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Abstract: We propose the following conjecture on ( )n the sum-of-divisors function:
log( loglog ( ))

log( loglog )

e n n n

e n n





−
will increase strictly 

and converge to 1 when n  runs from the colossally abundant numbers to infinity. This conjecture is a sufficient condition for the 

Riemann hypothesis by Robin’s theorem, and it is confirmed for n  from 
410  up to 

10307810 . Further, we present two additional 

conjectures that are related to Robin’s theorem. 
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1. Introduction  

The Riemann hypothesis (RH) has numerous 

reformulations. In this paper, we investigate the 

reformulation presented by Robin in which RH is 

characterized by the sum-of-divisors function as 

follows [6].  

Theorem 1.1  Let ( )n be the sum-of-divisors 

function, and let  be the Euler constant. 

The Riemann hypothesis is equivalent to the 

following inequality (we call it Robin’s inequality). 

( ) log logn e n n   for all 5040n   

Previously, Gronwall identified a related 

asymptotic property of the sum-of-divisors function as 

follows [3]. 

Theorem 1.2  
( )

lim
log logn

n
e

n n



→
=  

By Theorem 1.2,

log log ( ) ( )
lim 1 lim 1 1 0

log log log lognn

e n n n n

e n n e n n



 

 

→→

−
= − = − =  

On the other hand, from numerical data, it seems 

that lim log log ( )
n

e n n n 
→

− = . 
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If ( ) log logn e n n   does not hold for some n, n 

must satisfy 
( )

log log
n

e n
n


 . Hence, we are 

interested in the case where
( )n

n


 is relatively large. 

First, we introduce some definitions and theorems 

related to
( )n

n


. 

Definition 1.1  A natural number n  is called 

superabundant if, for all m n , 
( ) ( )m n

m n

 
 . 

A list of superabundant numbers can be found in 

The On-Line Encyclopedia of Integer Sequences. The 

15 smallest superabundant numbers are listed below 

[5]. 

Example 1.1  The 15 smallest superabundant 

numbers 

1, 2, 4, 6,12, 24,36, 48, 60,120,180, 240,360, 720,840  

The prime decomposition of a superabundant 

number has the following remarkable characteristics 

[1]. 

Theorem 1.3  If n is superabundant and not equal 

to 1, then there exist natural numbers k and 

1 2, ,..., ka a a  such that 
1

( ) i

k
a

i

i

n p
=

=  , where pi is the 

i -th prime number and
1 2 ... ka a a   . 
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Moreover, 
ka  is equal to 1  unless n is 4  or 

36 . 

By Theorem 1.3, the prime decomposition of a 

superabundant number n can be uniquely expressed by 

finite sequences of length a1, which will be explained 

in the next section. The time required to calculate

( )n in this manner is short. 

The following condition is “stronger” than 

superabundant. 

Definition 1.2 A natural number n  is called 

colossally abundant if and only if there exists 0   

such that for all 1k  , 
1 1

( ) ( )n k

n k 

 
+ +

 .  

The 15 smallest colossally abundant numbers are 

listed below [5].  

Example 1.2 The 15 smallest colossally abundant 

numbers 

2, 6,12, 60,120,360, 2520,5040,55440, 720720,1441440,

4324320, 21621600,367567200, 6983776800  

An algorithm for generating colossally abundant 

numbers is described in [2] and [6]. All colossally 

abundant numbers are also superabundant, but the 

converse is not true. Robin proved that if a natural 

number n ( >5040, not colossally abundant) does not 

satisfy Robin’s inequality, then neither at least one of 

the two colossally abundant numbers that put n 

between [6]. Therefore, to determine whether RH 

holds, it is sufficient to confirm whether Robin’s 

inequality holds with regard to colossally abundant 

numbers. 

2. Noe Representation of Superabundant 

Numbers 

By Theorem 1.3, the prime decomposition of a 

superabundant number n  greater than 1 contains all 

primes less than or equal to some prime, and the 

power of each prime decreases monotonously to1 or 

2 . Hence, it is uniquely expressed by finite sequences 

as follows. 

