𝐷(0)(1− 𝑑𝑑/𝑇𝑇𝑚𝑚 ), 0 ≤ 𝑑𝑑 ≤ 𝑇𝑇𝑚𝑚 , (7.2) 

𝑑𝑑𝐷𝐷(𝑑𝑑) = 0 , 𝑑𝑑 > 𝑇𝑇𝑚𝑚  .  
Equations (4u.2), (5.2), and (6u.2) describes the development of the unlevered firm, while the equations 

(4l.2), (5.2), and (6l.2) describes the development of the levered firm. For the analysis of the debt effects we 
take a good steady firm with H0 = 2.0, 𝜎𝜎2 = 0.02; other model parameters: R0 = 0.10, C2 = 0.01. 

We start our study with two firms taking a small-size loan of A = 50 units with the debt maturities Tm = 3 
(the initial debt leverage is 0.0576) and Tm = 5 years (the initial debt leverage is 0.0633), and compare the 
results of these levered firms to each other, and to the results of the unlevered firm. It is easy to see that for 
maturity times Tm = 3, 5, the default line DL = 0. We present the results in Figures 1-11. The slope of the 
log-value mean H_OS(t) shows the effective rate of return on the firm’s assets after all payments (the suffix 
_OS says that the moment refers to the open-space problem, while the suffix _BP shows that the moment refers 
to the boundary problem). For example, the effective rate of return for the unlevered firm in Fig. 1 makes 0.087. 
As one can see in Fig. 1, the log-value mean of the levered firm has a lesser slope during the first three years of 
the firm development with higher payments in this period. Then, with the payments returning to the level of the 
unlevered firm, the slope of H_OS(t) of the levered firm rises to the slope of H_OS(t) of the unlevered firm. 
The mean H_OS(t) of the levered firm remains lesser than the H_OS(t) of the unlevered firm for all the time.  
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Figure 1. The log-value means H_OS(t)-H0 for the unlevered firm (line 1) and for the levered firm (line 2), A = 50, Tm = 3. 

 

 
Figure 2. The variances VAR_OS(t)-VAR0 for the unlevered firm (line 1) and for the levered firm (line 2), A = 50, Tm = 3. 
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Figure 3. Skewness SK_OS(t) for the unlevered firm (line 1) and for the levered firm (line 2), A = 50, Tm = 3. 

 

 
Figure 4. The relative increase in the mean firm’s assets MX_OS(t)-1 for the unlevered firm (line 1) and for the levered 
firm (line 2), A = 50, Tm = 3. 
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Figure 5. The intensities of default probability DPINT(t) for the unlevered firm (line 1) and for the levered firm (line 
2), A = 50, Tm = 3. 

 

 
Figure 6. The default probabilities DPR(t) for the unlevered firm (line 1) and for the levered firm (line 2), A = 50,   
Tm = 3. 
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the distribution skewness demonstrates the same behavior: SK_OS(t) of the levered firm grows faster during the 
debt payment period than SK_OS(t) of the unlevered firm. Then the growth rate declines, but SK_OS(t) of the 
levered firm remains greater by absolute value than SK_OS(t) of the unlevered firm. 

Due to the choice of the firms (H0 = 2.0, 𝜎𝜎0
2 = 0.02, which means good, steady firms), the default 

probability and its intensity for the levered firm is about 10-15 times greater than the corresponding variables of 
the unlevered firm, although still low. The general conclusion from the graphs is that the debt does affect the 
firm development, and its effect is negative. The distribution variance, skewness, default probability and its 
intensity grow faster than the similar variables of the unlevered firm. On the other side, the log-value mean and 
mean assets grow slower than the same variables of the unlevered firm. 

