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Abstract: In the 1970s, scientists began experimenting with powerful laser beams to compress and heat the hydrogen isotopes to the 
point of fusion, a technique called ICF (Inertial Confinement Fusion). In the “direct drive” approach to ICF, powerful beams of laser 
light are focused on a small spherical pellet containing micrograms of deuterium and tritium. The rapid heating caused by the laser 
“driver” makes the outer layer of the target explode. In keeping with Isaac Newton’s Third Law “For every action, there is an equal and 
opposite reaction”, the remaining portion of the target is driven inwards in a rocket-like implosion, causing compression of the fuel 
inside the capsule and the formation of a shock wave, which further heats the fuel in the very center and results in a self-sustaining burn. 
The fusion burn propagates outward through the cooler, outer regions of the capsule much more rapidly than the capsule can expand. 
Instead of magnetic fields, the plasma is confined by the inertia of its own mass—hence the term inertial confinement fusion. A similar 
process can be observed on an astrophysical scale in stars and the terrestrial uber world, that have exhausted their nuclear fuel, hence 
inertially or gravitationally collapsing and generating a supernova explosion, where the results can easily be converted to induction of 
energy in control forms for a peaceful purpose (i.e., inertial fusion reaction) by means of thermal physics and statistical mechanics 
behavior of an ideal Fermi gas, utilizing Fermi-Degeneracy and Thomas-Fermi theory. The fundamental understanding of thermal 
physics and statistical mechanics enables us to have a better understanding of Fermi-Degeneracy as well as Thomas-Fermi theory of 
ideal gas, which results in laser compressing matter to a super high density for purpose of producing thermonuclear energy in way of 
controlled form for peaceful shape and form i.e. CTR (Controlled Thermonuclear Reaction). In this short review, we have concentrated 
on Fundamental of State Equations by driving them as it was evaluated in book Statistical Mechanics written by Mayer, J. and Mayer, 
M. in this article. 
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1. Introduction 

NIF (National Ignition Facility), located at LLNL 
(Lawrence Livermore National Laboratory), will be the 
first laser in which the energy released from the fusion 
fuel will equal or exceed the laser energy used to 
produce the fusion reaction—a condition known as 
ignition. Unlocking the stored energy of atomic nuclei 
will produce ten to 100 times the amount of energy 
required to initiate the self-sustaining fusion burn. 
Creating ICF (Inertial Confinement Fusion) and energy 
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gain in the NIF target chamber will be a significant step 
toward making fusion energy viable in commercial 
power plants. LLNL scientists also are exploring other 
approaches to developing ICF as a commercially viable 
energy source, a process that is considered as FI (Fast 
Ignition) [1]. 

FI is the approach, which is being taken by the NIF 
to achieve thermonuclear ignition, and burn is called 
the “central hot spot” scenario. This technique relies on 
simultaneous compression and ignition of a spherical 
fuel capsule in an implosion, roughly like in a diesel 
engine. Although the hot-spot approach has a high 
probability of success, there also is considerable 
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interest in a modified approach called FI, in which 
compression is separated from the ignition phase. FI 
uses the same hardware as the hot-spot approach but 
adds a high-intensity, ultra-short-pulse laser to provide 
the “spark” that initiates ignition. A deuterium-tritium 
target is first compressed to high density by lasers, and 
then the short-pulse laser beam delivers energy to 
ignite the compressed core—analogous to a sparkplug 
in an internal combustion engine [1]. 

Moreover, to accommodate the symmetry conditions 
needed, the absorption of laser energy must be 
carefully determined starting from the early stages [7, 
8]. The absorption data for dense plasmas are also 
required for fast ignition by ultra-intense lasers due to 
creation of plasmas by the nanosecond pre-pulse [9]. 
Least understood are laser-plasma interactions that 
involve strongly coupled  and partially 
degenerate electrons. Such conditions also occur in 
warm dense matter experiments [10, 11] and laser 
cluster interactions [1]. 

To explain the apparent fluid-like behavior of the 
current filamentation instability in FI scenarios, many 
experts in the field of ICF have developed analytical 
theory for the coupling of electromagnetic instabilities 
to electrostatic modes. This theory shows that as cold 
electrons tend to filament at a faster rate than hot ones 
they pull with them the ions. Because hot electrons are 
usually in the minority, the filaments of the bulk of the 
electron population overlap with those of the ions, 
which is exactly what one would have expected from a 
fluid instability (such as Rayleigh-Taylor). Nevertheless, 
this is a purely kinetic electromagnetic phenomenon. 
The predicted growth rate was confirmed using 
Particle-In-Cell simulations and the physics is 
illustrated in Fig. 1. 