Definition 2.1 The prime decomposition of a 

superabundant number n  greater than 1 is uniquely 

expressed by finite sequences
1 2{ , ,..., ,..., }i kc c c c , 

which we refer to as the Noe representation. 

The rules of the Noe representation are as follows. 

1) ci is 0 or prime. If ci is prime, it is the largest 

prime that has the power i. Further, if ci is 0, there is 

no prime that has the power i  (1 1i k  − ).  

2) ck is prime. ck is the largest prime that has the 

power k. The power of a prime that is less than or 

equal to ck is k.  

The prime decomposition and Noe representation of 

the 2nd to the 25th superabundant numbers are listed 

below [5]. 

 

Example 2.1 The superabundant numbers are expressed as follows. SA denotes superabundant number, whereas 

CA denotes colossally abundant number. 

2nd SA (1st CA) {2}    2n =  

3rd SA   {0, 2}   22 4n = =  

4th SA (2nd CA) {3}   3 2 6n =  =  

5th SA (3rd CA) {3, 2}  23 2 12n =  =  

6th SA   {3, 0, 2}  33 2 24n =  =  

7th SA   {0,3}   2 23 2 36n =  =  

8th SA   {3,0,0, 2}  43 2 48n =  =  

9th SA (4th CA) {5, 2}   25 3 2 60n =   =  

10th SA (5th CA) {5, 0, 2}  35 3 2 120n =   =  
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11th SA   {5,3}   2 25 3 2 180n =   =  

12th SA   {5,0,0, 2}  45 3 2 240n =   =  

13th SA (6th CA) {5,3, 2}   2 35 3 2 360n =   =  

14th SA   {5,3,0, 2}  2 45 3 2 720n =   =  

15th SA   {7,0, 2}   37 5 3 2 840n =    =  

16th SA   {7,3}  2 27 5 3 2 1260n =    =  

17th SA   {7,0,0,2}  47 5 3 2 1680n =    =  

18th SA (7th CA) {7,3, 2}  2 37 5 3 2 2520n =    =  

19th SA (8th CA) {7,3,0, 2}  2 47 5 3 2 5040n =    =  

20th SA   {7,3,0,0, 2}  2 57 5 3 2 10080n =    =  

21st SA   {7,0,3, 2}  3 47 5 3 2 15120n =    =  

22nd SA   {7,5,0, 2}  2 2 47 5 3 2 25200n =    =  

23rd SA   {11,3, 2}  2 311 7 5 3 2 27720n =     =  

24th SA (9th CA) {11,3,0, 2} 2 411 7 5 3 2 55440n =     =  

25th SA   {11,3,0,0,2}  2 511 7 5 3 2 110880n =     =  

 

3. Conjectures on the Sum-of-Divisors 

Function 

We want to show that log log ( )e n n n − (we call it 

Robin’s difference) strictly increases to infinity, where

n  is colossally abundant. As the ratio between 

log log ( )e n n n −  and log loge n n converges to 0

by Theorem 1.2, it is not appropriate to compare them 

directly. Hence, it is natural to take their logarithms, 

because colossally abundant numbers increase 

exponentially. Finally, we propose a conjecture on the 

sum-of-divisors function. 

Conjecture 3.1 Let 
0 ( )R n  denote

log( log log ( ))

log( log log )

e n n n

e n n





−
, where n is a colossally 

abundant number. 

R0(n) will increase strictly and converge to 1 when n 

is greater than or equal to 55440 (9th CA). 

Conjecture 3.1 implies that the ratio between the 

number of digits in Robin’s difference and that on the 

right-hand side of Robin’s inequality increases strictly 

and converges to 1. If this conjecture holds, then RH 

is true by Robin’s theorem (Theorem 1.1). 

For validation, we consider the first 21187

colossally abundant numbers in “First 1000000  

superabundant numbers” uploaded by Noe in The 

On-Line Encyclopedia of Integer Sequences. We 

partially show the colossally abundant numbers with 

the Noe representation and R0(n) [5]. 