A series of pictures in Figures 7-12 demonstrate effects of debt maturity for the same debt on firm 
development. The longer the debt maturity, the heavier the pressure on the firm survival (see Fig. 8, 9, 11, 12). 
One can explain this phenomenon by a durable exposure of the firm to the elevated BSEs. The log-value mean 
and the mean assets make an exception because when both firms complete paying out their debts, they develop 
along the same line (Fig. 7, 10). It comes of the small debt value (or the low debt leverage). As we will see later, 
the graphs of these variables for bigger loans split for different maturities. The general conclusion about the 
effect of a small-size debt on the firm development is: (a) the debt makes it possible for the firm to enter the 
business, which otherwise would be unachievable for the firm, (b) the small-size debt affects slightly negatively 
the two most essential firm variables (the mean assets and default probability) compared to the same variables 
of the unlevered firm, (c) the shorter the debt maturity, the better for the firm survival, (d) one should recognize 
the total effect of small-size debt as beneficial for the firm. 

 

 
Figure 7. The log-value mean H_OS(t)-H0 for Tm = 3 (line 1) and 5 years (line 2); A = 50. 
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Figure 8. The variance VAR_OS(t)-VAR0 for maturity Tm = 3 (line 1) and 5 years (line 2); A = 50. 

 

 
Figure 9. The distribution skewness SK_OS(t) for maturity Tm = 3 (line 1) and 5 years (line 2); A = 50. 
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Figure 10. The relative mean MX_OS(t)-1 for Tm = 3 (line 1) and 5 years (line 2); A = 50. 

 

 
Figure 11. The intensity of default probability DPINT(t) for Tm = 3 (line 1) and 5 years (line 2); A = 50. 
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Figure 12. The default probability DPR(t) for Tm = 3 (line 1) and 5 years (line 2); A = 50. 
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skewness in Fig. 16 at the interval [0, 15]. When the payments decline to the levels specific for the unlevered 
firm, then the slope of the function H_OS(t) returns to its unlevered value (Fig. 14), and the growth rates of the 
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Figures 18-23 show how debt maturity influences the firm. The general conclusion on that influence is this: 
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mean assets (compare Fig. 10 and 21) and the higher risk of the default generated by medium-size debt (see Fig. 
12 and 23). Again, we have the evidence that the debt affects the firm, that influence is negative, and the greater 
the debt, the lesser the commercial achievements of the project (leaving aside that without this debt, the firm 
will not be able to enter the business). The medium-size debt can be recognized as conditionally beneficial for 
the firm because of the higher default probabilities intrinsic to this debt level. 
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Figure 13. The default line DL(t) of the levered firm with parameters A = 150, Tm = 15, tDL0 = 8.671.  

 

 
Figure 14. The log-value mean H_OS(t)-H0 for the unlevered firm (line 1) and for the levered firm (line 1) and for the 
levered firm (line 2), A = 150, Tm = 15. 
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Figure 15. The variance VAR_OS(t)-VAR0 for the unlevered firm (line 1) and for the levered firm (line 2), A = 150, Tm 
= 15. 

 

 
Figure 16. Skewness SK_OS(t) for the unlevered firm (line 1) and for the levered firm (line 2), A = 150, Tm = 15. 
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Figure 17. The firm’s mean relative assets MX_OS(t)-1 for the unlevered firm (line 1) and for the levered firm (line 2), 
A = 150, Tm = 15. 

 

 
Figure 18. The log-value mean H_OS(t)-H0 for Tm = 10 (line 1)and 15 years (line 2); A = 150. 
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Figure 19. The variance VAR_OS(t)-VAR0 for Tm = 10 (line 1) and 15 years (line 2); A = 150. 

 

 
Figure 20. The skewness SK_OS(t) for Tm = 10 (line 1) and 15 years (line 2); A = 150. 
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Figure 21. The mean relative assets MX_OS(t)-1 as a function of time for Tm = 10 (line 1) and 15 years (line 2); A = 
150. 

 

 
Figure 22. The intensity of default probability DPINT(t) for Tm= 10 (line 1) and 15 years (line 2); A = 150.  
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Figure 23. The default probability DPR(t) for Tm = 10 (line 1) and 15 years (line 2); A = 150. 