The analytical theory was only available for beam-like 
distributions, such as drifting Gaussian and water bag 
distribution. However, in order to overcome this problem 
and to resolve this, one can calculated the stability 
properties (growth/damping rate) of electromagnetic 
modes for arbitrary electron distribution functions. 

 
Fig. 1  Filamentation of counter-streaming electron beams 
(red/blue density isosurfaces) leads to filamentation of the 
background ions (green isosurfaces). The colder (blue) 
electron filaments attract the ions [1]. 
 

Because modern thermonuclear weapons use the 
fusion reaction to generate their immense energy, 
scientists will use NIF ignition experiments to examine 
the conditions associated with the inner workings of 
nuclear weapons. 

Ignitions experiments also can be used to help 
scientists better understand the hot, dense interiors of 
large planets, stars and other astrophysical phenomena. 

Here in this short review, we consider an elementary 
account of thermal physics. The subject is simple, the 
methods are powerful, and the results have broad 
applications. Probably no other physical theory is used 
more widely throughout science and engineering. In 
order to study of plasma physics and its behavior for a 
source of driving fusion for a controlled thermonuclear 
reaction for purpose of generating energy, in particular 
using high power laser or particle beam source, 
requires an understanding of the fundamental 
knowledge of thermal physics and statistical mechanics 
theory as part of essential education. As part of this 
education, we need to have a better concept of the EOS 
(Equation of State) for ideal gases, which proves to be 
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the central to the development of early molecular and 
atomic physics. In our case, it will lay down the ground 
for laser or high-energy particle beam compression of 
matter to super-high densities as [1, 2]: 

1. Thermonuclear applications, an event that in 
nature, takes place at extraterrestrial in stars and 

2. Surface of the sun and terrestrially in a nuclear 
explosion. 

Nuckolls, et al. [2] in their published paper in 1972 
under the title of “Laser Compression of Matter to 
Super-high Densities: Thermonuclear (CTR) 
Applications” established the ground based on their 
initial research at LLNL, that hydrogen may be 
compressed to more than 10,000 times liquid density 
by an implosion system energized by a high energy 
laser [2]. 

This scheme makes possible efficient thermonuclear 
burn of small pellets of heavy hydrogen isotopes and 
feasible fusion power reactors using practical lasers. 

The implosion process to a focal point first was 
solved numerically by Guderley [3] utilizing the 
application of self-similarity of the second kind for 
deducing a closed solution in one-dimensional form 
[3-6]. 

For a thermonuclear burning to take place in 
extra-terrestrially in stars as well as in a nuclear 
explosion, we need to look at a specific thermonuclear 
burn rate that is proportional to density and is given by 
Eq. (1). 

~
t
ρ ρσυ∂

∂
              (1) 

where tρ∂ ∂  is the fractional burnup, ρ  is the 
density, and vσ  is the Maxwell velocity-average 
reaction cross-section. With this relationship being 
satisfied, except at high fuel of let say D-T (e.g. 
Deuterium (D) and Tritium (T), the two isotopes of 
Hydrogen (H) element) depletions, the thermonuclear 
energy production at a fixed ion temperature is 
proportional to the Lawson number [7] ( )n τ× , a 
product of density n  and confinement timeτ . 

In case of D-T reaction of Eq. (2) in MCF (Magnetic 

Confinement Fusion) for purpose of CTR (Controlled 
Thermonuclear Reaction),  

D + T → 4He + n + 17.6 MeV     (2) 
The Lawson number, also known as Lawson 

criterion, is defined as illustrated in Eq. (3). 

410nτ ≥  s/cm3              (3) 

where in this case, n  is the plasma density in units of 
particles per cm3 and τ  is the time in seconds for 
which the plasma τ  of density n  is going to be 
confined. 

However, in case of ICF, the same Lawson criterion 
of Eq. (3) shapes in different form as 1rρ ≥  
gram/cm2, where ρ  and r  are the compressed fuel 
density and radius pellet, respectively. In order, for the 
confinement criteria also known as Lawson criterion to 
be satisfied, it needs to take place, before the 
occurrence of Rayleigh-Taylor hydrodynamics 
instability would happen for uniform illumination of 
the target’s surface, namely pellet of Deuterium and 
Tritium. See Section 3.4 of Ref. [1] written by Zohuri 
for further information. 

