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Abstract: We propose the following conjecture on o (n) the sum-of-divisors function:

log(e’nloglogn — o (n))

will increase strictly
log(e’nloglogn)

and converge to 1 when n runs from the colossally abundant numbers to infinity. This conjecture is a sufficient condition for the

Riemann hypothesis by Robin’s theorem, and it is confirmed forn from 10* up to 10"*"®. Further, we present two additional

conjectures that are related to Robin’s theorem.
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1. Introduction

The Riemann hypothesis (RH) has numerous
reformulations. In this paper, we investigate the
reformulation presented by Robin in which RH is
characterized by the sum-of-divisors function as
follows [6].

Theorem 1.1 Let o(n) be the sum-of-divisors
function, and let y be the Euler constant.

The Riemann hypothesis is equivalent to the
following inequality (we call it Robin’s inequality).

o(n)<e’nloglogn forall n>5040

Previously, Gronwall identified a related
asymptotic property of the sum-of-divisors function as
follows [3].

Theorem 1.2 lim o) _o

n->= n log log n
By Theorem 1.2,

e’nloglogn—o(n) 1T o(n)

lim _
n—=e”nloglog n

- e’nloglogn

=1-1=0

On the other hand, from numerical data, it seems

thatlime”’nloglogn—o(n) = .
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If o(n)<e’nloglogn does not hold for some n, n

()

must  satisfy >e’ loglogn . Hence, we are

()

interested in the case where ——= is relatively large.

First, we introduce some definitions and theorems

related to —~ G(n)
Definition 1.1 A natural number n is called
superabundant if, forallm<n, o(m) < @ .

A list of superabundant numbers can be found in
The On-Line Encyclopedia of Integer Sequences. The
15 smallest superabundant numbers are listed below
[5].

Example 1.1
numbers

1,2,4,6,12,24,36, 48, 60,120,180, 240, 360, 720, 840

The prime decomposition of a superabundant
number has the following remarkable characteristics
[1].

Theorem 1.3 If n is superabundant and not equal
to 1, then there exist natural numbers k and

The 15 smallest superabundant

k
a,a,,..,a such that n=]](p)*, where pi is the
i=1

i -th prime number anda, >a, >...>a,.
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Moreover, a, is equal to 1 unless n is 4 or
36 .

By Theorem 1.3, the prime decomposition of a
superabundant number n can be uniquely expressed by
finite sequences of length ai;, which will be explained
in the next section. The time required to calculate
o(n) in this manner is short.

The following condition is
superabundant.

Definition 1.2 A natural number n is called
colossally abundant if and only if there exists &>0

o) | o)

nl+z: k1+g

“stronger” than

such that for all k>1,

The 15 smallest colossally abundant numbers are
listed below [5].

Example 1.2 The 15 smallest colossally abundant
numbers
2,6,12,60,120, 360, 2520, 5040, 55440, 720720,1441440,
4324320, 21621600, 367567200, 6983776800

An algorithm for generating colossally abundant
numbers is described in [2] and [6]. All colossally
abundant numbers are also superabundant, but the
converse is not true. Robin proved that if a natural
number n ( >5040, not colossally abundant) does not
satisfy Robin’s inequality, then neither at least one of
the two colossally abundant numbers that put n
between [6]. Therefore, to determine whether RH

holds, it is sufficient to confirm whether Robin’s
inequality holds with regard to colossally abundant
numbers.

2. Noe Representation of Superabundant
Numbers

By Theorem 1.3, the prime decomposition of a
superabundant numbern greater than 1contains all
primes less than or equal to some prime, and the
power of each prime decreases monotonously tol or
2. Hence, it is uniquely expressed by finite sequences
as follows.

Definition 2.1 The prime decomposition of a
superabundant number n greater than 1 is uniquely
expressed by finite sequences {c,c,,...,C,...,C.} .
which we refer to as the Noe representation.

The rules of the Noe representation are as follows.

1)ci is 0 or prime. If ciis prime, it is the largest
prime that has the power i. Further, if c; is 0, there is
no prime that has the poweri (1<i<k-1).

2) ¢k is prime. cx is the largest prime that has the
power k. The power of a prime that is less than or
equal to ck is k.

The prime decomposition and Noe representation of
the 2nd to the 25th superabundant numbers are listed
below [5].

Example 2.1 The superabundant numbers are expressed as follows. SA denotes superabundant number, whereas

CA denotes colossally abundant number.