 

Example 3.1 Calculation of 
0 ( )R n  

9th CA  {11,3,0, 2}  55440n =    
0 ( ) 0.6694458330R n =  

10th CA  {13,3,0, 2}   720720n =    
0 ( ) 0.7594354261R n =  

11th CA  {13,3,0,0, 2}   1441440n =    
0 ( ) 0.7770110271R n =  

12th CA  {13,0,3,0, 2}   4324320n =    
0 ( ) 0.7963976299R n =  
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13th CA  {13,5,3,0,2}   21621600n =    
0 ( ) 0.8195618298R n =  

14th CA  {17,5,3,0, 2}   367567200n =   
0 ( ) 0.8388761842R n =  

15th CA  {19,5,3,0, 2}   6983776800n =   
0 ( ) 0.8508321831R n =  

16th CA  {23,5,3,0, 2}  160626866400n =   
0 ( ) 0.8654011552R n =  

17th CA  {23,5,3,0,0, 2}  321253732800n =   
0 ( ) 0.8690460933R n =  

18th CA  {29,5,3,0,0, 2} 9316358251200n =  
0 ( ) 0.8854687820R n =  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .  

21178th CA  {237073,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030302.650577572 10n    
0 ( ) 0.9999624279R n =  

21179th CA  {237089,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030356.284227859 10n    
0 ( ) 0.9999624297R n =  

21180th CA  {237091,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030411.489933867 10n     
0 ( ) 0.9999624316R n =  

21181st CA  {237137,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030463.533184475 10n    
0 ( ) 0.9999624335R n =  

21182nd CA  {237143,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030518.378699660 10n    
0 ( ) 0.9999624353R n =  

21183rd CA  {237151,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030571.987017003 10n     
0 ( ) 0.9999624372R n =  

21184th CA  {237157,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030624.712349914 10n    
0 ( ) 0.9999624391R n =  

21185th CA  {237161,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030681.117585618 10n     
0 ( ) 0.9999624410R n =  

21186th CA  {237163,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030732.650499579 10n    
0 ( ) 0.9999624428R n =  

21187th CA {237173,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030786.286269366 10n    
0 ( ) 0.9999624447R n =  

It is confirmed that R0(n)increases strictly on the basis of these data. 
 

Fig. 1 shows the point 
0(log , ( ))n R n , where n  is 

colossally abundant number from the 9th to the 

21187th. We do not believe that it is possible for the 

fundamental shape of the graph to be changed by 

additional data.  
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Fig. 2 shows the point 
0(log , log ( ))n R n , where n is 

a colossally abundant number from the 21088th to the 

21187th. The larger the value of n, the greater is the 

number of significant digits required to show that 

0 ( )R n  increases strictly. 

 
Fig. 1  0(log , ( ))n R n n is CA(9th-21187th). 

 

According to Conjecture 3.1, Robin’s difference is 

rather large. Next, we investigate Robin’s difference 

more concretely. Thus, two conjectures follow. 

Conjecture 3.2 Let D(n) denote

log log
( log log )(1 ) ( )

log

n
e n n n

n

 − − , where n is a 

colossally abundant number. D(n) will be positive and  

 
Fig. 2  0(log ,log ( ))n R n n is CA(21088th-21187th). 

 

increase strictly when n is greater than or equal to the 

1201st CA. 

Conjecture 3.2 implies that Robin’s difference is 

greater than
2(log log )

log

e n n

n



. 

We partially show the colossally abundant numbers 

with the Noe representation and D(n). 
 

Example 3.2 Calculation of D(n) 

1200th CA  {9157,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2}  39929.217564724 10n    
3986( ) 5.369289833 10D n = −   

1201st CA  {9161,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2}  39968.444211044 10n    
3991( ) 4.811038585 10D n =   

1202nd CA  {9173,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2} 40007.745874791 10n    3995( ) 9.749105743 10D n =   

1203rd CA  {9181,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2}  40047.111487645 10n    4000( ) 1.367233329 10D n =   

1204th CA  {9187,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2}  40086.533323700 10n    4004( ) 1.645711157 10D n =   

1205th CA  {9199,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2} 40126.010004471 10n    4008( ) 1.908701875 10D n =   