Note that: in conventional CTR approaches, the 
density is limited by material properties, and the 
objective is to achieve sufficiently long confinement 
times by the use of electromagnetic fields [8]. 

In the case of laser driven pellet fuel of D-T reaction 
to induce a controlled fusion energy (i.e. ICF), the main 
objective is to achieve a breakeven by satisfying 
Lawson criterion (i.e. at the minimum amount of laser 
energy in needs to be equal to the minimum fusion of 
energy out). For this matter to be achieved, a sufficient 
high fuel density needs to take place, while the 
confinement time is determined by the inertia of 
matter. 

“Spherical compression of 104 fold via the laser 
implosion scheme described here reduces the laser 
energy required for CTR by more than one 
thousand-fold, from more than 108-109 Jules, which is 
so large as to be currently impractical to 105-106 Jules, 
assuming laser and thermal/electric efficiencies of 10% 
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and 40% respectively” [2]. 
“Note that one kJ of laser energy may be sufficient to 

generate an equal thermonuclear energy” [2]. 

2. Implosion Driven by Laser Compression 
of Fuel Pellet 

In nature, hydrogen in the center of the sun is 
believed to exist at more than one thousand times 
liquid density, and at pressures greater than 1011 
atmospheres (temperature ~ 1-2 keV) [9]. 

These pressures are maintained gravitationally by 
the overlying enormous solar mass, ~ 1033 grams. 
Matter in the cores of white dwarf stars is believed to 
exist at more than 105 gram/cm3, and at pressures 
greater than 1015 atmospheres [10]. 

Moreover, we would be able to have a gripe of the 
situation by having a better understanding of the 
behavior of electron in white cores that are obeying 
Fermi-Degenerate, so the pressure is a minimum 
determined by the quantum mechanical uncertainty 
principles [11] and for hydrogen with 
Fermi-Degenerate electrons is given by the Eq. (4) 
[12]. 

2 42 42 3 3
3 5 4 80e F

F F

kT kTP n π πε
ε ε

    
 = + − +   
     



 
 (4) 

In this short review here, our task would be to derive 
this equation for an ideal Fermi gas, first by defining it, 
secondly via thermal physics utilizing statistical 
mechanics come to the conclusion of ICF generating 
CRT that is driven by Fermi energy of Eq. (5) via 
pressure given in Eq. (4). 

2/32 3
8F e
h n
m

ε
π

 =  
 

            (5) 

where en  is the electron density, kT  is the thermal 
energy, h  = 6.62607004 × 10-34 m2 kg/s, and m  is 
the electron mass. At 104 times liquid density ( en  = 5 x 
1026), the minimum hydrogen pressure occurs, when

FkT ε , and is approximately 1012 atmospheres. 

This is the way that we can reproduce the thermal 
energy on earth similar to what we observe at the sun 
surface as well as other terrestrial stars. 

Bear in mind that electron degeneracy pressure [13] 
is a particular manifestation of the more general 
phenomenon of quantum degeneracy [14] pressure. In 
quantum mechanics, an energy level is degenerate if it 
corresponds to two or more different measurable state 
of quantum system as illustrated in Fig. 2.  

Conversely, two or more different states of a 
quantum mechanical system are said to be degenerate if 
they give the same value of energy upon measurement. 
The number of different states corresponding to a 
particular energy level is known as the degree of 
degeneracy of the level. It is represented 
mathematically by the Hamiltonian for the system 
having more than one linearly independent eigenstate 
with the same energy eigenvalue. 

Note that degeneracy plays a fundamental role in 
quantum statistical mechanics. 

Also, from the knowledge of our quantum mechanics 
and quantum energy state, we know that, per Pauli 
exclusion principle, we are disallowed by having two 
identical half-integer spin particles (electrons and all 
other fermions) from simultaneously occupying the 
same quantum state. The result is an emergent pressure 
against compression of matter into smaller volumes  
of space. The principle and fundamental aspect of 
 

 
Fig. 2  Degenerate states in a quantum system [14]. 
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Fig. 3  Image of white dwarfs Sirius A and B [18]. 
 

compressing pellet fueled by D-T to a FI steps driving 
ICF. 

For bulk matter with no net electric charge, the 
attraction between electrons and nuclei exceeds (at any 
scale) the mutual repulsion of electrons plus the mutual 
repulsion of nuclei; so absent electron degeneracy 
pressure, the matter would collapse into a single 
nucleus. 