 

 
Figure 24. The time-dependence of the default line DL(t) for the levered firm with parameters A = 200, Tm= 7, tDL0 = 
3.695. Compare this graph with the graph in Fig. 13 describing the levered firm with parameters A = 150, Tm = 15, 
tDL0 = 8.671. 
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years is negative, and the firm loses its assets. The effect of the integral loss one can see in comparison with the 
gains of the firm in case A (Fig. 27). After completing the debt payments and returning to the rate of BSE 
payments specific for the unlevered firm, the effective return assumes the value of 0.083. One can conclude 
from Figures 24-29 that it is not debt size (or the debt leverage) that makes the principal effect on firm survival, 
but its BSEs: the greater BSEs, the lesser the survivability, all other parameters equal. It is easy to see that 
project B (A = 200, Tm = 7) is commercially ineffective because the risk of default and the loss of control over 
the firm is unacceptably high (40%, Fig. 29).  

 

 
Figure 25. The log-value meanH_OS-H0 for Case A (line 1) and Case B (line 2). 

 

 
Figure 26. The varianceVAR_OS-VAR0 for Case A (line 1) and Case B (line 2). 
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Figure 27. The mean relative assets MX_OS(t)-1 for Case A (line 1) and Case B (line 2). 

 

 
Figure 28. The intensities of default probability DPINT(t) for Case A (line 1) and Case B (line 2). 
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Figure 29. The default probability DPR(t) for Case A (line 1) and Case B (line 2). 

 

Now we consider effects of big-size loans A = 250, Tm = 10 and 15 years; the initial debt leverage makes 
0.3547 and 0.4137, correspondingly. The other problem parameters remain the same: R0 = 0.10, C2 = 0.01, 
𝜎𝜎2 = 0.02.  

 

 
Figure 30. The default line DL(t)for the levered firm with parameters A = 250, Tm = 10, tDL0 = 6.749. 
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Figure 31. The log-value mean H_OS(t)-H0 for the unlevered firm (line 1) and for the levered firm (line 2), A = 250, 
Tm = 10. 

 

 
Figure 32. The variance VAR_OS(t)-VAR0 for the unlevered firm (line 1) and for the levered firm (line 2), A = 250,  
Tm = 10. 
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project is about doubling the firm’s assets in 20 years (Fig. 34) under the risk of default of 90% (Fig. 35) which 
is, of course, absolutely unacceptable. One must recognize the project with the initial debt leverage of 35.5% as 
a commercial failure. The pictures in Figures 35-37 represent the comparative development of the firms with 
the net debt A = 250 and two debt maturities Tm = 10 and 15 years. As before in the cases of small- and 
medium-size debts, it is seen that the longer the debt maturity, the worse for the firm survival, and the project 
with Tm = 15 (the initial debt leverage 41.4%) is also a failure.  

 

 
Figure 33. The skewness SK_OS(t) for the unlevered firm (line 1) and for the levered firm (line 2), A = 250, Tm = 10. 

 

 
Figure 34. The mean assets MX_OS(t)-1 for the unlevered firm (line 1) and for the levered firm (line 2), A = 250,   
Tm = 10. 
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Figure 35. The default probability DPR(t) for Tm = 10 (line 1) and 15 years (line 2); A = 250. 

 

 
Figure 36. The log-value means H_OS(t)-H0 for Tm = 10 (line 1) and 15 years (line 2); A = 250. 
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maturity and paying corporate taxes. Because of the relation: the higher the payments, the lesser the firm 
stability, the inclusion of corporate taxes in EMM will decrease the safe debt leverage. We will consider the 
effect of taxes and dividends on the levered firm survival later. As one can see, default is the natural 
consequence of heavy debt. On the contrary, Leland needs the cost of bankruptcy in his model to bring the firm 
to default because, in his model, debt produces a positive effect on the levered firm development (see Eq. 10i). 

 

 
Figure 37. The mean assets MX_OS(t)-1 for Tm = 10 (line 1) and 15 years (line 2); A = 250. 

 

 
Figure 38. The log-value means H_OS(t)-H0 (line 1) and H_BP(t)-H0 (line 2), A = 250, Tm = 10. 
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Figure 39. The open-space variance VAR_OS(t)-VAR0 (line 1) and the boundary-problem variance VAR_BP(t)-VAR0 

(line 2), A = 250, Tm = 10. 
 