2nd SA (Ist CA) {2} n=2

3rd SA 0,2} n=22=4

4th SA (2nd CA) {3} n=32=6

5th SA (3rd CA)  {3,2} n=322=12
6th SA {3,0,2} n=3.2°=24
7th SA 0,3 n=3.22 =36
8th SA {30,022 n=3.2'=48
9th SA (4th CA) {52} n=53-22 =60

10th SA (5th CA) {5,0,2} n=5.3.2° =120



11th SA 53

12th SA {5,0,0,2}
13th SA (6th CA) {5,3,2}
14th SA {5,302}
15th SA {7,0,2}
16th SA .3

17th SA {7,0,0,2
18th SA (7th CA) {7,3,2}
19th SA (8th CA) {7,3,0,2}
20th SA {7,3,0,0,2}
21st SA {7,032}
22nd SA {7,5,0,2}
23rd SA {1132}
24th SA (9th CA) {11,3,0,2}
25th SA {11,3,0,0,2}

3. Conjectures on the
Function
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n=5.32.2> =180
n=5.3.2" =240
n=5-3".2° =360
n=5.32.2 =720
n=7-5-3-2° =840
n=7-5-3.2> =1260
n=7-5-3-2* =1680
n=7-5-32.2° = 2520
n=7-5.3.2* =5040
n=7-5-3%.2° =10080
n=7-5-3°.2* =15120
n=7-5%.32.2* = 25200
n=11.7.5.32.2° = 27720
n=11.7-5-3*.2* = 55440
n=11.7-5-3*.2° =110880
Ro(n) will increase strictly and converge to 1 when n

is greater than or equal to 55440 (9th CA).
Conjecture 3.1 implies that the ratio between the

Sum-of-Divisors

We want to show that e”nloglogn—o(n) (we call it

Robin’s difference) strictly increases to infinity, where
n is colossally abundant. As the ratio between
e’nloglogn—o(n) and e’nloglogn converges to0
by Theorem 1.2, it is not appropriate to compare them
directly. Hence, it is natural to take their logarithms,
because colossally abundant numbers increase
exponentially. Finally, we propose a conjecture on the
sum-of-divisors function.

Conjecture 3.1 Let denote

Ry (n)
log(e”nloglog n—o(n))
log(e”nlog log n)

, Where n is a colossally

abundant number.

Example 3.1 Calculation of R, (n)

9th CA {11,3,0,2} n = 55440
10th CA {13,3,0,2} n =720720

11th CA {13,3,0,0,2} n =1441440
12th CA {13,0,3,0,2} n = 4324320

number of digits in Robin’s difference and that on the
right-hand side of Robin’s inequality increases strictly
and converges to 1. If this conjecture holds, then RH
is true by Robin’s theorem (Theorem 1.1).

For validation, we consider the first 21187
colossally abundant numbers in “First 1000000
superabundant numbers” uploaded by Noe in The
On-Line Encyclopedia of Integer Sequences. We
partially show the colossally abundant numbers with
the Noe representation and Ro(n) [5].

R, (n) = 0.6694458330
R, (n) = 0.7594354261
R, (n) =0.7770110271
R, (n) = 0.7963976299
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13th CA {13,5,3,0,2} n=21621600 R, (n) =0.8195618298
14th CA {17,5,3,0,2} n=367567200 R, (n) =0.8388761842
15th CA {19,5,3,0,2} n = 6983776800 R, (n) =0.8508321831
16th CA {23,5,3,0,2} n =160626866400 R, (n) = 0.8654011552
17th CA {23,5,3,0,0,2} n = 321253732800 R, (n) = 0.8690460933

18th CA {29,5,3,0,0, 2} n = 9316358251200 R, (n) =0.8854687820

21178th CA  {237073,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N~ 2.650577572x10'%%%° R, (n) = 0.9999624279

21179th CA  {237089,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 6.284227859 x10'°** R, (n) = 0.9999624297

21180th CA  {237091,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~1.489933867 x 10" R, (n) =0.9999624316

21181st CA  {237137,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N~ 3.533184475x10'%** R, (n) = 0.9999624335

21182nd CA  {237143,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~ 8.378699660 x 10" R, (n) =0.9999624353

21183rd CA  {237151,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~1.987017003x10'%% R, (n) = 0.9999624372

21184th CA  {237157,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N~ 4.712349914 x 10'%°*% R, (n) = 0.9999624391

21185th CA  {237161,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n~1.117585618 x10'%*%® R, (n) = 0.9999624410

21186th CA  {237163,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~ 2.650499579 x10'%"" R, (n) = 0.9999624428

21187th CA  {237173,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 6.286269366 x10'°*"® R, (n) =0.9999624447

It is confirmed that Ro(n)increases strictly on the basis of these data.