In 1967, Freeman Dyson showed that solid matter is 
stabilized by quantum degeneracy pressure rather than 
electrostatic repulsion [15-17]. 

Because of this, electron degeneracy creates a barrier 
to the gravitational collapse of dying stars and is 
responsible for the formation of white dwarfs as 
illustrated in Fig. 3, an image of Sirius A and B taken 
by the Hubble Space Telescope [18] 

Sirius B, which is a white dwarf, can be seen as a 
faint point of light to the lower left of the much brighter 
Sirius A [18]. 

3. Ideal Fermi Gas  

To describe and define an ideal Fermi gas, we may 
state that it is strongly determined by the Pauli 
principle by considering the limit as presented in Eq. (6) 
here, which defines the degenerate Fermi gas as: 

1Bk Tµ βµ⇔           (6) 

which defines the degenerate Fermi gas and this 
equation 1 Bk Tβ =  is the inverse temperature, and 
T is the temperature and Bk  is the Boltzmann 
constant. 

Note that β  is called thermodynamic beta in the 
field of statistical thermodynamics subject, which is 
also known as coldness, is the reciprocal of the 
thermodynamic temperature of a system as defined 
above. In Eq. (6), the parameter µ  is representing the 
total chemical potential (Fermi level) of the 
three-dimensional ideal Fermi gas is related to the zero 
temperature Fermi energy Fε  of Eq. (5) by a 
Sommerfeld expansion, where we are assuming

B Fk T ε : 
2 42 4

0( ) 1
12 80

B B
F

F F

k T k TT π πµ ε ε
ε ε

    
 = + − − +   
     


      

(7) 
Hence, the internal chemical potential 0µ ε−  is 

approximately equal to the Fermi energy at 
temperatures that are much lower than the 
characteristic Fermi temperature TF. This characteristic 
temperature is on the order of 105 K for a metal, hence 
at room temperature (300 K), the Fermi energy and 
internal chemical potential are essentially equivalent. 

In the limit, defined by Eq. (6), the quantum 
mechanical nature of the system becomes especially 
important, and the system has little to do with the 
classical ideal gas. 

Furthermore, electrons are part of a family of 
particles known as fermions. Fermions, like the proton 
or the neutron, follow Pauli’s principle and 
Fermi-Dirac statistics. In general, for an ensemble of 
non-interacting fermions, also known as Fermi gas, 
each particle can be treated independently with a 
single-fermion energy given by the purely kinetic term
ε , presented in Eq. (8) as: 

2

2
p
m

ε =                   (8) 

where p  is the momentum of one particle and m  is  
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Fig. 4  Pressure vs. temperature. 
 

its mass. Every possible momentum state of an electron 
within this volume up to the Fermi momentum Fp  is 
being occupied. 

Fig. 4 is the pressure vs temperature curves of 
classical and quantum ideal gases (Fermi gas, Bose gas) 
in three dimensions. Pauli repulsion in fermions (such 
as electrons) gives them an additional pressure over an 
equivalent classical gas, most significantly at low 
temperature. 

Moreover, the degeneracy pressure at zero 
temperature can be computed as [19]: 

2

2 3

2 2
3 3 10

Total FE pP
V mπ

= =


         (9) 

where V  is the total volume of the system and TotalE  
is the total energy of the ensemble. Specifically for the 
electron degeneracy pressure, m  is substituted by the 
electron mass em  and the Fermi momentum is 
obtained from the Fermi energy, so the electron 
degeneracy pressure is given by Eq. (10) as: 

2 2/3 2
5/3(3 )

5e e
e

P
m

π ρ=


          (10) 

where eρ  is the free electron density (the number of 
free electrons per unit volume). For the case of a metal, 
one can prove that this equation remains approximately 
true for temperatures lower than the Fermi temperature, 
about 106 Kelvin.  

When particle energies reach relativistic levels, a 
modified formula is required. The relativistic 

degeneracy pressure is proportional to 4/3
eρ .  

Note that again, in white dwarfs, electron degeneracy 
pressure will halt the gravitational collapse of a star if 
its mass is below the Chandrasekhar limit (1.44 solar 
masses) and presented by Eq. (11) [20]: 

3/20
3

2

3 1
2 ( )Limit

e H

cM
G m

ω π
µ

 =  
 


  Eq. (11) 

where: 

 
h
π

=  is the reduced Plank constant; 

 c  is the speed of light; 
 G  is the gravitational constant; 

 eµ  is the average molecular weight per electron, 

which depends upon the chemical composition of the 
star; 
 Hm  is the mass of the hydrogen atom; 
 0

3 2.018236ω ≈  is a constant connected with 
the solution to the Lane-Emden equation; 

 P
cm

G
=


 is the Plank mass, the limit is the 

order of 3 2
limitP HM m . 