1206th CA  {9203,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2} 40165.531007115 10n    4012( ) 2.059124421 10D n =   

1207th CA  {9209,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2} 40205.093504452 10n    4016( ) 2.140678977 10D n =   

1208th CA  {9221,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2}  40244.696720455 10n    4020( ) 2.227689666 10D n =   

1209th CA  {9227,127, 23,13,7,5,0,0,3,0,0,0,0,0, 2}  40284.333663964 10n    4024( ) 2.260652430 10D n =   
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1210th CA  {9227,131, 23,13,7,5,0,0,3,0,0,0,0,0, 2}  40305.677099793 10n    4026( ) 3.096838478 10D n =   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .  

21178th CA  {237073,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  1030302.650577572 10n    103027( ) 4.813219343 10D n =   

21179th CA  {237089,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030356.284227859 10n    103033( ) 1.141160095 10D n =   

21180th CA  {237091,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030411.489933867 10n     103038( ) 2.705578329 10D n =   

21181st CA  {237137,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030463.533184475 10n    103043( ) 6.415954971 10D n =   

21182nd CA  {237143,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030518.378699660 10n    103049( ) 1.521503113 10D n =   

21183rd CA  {237151,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030571.987017003 10n     103054( ) 3.608266369 10D n =   

21184th CA  {237157,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030624.712349914 10n    103059( ) 8.557259017 10D n =   

21185th CA  {237161,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030681.117585618 10n     103065( ) 2.029444792 10D n =   

21186th CA  {237163,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030732.650499579 10n    103070( ) 4.813072650 10D n =   

21187th CA  {237173,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

1030786.286269366 10n    103076( ) 1.141525622 10D n =   

It is confirmed that ( )D n  increases strictly on the basis of these data. 
 

Fig. 3 shows the point
log log

(log , log )
( )

e n n
n

n




, 

where n is a colossally abundant number from the 9th 

to the 21187th. 

Fig. 4 shows the point

log log
( log log )(1 )

log
(log , log )

( )

n
e n n

n
n

n





−

, where n is a 

colossally abundant number from the 9th to the 

21187th. 
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Fig. 3  
loglog

(log ,log )
( )

e n n
n

n




n is CA(9th-21187th). 

 

Fig. 4  

loglog
( loglog )(1 )

log
(log ,log )

( )

n
e n n

n
n

n





−

n is 

CA(9th-21187th). 
 

In both graphs, the x -axis is an asymptote. The 

shape of the latter curve is rather irregular. 

We investigate the phase of increase in D(n) more 

precisely. 

Conjecture 3.3  Let R1(n) denote

log log
log(( log log )(1 ) ( ))

log

log log
log(( log log )(1 ))

log

n
e n n n

n

n
e n n

n





− −

−

, where n is a 

colossally abundant number. R1(n) will increase 

strictly and converge to 1 when n is greater than or 

equal to the 1382nd CA. 

If Conjecture 3.3 is true, then D(n) increases strictly 

at a rather high rate. 

We partially show the colossally abundant numbers 

with the Noe representation and R1(n). 
 

Example 3.3  Calculation of R1(n) 

1382nd CA {10753,139,29,13,7,5,0,0,0,3,0,0,0,0,0,2} 47051.233675857 10n    
1( ) 0.9986533059R n =  

1383rd CA  {10771,139,29,13,7,5,0,0,0,3,0,0,0,0,0,2} 47091.328792266 10n    
1( ) 0.9986583451R n =  

1384th CA  {10781,139,29,13,7,5,0,0,0,3,0,0,0,0,0,2} 47131.432570942 10n    
1( ) 0.9986644873R n =  

1385th CA  {10789,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2} 47171.545600789 10n    
1( ) 0.9986682386R n =  

1386th CA  {10799,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2} 47211.669094292 10n    
1( ) 0.9986730883R n =  

1387th CA  {10831,139,29,13,7,5,0,0,0,3,0,0,0,0,0,2} 47251.807796027 10n    
1( ) 0.9987075018R n =  

1388th CA  {10837,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2} 47291.959108555 10n    
1( ) 0.9987300860R n =  

1389th CA  {10847,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2} 47332.125045050 10n    
1( ) 0.9987490467R n =  

1390th CA  {10853,139,29,13,7,5,0,0,0,3,0,0,0,0,0,2} 47372.306311392 10n    
1( ) 0.9987630004R n =  

1391st CA {10859,139,29,13,7,5,0,0,0,3,0,0,0,0,0, 2} 47412.504423541 10n    
1( ) 0.9987734918R n =  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .  