 
Figure 40. The open-space skewness SK_OS(t) (line 1) and the boundary-problem skewness SK_BP(t) (line 2), A = 
250, Tm = 10. 
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Figure 41. The open-space mean assets MX_OS(t)-1 (line 1) and the boundary-problem mean assets MX_BP(t)-1 (line 
2), A = 250, Tm = 10. 

 

 
Figure 42a. The boundary-problem distribution FBP(x, t), t = 0 (1), 4 (2), 8 (3), 12 (4) for A = 250, Tm = 10. 
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Figure 42b. The boundary-problem distribution FBP(x, t),t = 12 (1), 16 (2), 20 (3) for A = 250, Tm = 10. 

 

 
Figure 42c. Comparison of the boundary-problem distribution FBP(x, t) (line 1) and the open-space distribution F(x, t) 
(line 2) for A = 250, Tm= 10, t = 20. 
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problem numerically coincide with each other. Considering big-size debt, one can see (Fig. 38 and 41) that the 
log-value means H_OS(t) and H_BP(t) and mean assets MX_OS(t) and MX_BP(t) coincide in both models and, 
therefore, are interchangeable. On the contrary, the variances VAR_OS(t) and VAR_BP(t) and skewness 
SK_OS(t) and SK_BP(t) differ significantly from each other. To recognize the meaning of this fact, one must 
remember that the open-space statistical moments are not observable, one can observe and measure only the 
boundary problem moments characterizing the ensemble of firms active at the time of observation. On the other 
hand, the boundary problem distribution does not show the default probability and its intensity directly. To find 
this probability, one must address the open-space problem conjugated with this boundary problem. The whole 
procedure of finding the intensity of the firm default probability could be like this. At the time t, the firm 
management estimates by direct measurement four statistical moments for the firm assets: the log-value mean, 
mean assets, variance, and skewness. Then they compare these measured variables with the same variables 
calculated for the boundary problem. The calculated statistical moments, close enough to the measured 
moments, indicate the theoretical boundary problem distribution at the time t. Addressing the corresponding 
open-space distribution, the management gets the intensity of default probability they want to know.  

The probability distributions for the boundary problem and the open space problem are presented in Fig 
42a, b, c. The described procedure produces the scientifically substantiated default probabilities, which casts a 
shadow of deep mistrust on the current methods of estimating the firm state and its perspectives. So, we see that 
the market sends objective signals on the state of the firms, but the traders, mislead by the GBM-based theories, 
cannot read and interpret those signals correctly. 

Buying New Technology on Credit  
So far we consider the case when the firm takes a loan to join a business with given parameters such as the 

minimal asset value, expected return, fixed costs, and volatility. From the examples studied above, one can 
conclude that (1) the debt does affect the firm development, (2) this influence is negative, (3) the greater the 
debt leverage, the worse for the firm. At that, we have learned that the factor most frustrating the firm 
development is debt payments. A natural question arises if it is possible for the debt to make a positive effect 
on the firm development. 

Here we consider the case when a debt is used to modernize the firm’s technology, and that technology 
increases the firm’s expected returns. Suppose that the initial rate of the firm’s return is 𝜇𝜇0 percent, and, after 
introducing the new technology, it becomes 𝜇𝜇 = 𝜇𝜇0 + ∆𝜇𝜇, ∆𝜇𝜇 > 0. To introduce the new technology, the firm 
must have at least 1000 dollar units of assets, but the firm’s assets make only 1000-A units, therefore, the firm 
borrows at the market A units of capital for Tm years at the annual rate of r percent (we refer to this firm as the 
levered one). Suppose also that the new technology does not increase the firm’s fixed costs and needs Tr years 
after taking the loan to become effective and increase the expected rate of return from 𝜇𝜇0 to 𝜇𝜇, Tr < Tm. 