The limiting mass can be obtained formally from the 
Chandrasekhar’s white dwarf equation by taking the 
limit of large central density.  

A more accurate value of the limit than that given by 
this simple model requires adjusting for various factors, 
including electrostatic interactions between the 
electrons and nuclei and effects caused by nonzero 
temperature [21]. 

Lieb and Yau [22] have given a rigorous derivation 
of the limit from a relativistic many-particle 
Schrödinger equation.  

This is the pressure that prevents a white dwarf star 
from collapsing. A star exceeding this limit and 
without significant thermally generated pressure will 
continue to collapse to form either a neutron star or 
black hole, because the degeneracy pressure provided 
by the electrons is weaker than the inward pull of 
gravity. 
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Note that in the non-relativistic case, electron 
degeneracy pressure gives rise to an EOS of the form 

5/3
1P K ρ= , where P  is the pressure, ρ  is the 

mass density, and 1K  is a constant. 

Solving the hydrostatic equation leads to a model 
white dwarf that is a polytropic of index 3/2 – and 
therefore has radius inversely proportional to the cube 
root of its mass, and volume inversely proportional to 
its mass [23]. 

As the mass of a model white dwarf increases, the 
typical energies to which degeneracy pressure forces 
the electrons are no longer negligible relative to their 
rest masses. The velocities of the electrons approach 
the speed of light, and special relativity must be taken 
into account. In the strongly relativistic limit, the EOS 
takes the form 4/3

2P K ρ= . This yields a polytropic 
of index 3, which has a total mass, limitM  say, 
depending only on 2K  [23]. 

For a fully relativistic treatment, the EOS used 
interpolates between the equations 5/3

1P K ρ=  for 
small ρ  and 4/3

2P K ρ=  for large ρ. When this is 
done, the model radius still decreases with mass, but 
becomes zero at limitM . This is the Chandrasekhar 
limit [23]. 

The curves of radius against mass for the 
non-relativistic and relativistic models are shown in 
Fig. 5. They are colored blue and green, respectively. 

eµ  has been set equal to 2. Radius is measured in 
standard solar radii or kilometers, and mass in standard 
solar masses [24]. 

Fig. 4 shows radius-mass relations for a model white 
dwarf. 

The green curve uses the general pressure law for an 
ideal Fermi gas, while the blue curve is for a 
non-relativistic ideal Fermi gas. The black line marks 
the ultra-relativistic limit. 

 

 
Fig. 5  Radius-mass relations for a model white dwarf. 
(Source: www.wikipedia.org) 



Thermal Physics and Statistical Mechanics Driven Inertial Confinement Fusion (ICF) Inducing a 
Controlled Thermonuclear Energy 

  

27 

 

 
Fig. 6  Phase diagram of a second order quantum phase 
transition. 
(Source: www.wikipedia.org) 
 

As a lump sum of this section, we may state that an 
ideal Fermi gas is a state of matter which is an 
ensemble of many non-interacting fermions. Fermions 
are particles that obey Fermi-Dirac statistics, like 
electrons, protons, and neutrons, and, in general, 
particles with half-integer spin. These statistics 
determine the energy distribution of fermions in a 
Fermi gas in thermal equilibrium, and are characterized 
by their number density, temperature, and the set of 
available energy states, as illustrated in Fig. 6. 

The model is named after the Italian physicist Enrico 
Fermi [25]. 

This physical model can be accurately applied to 
many systems with many fermions. Some key 
examples are the behavior of charge carriers in a metal, 
nucleons in an atomic nucleus, neutrons in a neutron 
star, and electrons in a white dwarf. 

4. Fundamentals of EOS  

The EOS gives an impressive demonstration of how 
great a fraction of the inorganic world is explained by 
the revolutionary deviation from classical mechanics to 
quantum mechanics. At the same time, the EOS 
presents the tools by which our experimental 
knowledge can be extended into regions of extreme 
concentrations of energy and matter. 

In a very holistic definition way, the EOS describes a 
physical system by the relation between its 

thermodynamic quantities, such as pressure, energy, 
density, entropy, specific heat, etc., and is related to 
both fundamental physics and the applied sciences. 
Important branches of physics were developed or 
originated from the equations of state, while in return 
more complex formulations of the EOS were due to the 
development of modern physics. 