Fig. 1 shows the point (logn, R,(n)), where n is fundamental shape of the graph to be changed by
colossally abundant number from the 9th to the additional data.
21187th. We do not believe that it is possible for the
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Fig. 2 shows the point (logn,log R, (n)), where n is
a colossally abundant number from the 21088th to the
21187th. The larger the value of n, the greater is the

number of significant digits required to show that

R, (n) increases strictly.
Ro(n}

08999 -
08998 -
08997 -

08996 -

08995 -

T S S S O S S 1Y
50000 100000 150000 200000

Fig.1 (logn,R,(n)) nis CA(9th-21187th).

According to Conjecture 3.1, Robin’s difference is
rather large. Next, we investigate Robin’s difference
more concretely. Thus, two conjectures follow.

Example 3.2 Calculation of D(n)

1200th cA  {9157,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1201stcA  {9161,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1202nd CA  {9173,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1203rd CA  {9181,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1204th cAa  {9187,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1205th CA  {9199,127,2313,7,5,0,0,3,0,0,0,0,0, 2}
1206th CA  {9203,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1207th CA  {9209,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1208th CA  {9221,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}
1209th CA  {9227,127,23,13,7,5,0,0,3,0,0,0,0,0, 2}

Conjecture 3.2 Let denote

loglogn
Ig J )—o(n) ,
ogn

colossally abundant number. D(n) will be positive and
100 Ra(n)

D(n)

(e”’nloglogn)(1—- where n is a

. L L L L logn
336400 236600 236800 237000 237200 . o

-0.0000376 -
-0.00003765 -

-0.0000377 |

-0.00003775 b

Fig.2  (logn,logR,(n)) n is CA(21088th-21187th).

increase strictly when n is greater than or equal to the
1201st CA.

Conjecture 3.2 implies that Robin’s difference is
e’ n(log log n)®

greater than
logn

We partially show the colossally abundant numbers
with the Noe representation and D(n).

N ~9.217564724x10%%2 D(n) =-5.369289833x10%*

N ~8.444211044x10%* D(n) =4.811038585x10**"

N~ 7.745874791x10° D(n) = 9.749105743x10**®

n~7.111487645x10* D(n) =1.367233329x10"
n ~ 6.533323700x10"® D(n) =1.645711157 x10**
n ~ 6.010004471x10***  D(n) =1.908701875x10**
n~5.531007115x10*" D(n) = 2.059124421x10***
n ~5.093504452x 10"  D(n) = 2.140678977 x10**°
N~ 4.696720455x10“* D(n) = 2.227689666 x10""*’

n ~ 4.333663964x10"* D(n) = 2.260652430x10%*
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1210th CA  {9227,131,23,13,7,5,0,0,3,0,0,0,0,0,2}  n=~5.677099793x10* D(n) = 3.096838478x10"*

21178th CA  {237073,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 2.650577572 x10'**% D(n) = 4.813219343x10"%
21179th CA  {237089,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 6.284227859 x10'°** D(n) =1.141160095x10'***
21180th CA  {237091,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~1.489933867 x 101" D(n) = 2.705578329 x10'***
21181st CA  {237137,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 3.533184475x 10" D(n) = 6.415954971x10'%**
21182nd CA {237143,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 8.378699660 x 10" D(n) =1.521503113x10'%**
21183rd CA  {237151,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~1.987017003 x 10" D(n) = 3.608266369 x10"***
21184th CA  {237157,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 4.712349914 x 10" D(n) =8.557259017 x10"**
21185th CA  {237161,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~1.117585618 x 10" D(n) = 2.029444792 x 10"
21186th CA  {237163,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 2.650499579 x 10" D(n) = 4.813072650 10"
21187th CA  {237173,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 6.286269366 x 10" D(n) =1.141525622 x10'%"

Itis confirmed that D(n) increases strictly on the basis of these data.

) "nlogl Fig. 4 shows the oint
Fig. 3 shows the point (log n,IogM), g oa loa P
() (e’nloglogn)(l—ig g )
where n is a colossally abundant number from the 9th (log n, log 99Ny where n is a
to the 21187th. o(n)

colossally abundant number from the 9th to the
21187th.
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Example 3.3 Calculation of R1(n)
1382nd CA  {10753,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1383rd CA  {10771,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1384th CA  {10781,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1385th CA  {10789,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1386th CA  {10799,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1387th CA  {10831,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1388th CA  {10837,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1389th CA  {10847,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1390th CA  {10853,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}
1391st CA  {10859,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2}

(e’nloglogn)(1—

loglogn
“loan )
og

Fig. 4 (logn,log

CA(9th-21187th).

)

a(n)
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In both graphs, the x-axis is an asymptote. The
shape of the latter curve is rather irregular.
We investigate the phase of increase in D(n) more

precisely.