The probability distribution in the first period of the firm development, 0 ≤ 𝑑𝑑 ≤ 𝑇𝑇𝑟𝑟 , follows the equation 
𝑈𝑈𝑑𝑑 + 𝑅𝑅0[1− (1 + 𝛽𝛽)𝑒𝑒−𝑥𝑥]𝑈𝑈𝑥𝑥 − 0.5𝐶𝐶2𝑈𝑈𝑥𝑥𝑥𝑥 + 𝑅𝑅0(1 + 𝛽𝛽)𝑒𝑒−𝑥𝑥𝑈𝑈 = 0, 

𝑅𝑅0 = 𝜇𝜇0 − 𝐶𝐶2/2. 
(1.3) 

The initial condition is 
𝐷𝐷(𝑥𝑥, 0) = 𝑁𝑁(𝑥𝑥;𝐻𝐻0,𝜎𝜎0

2), 𝑈𝑈(𝑥𝑥, 0) = 𝑁𝑁(𝑥𝑥;𝐻𝐻0,𝜎𝜎0
2), 

𝐻𝐻0 = 〈𝑥𝑥0〉 = 〈ln⁡(𝑅𝑅0𝑑𝑑0/𝑃𝑃0)〉, 𝜎𝜎0
2 = 〈(𝑥𝑥 − 𝐻𝐻0)2〉, 

(2.3) 

where 𝑁𝑁(𝑥𝑥;𝐻𝐻0,𝜎𝜎0
2) is a normal function. 
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The boundary conditions are 
𝑈𝑈(𝐷𝐷𝐿𝐿(𝑑𝑑), 𝑑𝑑) = 0, 𝐷𝐷𝐿𝐿(𝑑𝑑) = max⁡[0, ln⁡(𝑅𝑅0𝑑𝑑𝐷𝐷(𝑑𝑑)/𝑃𝑃0)] , (3a.3) 

𝑑𝑑𝐷𝐷(𝑑𝑑) = 𝑑𝑑𝐷𝐷(0)(1− 𝑑𝑑/𝑇𝑇𝑚𝑚 ), 0 ≤ 𝑑𝑑 ≤ 𝑇𝑇𝑚𝑚 , 
𝑑𝑑𝐷𝐷(𝑑𝑑) = 0 , 𝑑𝑑 > 𝑇𝑇𝑚𝑚 . 

(3b.2) 

In the second period of the firm development, 𝑇𝑇𝑟𝑟 < 𝑑𝑑 ≤ 𝑇𝑇𝑚𝑚 , the equation changes for 
𝑈𝑈𝑑𝑑 + 𝑅𝑅[1 − (1 + 𝛽𝛽)𝑒𝑒−𝑥𝑥]𝑈𝑈𝑥𝑥 − 0.5𝐶𝐶2𝑈𝑈𝑥𝑥𝑥𝑥 + 𝑅𝑅(1 + 𝛽𝛽)𝑒𝑒−𝑥𝑥𝑈𝑈 = 0, 

𝑅𝑅 = 𝜇𝜇 − 𝐶𝐶2/2 , 𝜇𝜇 = 𝜇𝜇0 + ∆𝜇𝜇,∆𝜇𝜇 > 0 . 
(4.3) 

In the third period of the firm development, 𝑇𝑇𝑚𝑚 < 𝑑𝑑 ≤ 𝑇𝑇, the equation becomes 
𝑈𝑈𝑑𝑑 + 𝑅𝑅(1 − 𝑒𝑒−𝑥𝑥)𝑈𝑈𝑥𝑥 − 0.5𝐶𝐶2𝑈𝑈𝑥𝑥𝑥𝑥 + 𝑅𝑅𝑒𝑒−𝑥𝑥𝑈𝑈 = 0, (5.3) 

where T is the final point in the period of observation [0, T], 0 < 𝑇𝑇𝑟𝑟 ≤ 𝑇𝑇𝑚𝑚 < 𝑇𝑇. The initial condition for the 
second and third stages of the firm development is the correspondent probability distribution in the end of the 
previous period. 

We study the development of a firm with the big-size debt of A = 250 units, maturity time Tm = 15, interest 
rate 0.05; the total debt XD0 = 529.25. The firm parameters for this case are: R0 = 0.1, C2 = 0.01, 𝜎𝜎0

2 = 0.02, 
the initial leverage 0.4137, fixed costs P0 = 13.400 dollar units a year, the ratio of debt payments to fixed costs 
β = 2.633. The default line as a function of time is shown in Fig. 43. 