For super-fast moving objects, Einstein extended 
classical mechanics to what we know as the theory of 
relativity by revolutionizing a new era for quantum 
mechanics and Planck-Bohr-Heisenberg-Schrodinger 
for very small objects, thermodynamics and statistics 
were developed to describe EOS of matter in extreme 
density and temperature domains. 

Later on, the EOS of high pressure was studied 
experimentally in a laboratory by using static and 
dynamic techniques driven by a sample being squeezed 
between pistons or anvils and the pressure and 
temperature are limited by the strength of the 
construction materials for a few megabars and a few 
hundred degrees of Celsius. This is the approach that 
the scientists and physicists working in the field of ICF 
are taking, by pressing the ablation surface of the fuel 
pellet of D-T adiabatically, so the corona of the pellet 
containing two hydrogen isotopes of Deuterium (D) 
and Tritium (T) reaches a FI level for fusion purpose. 

Bear in mind that in the dynamic experiments shock 
waves can be created by means of the Hugoniot 
relationship, driven by measuring the shock wave 
parameters, such as shock wave speed and particle flow 
velocity. The EOS are studying the fluid equations of 
motions, where the state of a moving fluid or gas can be 
defined in terms of its velocity, density, and pressure as 
functions of a position, and time. These functions are 
obtained by integral equations or differential equations 
which are derived from the conservation laws of mass, 
momentum and energy [26]. 

In conclusion, since the passage time of the shock is 
short in comparison to the disassembly time of the 
shocked medium, one can study EOS for any pressure 
that can be supplied by the source of driver. 
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5. Degenerate Gases 

By definition in a simple form, we can state that a 
degenerate gas is the type of gas in which, because of 
high density, the particle concentration is so high that 
the Maxwell-Boltzmann distribution does not apply, 
and the behavior of the gas is governed by quantum 
statistics. 

Examples of degenerate gases are the conduction of 
electrons in a metal, the electrons in a white dwarf, and 
the neutrons in a neutron star. 

With high density concentration within the nature of 
degenerate gas, comes degeneracy pressure, and briefly, 
we may state that the pressure in a degenerate gas of 
fermions caused by the Pauli exclusion principle and 
the Heisenberg uncertainty principle. Because of the 
exclusion principle, fermions at a high density, with 
small interparticle spacing, must have different 
momenta; from the uncertainty principle, the 
momentum difference must be inversely proportional 
to the spacing. Consequently, in a high-density gas 
(small spacing) the particles have high relative 
momenta, which leads to a degeneracy pressure much 
greater than the thermal pressure. 

Furthermore, stars are supported by the degeneracy 
pressure of the electron gas in their interior, which is 
obeying Eq. (1) formulation. Degeneracy pressure is 
the increased resistance exerted by electrons 
composing the gas, as a result of contraction of stellar, 
as we expressed at the begging of this article. The 
application of the so-called Fermi-Dirac statistic and of 
special relativity to the study of the equilibrium 
structure of white dwarf stars (see Fig. 7) leads to the 
existence of a mass-radius relationship through which a 
unique radius is assigned to a white dwarf of a given 
mass; the larger the mass, the smaller the radius. 

White dwarfs and neutron stars are supported against 
collapse under their own gravitational fields by the 
degeneracy pressure of electrons and neutrons, 
respectively. 

To put what just stated in general perspective, the 
degenerate gas, in physics is a particular configuration, 

 
Fig. 7  White dwarf stars. 
(Source: www.wikipedia.org) 
 

which usually reached at high densities of a gas 
composed of subatomic particles with half-integral 
intrinsic angular momentum (i.e. spin). 

Such particles are called fermions, because their 
microscopic behavior is regulated by a set of quantum 
mechanical rules—Fermi-Dirac statistics.  

These rules state, in particular, that there can be only 
one fermion occupying each quantum-mechanical state 
of a system. As particle density is increased, the 
additional fermions are forced to occupy states of 
higher and higher energy, because the lower-energy 
states have all been progressively filled. This process 
of gradually filling in the higher-energy states  
increases the pressure of the fermion gas, termed 
degeneracy pressure. A fermion gas in which all the 
energy states below a critical value (designated Fermi 
energy) are filled is called a fully degenerate, or 
zero-temperature, fermion gas. Such particles as 
electrons, protons, neutrons and neutrinos are all 
fermions and obey Fermi-Dirac statistics. The electron 
gas in ordinary metals and in the interior of white dwarf 
stars constitutes two examples of a degenerate electron 
gas. 