Conjecture 3.3

log((e’nloglogn)(1-

log logn
ogn

Let  Ry(n)

)—o(n))

log((e’nloglogn)(1-

colossally abundant number.

loglogn
|

)

ogn

Ri(n) will

denote

, where n is a

increase

strictly and converge to 1 when n is greater than or

equal to the 1382nd CA.

If Conjecture 3.3 is true, then D(n) increases strictly

at a rather high rate.

We partially show the colossally abundant numbers
with the Noe representation and R1(n).

n~1.233675857 x10*"®

n ~1.328792266x10**

n~1.432570942x10*"*

n ~1.545600789x10*"

n ~1.669094292 x10*"*

n ~1.807796027 x10**

n ~1.959108555x10*%

N~ 2.125045050 x 10**

n~ 2.306311392x 10"

N~ 2.504423541x10""*

R (n) = 0.9986533059

R (n) = 0.9986583451

R (n) = 0.9986644873

R (n) = 0.9986682386

R (n) = 0.9986730883

R (n) =0.9987075018

R (n) = 0.9987300860

R (n) =0.9987490467

R (n) =0.9987630004

R (n) =0.9987734918



20 Some Conjectures on the Divisor Function
21178th CA  {237073,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}

N~ 2.650577572x 10" R, (n) = 0.9999603601

21179th CA  {237089,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N ~ 6.284227859 x10'°%% R, (n) = 0.9999603621

21180th CA  {237091,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~1.489933867 x 10" R, (n) = 0.9999603641

21181st CA  {237137,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N~ 3.533184475x10'%** R, (n) = 0.9999603662

21182nd CA  {237143,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~ 8.378699660 x 10" R, (n) = 0.9999603683

21183rd CA  {237151,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~1.987017003x 10"’ R, (n) = 0.9999603703

21184th CA  {237157,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
N~ 4.712349914 x 10'%°° R, (n) = 0.9999603724

21185th CA  {237161,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n~1.117585618x10'%%%® R, (n) = 0.9999603744

21186th CA  {237163,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n =~ 2.650499579 x 10" R, (n) = 0.9999603765

21187th CA  {237173,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0, 2}
n ~ 6.286269366 x 10" R, (n) = 0.9999603785

It is confirmed that R1(n) increases strictly on the basis of these data.

Fig. 5 shows the point (logn, R (n)), where n is a
colossally abundant number from the 1382nd to the
21187th. Fig. 6 shows the point (logn,logR (n)),
where n is a colossally abundant number from the
21088th to the 21187th. Figs. 5 and 6 are similar to
Figs. 1 and 2, respectively.
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Ry Sn)
09999 }
09998 }
0.9997 }

0.9996 -
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Fig. 5 (logn,R;(n)) nis CA(1382nd-21187th).

log R (n)

I I I I I logr
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~0.00003965 |
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-0. 0000398 [

Fig. 6 (logn,logR,;(n)) nis CA(21088th- 21187th).

4. Conclusions

All the data and conjectures presented herein
strongly suggest that RH is true.

To prove that Robin’s inequality is a sufficient
condition for RH, Robin proved the following
theorem [6].

Theorem 4.1 If RH does not hold, then for
colossally abundant number n, the following equation
holds:

a(n)

——7  —e’(1+Q,(logn)™)
nloglogn N

where b is some number in the open interval

@-0, %), and @ is the largest number in the real part

of the zeros of the ¢ function.

Robin used this theorem in proof by contradiction.
The conclusion of this theorem is an excessively
strong condition for considering Robin’s difference.
Therefore, it is desirable to have a proposition that has
a weakened assumption and proves the weakened
conclusion contradictory to Robin’s difference. Then,

the negation of the weakened assumption holds by
proof by contradiction and it implies that a
phenomenon stronger than RH holds.

Von Koch characterized RH by the error term of the
prime number theorem as follows [4].

Theorem 4.2 Let n(x) be the prime-counting
function, and let C be some constant.

RH is equivalent to the foIIowing inequality.

(0~ -[0 Iogt
Jx log x
Schoenfeld improved upon this theorem as follows

[71.
Theorem 4.3 RH is equivalent to the following
inequality.

<C

(-] 2
o'ogt <L forall x> 2657

Jxlog x 87
Let us consider how small the right-hand side of the

inequality can be. The next conjecture is that of the
deep Riemann hypothesis.

(- [
Conjecture 4.1 Iim——m7—7m— logt

=[x log x
We believe it may be provable that the behavior of
Robin’s difference is not compatible with

=0

z(X)—| —= Q(J_Iog x) similarly to Theorem 4.1.
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