 

 
Figure 43. The default line DL(t) for the levered firm with parameters A = 250, Tm = 15, tDL0 = 11.204. 
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results of modeling are presented in Figures 44-46.  
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effect of the longer negative tail acquired by the levered firm during the debt payment. This tail brings the firm 
within twenty years to default with the probability close to unit (Fig. 45, line 1). The default probability of the 
unlevered firm one can see in Fig. 6. The firm, which expected return increases from 0.10 to 0.12 by 
introducing new technology, has the effective rate of return close to zero in the interval of debt maturity; after it, 
its effective rate of return increases to 0.100 (line 2). Line 3 shows the change in the effective rate of return for 
the firm whose expected rate of return has changed from 0.10 to 0.14. As one can see, the effective return is 
positive and increasing in the interval between Tr= 5 and Tm = 15 achieving the rate of 0.138 after discharging 
the debt. This effective rate of return is a good deal more than the effective return of the unlevered firm, 
proving the effectiveness of the new technology. Unfortunately, financial risks related to the asset borrowing 
(see Fig. 45, line 3) make this option of the firm development unacceptable. Mark that the difference between 
the expected rate of return, which does not take the fixed costs into account, and the effective rate of return, 
which does, is rather small. We shall discuss this phenomenon later. The firm corresponding to line 4 develops 
more energetically than the firm corresponding to line 3. The effective rate of returns after the debt is paid out 
makes 0.177, which is more than the expected rate of return (0.16). The effective rate of return after the debt 
maturity in curve 5 is 0.216 while the expected rate of return makes only 0.18. Compared to the unlevered case, 
it seems that the firm development in cases 3-5 does not feel the effect of fixed costs at all! Fig. 45 (lines 2-5) 
shows us that the high expected rate helps soften the negative effect of debt the more, the greater is the rate 
increment. If one considers the growth of the default probability after debt maturity, one can see that line 5 rises 
from DPR(15) = 0.4076 to DPR(24) = 0.4675, increment ∆DPR = 0.060, line 4 rises from DPR(15) = 0.4560 to 
DPR(24) = 0.5597, increment ∆ DPR = 0.1037, line 3 grows from DPR(15) = 0.5121 to DPR(24) = 0.6925, 
increment ∆DPR = 0.1804, and line 2 grows from DPR(15) = 0.5751 to DPR(24) = 0.8894, increment ∆DPR = 
0.3143. So, one concludes that the period, when the firm deals with its debt, makes a demanding test to the firm 
with a high risk of default, but when the debt is paid out, the increment of default probability decreases rather 
fast from 0.3143 (line 2) to 0.060 (line 5). Taking into account graphs in Fig. 44, one concludes that cases 4 and 
5 presenting some calculated risk, nevertheless, give a good strategy for the firm development. At that, the 
lesser the debt, the safer the transformation to the new technology, the higher results the firm can achieve for 
the same time interval. With EMM, the firm management can plan and figure out strategic decisions choosing 
new technologies for the next steps of the firm development. 

It is interesting to note, that a similar beneficial effect of the increasing expected returns with analogous 
consequences for the firm value and firm survival can be produced by moderate inflation, but, of course, on a 
much lesser scale. See for details (Shemetov, 2020b). 

Now let us consider why the effective rate of return is close or even surpasses the expected rate of return. 
To answer this question, mark that the effective rate of return is the mean drift rate of the probability 
distribution. This drift consists of three components: the exogenous drift, determined by the expected rate of 
return, the backward drift, determined by negative distribution skewness, and the diffusion at the right end of 
the asymmetric distribution. For the GBM-distribution, the mean drift consists of the exogenous drift only 
because the distribution remains symmetric all the time. Graphs DPINT(t), which is proportional to the area of 
the tail under the default line (see Eq. 7.1), give some ideas about the development of the distribution’s 
negative tail. For small-size debts, when the default line is zero (DL = 0), DPINT(t) and tail grow gradually and 
monotonically (Fig. 5, 11), creating negative skewness and slowing down the positive drift of the distribution. 
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Because of the long negative tale of the distribution, the gradient at the distribution’s right end produces an 
additional positive drift to the distribution. This drift compensates to some extent for the negative effect of the 
tail. The cumulative effect of all those mechanisms explains why the effective return is less than the expected 
rate of return for small-size debts. The influence of the distribution deformation grows with the firm’s 
payments. 