Note that: Fermion, any member of a group of 
subatomic particles having odd half-integral angular 
momentum (spin 12, 32), named for the Fermi-Dirac 
statistics that describe its behavior. Fermions include 
particles in the class of leptons (e.g., electrons, muons), 
baryons (e.g., neutrons, protons, lambda particles), and 
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nuclei of odd mass number (e.g. tritium, helium-3, 
uranium-233). 

Fermions obey the Pauli exclusion principle, which 
forbids more than one particle of this type from 
occupying a single quantum state as illustrated in Fig. 2. 
This condition underlies, for example, the buildup of 
electrons within an atom in successive orbitals around 
the nucleus and thereby prevents matter from 
collapsing to an extremely dense state. Fermions are 
produced and undergo annihilation in 
particle-antiparticle pairs. 

From Quantum Mechanical Distribution Function 
point of view, for the number of molecules per 
quantum cell, one can derive Eq. (12) as [12]:  

1
1j

j
kT

j

N
C eα ε+=



            (12) 

In the above relation parameter of N , it denotes the 
number of particles, which at equilibrium, are found in 
a region j  consisting of jC  cells, or quantum states 
of one particle, the energies of which lie between jε  
and j jε ε+ ∆ . The parameter α  is determined by 
the condition that the total number N of particles in 

the system is fixed and that is jj
NΣ , summed over all 

rejoins j , must be equal to N  number of particles 
or the relation as presented in Eq. (13) [12]. 

jj
N NΣ =            Eq. (13) 

In Eq. (12), the parameter k  is considered as 
Boltzmann constant, while T  is temperature in 
Kelvin. 

Note that Eq. (12) is applicable to all systems 
composed of mechanically independent particles. The 
minus (-) sign in Eq. (12) is to be used if the particles 
have symmetric eigenfunctions, in which case they are 
said to obey Bose-Einstein statistics. While, the plus (+) 
sign must be used if the particles have antisymmetric 
eigenfunctions, in which case they are said to obey 
Fermi-Dirac statistics. [1, 12] 

In case of treating a perfect gas, the distribution 

function of Eq. (12) is always modified by omitting the 
unity in the denominator. The difference between the 
two kinds of system disappears and classical or 
Boltzmann statistics is obtained. This approximation 
can certainly be made if eα  is large, or 1j jN C   
for all regions j . The parameter α  can be 
determined for monatomic gases by setting 

jj
N N=Σ , with neglect of the unity in the 

denominator. The result is presented in Eq. (14) [12] 
here as: 

3 2 3 2 5 2

2

2 0.026
Atm

mkT V M Te g g
N P

α π = = 
 

 

     (14) 
This is found to justify, a posterior, the neglect that 

was introduced in Ref. [12]. 
The parameters in Eq. (14) are defined and given as: 
M  = the atomic weight; 
g  = the multiplicity of the ground level in one 

atom; 
V  = molar volume of the gas. 
More details that are beyond scope of this short 

review article can be found in the book by Mayer and 
Mayer [12]. 

Bear in mind that, the Fermi-Dirac gas at zero 
temperature in case of metals especially their electrical 
conductivity, may be rather satisfactorily explained by 
assuming that metals contain a perfect gas of electron.  

If each metal atom contributes one or as many 
electrons as its valency, to the electron gas, the density 
of particles in the gas is very high. The molar volume 
V  of the electron gas is the atomic volume of the 
metal divided by a small integer. Note that the atomic 
volumes of metals are of the order of 10 cc. 

Under this condition, the electrons obey Fermi-Dirac 
statistics and therefore, the distribution function of Eq. 
(12) is given in Eq. (15): 

( )
1

1j

j
kT

j

N
C e ε µ−=

+
          (15) 

The classical distribution function is that in which 
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the unity in the denominator of this equation is omitted 
[12]. 

Note that, the lowest energy of classical or a 
Bose-Einstein gas at 0T =  and 0ε  by taking the Fig. 
1 into consideration, at the zero temperature all 
particles crowed into the lowest state and lose all 
kinetic energy. 

For a Fermi-Dirac gas, this is not a possible case and 
the particles, in this case, are subject to the Pauli 
exclusion principle. This principle indicates that no 
more than one particle may be in one quantum state, or 
cell. Considering, these circumstances, the lowest 
energy of the gas of N  particles, is therefore, 
obtained if the N cells of lowest energy are filled with 
one particle in each. The energy 0ε  of the gas at 

0T =  is therefore different from zero and one can 
easily calculate the quantity of this energy. 