21178th CA  {237073,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}   

  
1030302.650577572 10n    

1( ) 0.9999603601R n =  

 

21179th CA  {237089,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030356.284227859 10n    

1( ) 0.9999603621R n =  

21180th CA  {237091,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030411.489933867 10n     

1( ) 0.9999603641R n =  

21181st CA  {237137,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030463.533184475 10n    

1( ) 0.9999603662R n =  

21182nd CA  {237143,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030518.378699660 10n    

1( ) 0.9999603683R n =  

21183rd CA  {237151,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030571.987017003 10n     

1( ) 0.9999603703R n =  

21184th CA  {237157,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030624.712349914 10n    

1( ) 0.9999603724R n =  

21185th CA  {237161,661,83, 29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030681.117585618 10n     

1( ) 0.9999603744R n =  

21186th CA  {237163,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030732.650499579 10n    

1( ) 0.9999603765R n =  

21187th CA  {237173,661,83,29,13,0,7,5,0,0,0,0,3,0,0,0,0,0,0,0,2}  

  
1030786.286269366 10n    

1( ) 0.9999603785R n =  

It is confirmed that R1(n) increases strictly on the basis of these data. 
 

Fig. 5 shows the point 
1(log , ( ))n R n , where n is a 

colossally abundant number from the 1382nd to the 

21187th. Fig. 6 shows the point 
1(log , log ( ))n R n , 

where n is a colossally abundant number from the 

21088th to the 21187th. Figs. 5 and 6 are similar to 

Figs. 1 and 2, respectively. 
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Fig. 5 1(log , ( ))n R n n is CA(1382nd-21187th). 

 

 

Fig. 6  1(log ,log ( ))n R n n is CA(21088th- 21187th). 

4. Conclusions 

All the data and conjectures presented herein 

strongly suggest that RH is true. 

To prove that Robin’s inequality is a sufficient 

condition for RH, Robin proved the following 

theorem [6]. 

Theorem 4.1  If RH does not hold, then for 

colossally abundant number n, the following equation 

holds: 

( )
(1 (log ) )

log log

bn
e n

n n

 −

= +   

where b is some number in the open interval 

1
(1 , )

2
− , and  is the largest number in the real part 

of the zeros of the  function. 

Robin used this theorem in proof by contradiction. 

The conclusion of this theorem is an excessively 

strong condition for considering Robin’s difference. 

Therefore, it is desirable to have a proposition that has 

a weakened assumption and proves the weakened 

conclusion contradictory to Robin’s difference. Then, 

the negation of the weakened assumption holds by 

proof by contradiction and it implies that a 

phenomenon stronger than RH holds. 

Von Koch characterized RH by the error term of the 

prime number theorem as follows [4].  

Theorem 4.2  Let (x) be the prime-counting 

function, and let C be some constant. 

RH is equivalent to the following inequality. 

0
| ( ) |

log

log

x dt
x

t
C

x x

 −




 

Schoenfeld improved upon this theorem as follows 

[7]. 

Theorem 4.3  RH is equivalent to the following 

inequality. 

0
| ( ) |

log 1

8log

x dt
x

t

x x





−




for all 2657x   

Let us consider how small the right-hand side of the 

inequality can be. The next conjecture is that of the 

deep Riemann hypothesis. 

Conjecture 4.1 
0

( )
log

lim 0
log

x

x

dt
x

t

x x



→

−

=


 

We believe it may be provable that the behavior of 

Robin’s difference is not compatible with 

0
( ) ( log )

log

x dt
x x x

t
 − =  similarly to Theorem 4.1. 
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