 

 
Figure 44. The log-value mean H_OS(t)-H0. UF-line describes the behavior of the unlevered firm, lines 1-5 describes 
the levered firms (A = 250, Tm = 15) with different expected returns achieved by introducing the new technology: R = 
0.10 (1), 0.12 (2), 0.14 (3), 0.16 (4), 0.18 (5).  
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Figure 45. The mean assets MX_OS(t)-1. Lines 1-5 describes levered firms (A = 250, Tm = 15, H0 = 2.0) with different 
expected returns achieved by introducing a new technology: R = 0.10 (1), 0.12 (2), 0.14 (3), 0.16 (4), 0.18 (5). UF-line 
represents the development of the unlevered firm, R = 0.10, H0 = 2.0. 
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Figure 46. The default probability DPR(t). Lines 1-5 describes levered firms (A = 250, Tm = 15, H0 = 2.0) with 
different expected returns achieved by introducing a new technology: R = 0.10 (1), 0.12 (2), 0.14 (3), 0.16 (4), 0.18 
(5).  
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with a constant rate of expected returns. This effect also speeds up the right-end diffusion, increasing the 
effective rate of return. As a consequence, the effective rate of return surpasses the expected rate of return, and 
the more, the higher the increment of the expected rate of return. 

Conclusion 
We have shown that three classic works considering the effects of debt on the firm value and firm survival, 

namely, Modigliani-Miller Propositions (1958, 1961, 1963), Merton (1974), and Leland (1994) are wrong. 
Their main mistake is ignoring the firm’s compulsory payments (business securing expenses, BSEs). We 
suggest the model taking account of BSEs (the Extended Merton model, EMM) and apply it to the analysis of 
debt effect on the firm value and its survival. Our conclusions are 

(1) the debt does affect the firm value and its survival,  
(2) this influence is negative, diminishing the firm value and its chances to survive,  
(3) the pressure of the debt increases as the debt grows, and the greater the debt, the sooner the default 

comes, 
(4) the main factors, depressing the levered firm, are its high debt payments added to BSEs of the identical 

unlevered firm and the length of debt maturity. 
The debt effect on firm survival is like slow poisoning: in the beginning, it is negative but tolerable; 

however, as time runs, the situation becomes more and more critical, even fatal. Therefore, all attempts to find 
the optimal debt leverage using the trade-off theory, based on the geometric Brownian model (GBM) and 
believing after MMP3 in the positive effect of debt on the after-tax firm value, are fruitless; they look like the 
early medieval chasing after the Holy Grail.  

Nevertheless, the debt can be beneficial for the firm if the firm takes a loan to modernize its technology (a 
typical example is the industrialization of the developing countries). The model helps to estimate the 
probability of success in this modernization for different business conditions. With these probabilities, the firm 
management can choose the technology most suitable for the firm in its specific conditions. 

We have also revealed a serious problem for the firm management in proper reading the market signals 
concerning their firm and using this information to control the firm effectively. Mislead by various forms of 
GBM-based models, the firm management cannot adequately estimate the state of the firm, which negatively 
influences their control decisions. 

Summing up, one can say that the wrong economic theory is dangerous because it misguides managers in 
making practical decisions about their firms. Incorrect decisions lead to unjustifiable extra losses up to 
bankruptcies, impeding the development of the national economy. Wrong theories also mislead students 
forming a distorted picture of economic relationships in their heads with obvious long-term consequences for 
the economic theory and business practice. 

It is worth noting that economics is, maybe, the only science among the mathematical sciences of the 
20th-21st centuries in which erroneous theories live for so long. Modigliani-Miller Propositions are considered 
as correct over sixty years (since 1958), Merton’s theory seems true for about fifty years (since 1974), Leland’s 
theory stays for almost thirty years (1994). Why errors of individual researches are not timely corrected by the 
scientific community and continue polluting the economic theory and misguiding business for so long? What 
improvements must be made to the organization of economic studies to prevent repeating such things in the 
future? We think that these questions must make the subject of broad professional discussion. 
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