The number of quantum states, ( )C ε ε∆  of one 
particle, the energy of which lies between ε  and 
ε ε+ ∆ , is given by Eqs. (16) and (17) consequently as 
[12]: 

1 2
3( ) 4 (2 )mVC g m

h
ε ε π ε ε∆ = ∆        (16) 

and 
3/2

1 2
2

2( ) 2 mC gV
h

ε ε π ε ε ∆ = ∆ 
 

        (17) 

where m  denotes the mass of the particle and V  is 
the total volume, as well as g  representing the 
degeneracy of the internal ground level of the particles. 

Thus, for electrons with 2g = , owing to the two 
possible orientations of the spin, Eq. (17) reduces to the 
Eq. (18): 

3/2
1 2

2

2( ) 4 mC V
h

ε π ε =  
 

         (18) 

With above result, we now can determine the 
number of cells with energy less or equal to 0µ  (i.e. 

0ε µ= , the chemical potential at ground zero) is given 
by Eq. (19) as: 

0 0
3/2

1/2
20 0

3/2
0

2

2( ) 4

28                 
3

mC d V d
h

mV
h

µ µ
ε ε π ε ε

µπ

 =  
 

 =  
 

∫ ∫
      (19) 

Since this number must be equal to a number of 
particles or electrons N  in the system, one can obtain 
the result as Eq. (20) as: 

3/2
0

2

28
3

mN V
h

µπ  =  
 

          (20) 

And in term of 0µ  explicitly, we can obtain Eq. (21) 
as: 

2/32

0
3

8
h N
m V

µ
π

 =  
 

           (21) 

Note that: the quantity 0µ , which is the uppermost 
energy of the cells, frequently is called the Fermi 
energy.  

Substituting Eqs. (20) and (21) into Eq. (18), we 
obtain another result for ( )C ε as Eq. (22): 

1/2

3/2
0

3( )
2

C N εε
µ

=             (22) 

Looking at Eq. (22), it easily can be noted that we 
define a cell by both the translational quantum numbers, 

, ,x y zk k k  and the internal quantum numbers of 
particle, which in this case consist of the two spin 
directions. One sometimes defines a cell by the 
translational quantum numbers only and says that two 
electrons of opposite spin may occupy this cell, which 
is in alignment with Pauli excursion principle. The 
difference, obviously, is one of nomenclature only. 

Going forward, we can now express the total energy 
of the N  particles in this distribution, namely, the 
energy 0ε  of the Fermi gas at 0 0T = , is given by Eq. 
(23) as: 

0

0 0
( )C d

µ
ε ε ε ε= ∫             (23) 

Now utilizing Eqs. (21) and (22) and then integrating 
the result, leads to Eq. (24) as: 
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2/32

0 0
3 3 3
5 40

h NN N
m V

ε µ
π

 = =  
 

      (24) 

The average energy per electron in the Fermi gas at 

0 0T =  is 3/5 of that of the energetically highest 
particle or 3/5 of the Fermi energy 0µ . 

Furthermore, the energy 0µ  depends inversely on 
the mass of particles by inserting for m  the mass of 
the electron. 

For molar volume 10V ≈  for most metals, it is 
seen that the Fermi energy of an electron gas is 
extremely high and in the next sections, we would 
show that thermodynamic properties of the gas above 

0T =  can be obtained as a power series in 0kT µ  
as it is shown in Eq. (7). A series of that type must be 
expected to converge very rapidly, so that the behavior 
of the electron gas at room temperature is not greatly 
different from that at 0T = . 

The Eq. (21) shows that both the small mass and the 
high density of the electron gas favor this high value of 

0µ . 
Obviously, atoms or molecules have masses more 

than two thousand times that of an electron, so that the 
value of 0µ  for a chemical Fermi-Dirac gas, even at 
the same density, is very much smaller. With respect to 
all these above debates, a development with respect to 

0kT µ  for a chemical gas obeying the Pauli principle 
would lead to a series which converges at very low 
temperatures only, and at room temperature the 
thermodynamic functions are radically different from 
those at 0T =  which is discussed in Mayer and 
Mayer [12] chapters 5 through 8 and we encourage the 
reader to refer to this reference for more details that is 
beyond the scope of this short review. 

However, note that the same results could be 
obtained for the electron gas at 0T =  using the 
distribution function as it is given in Eq. (15). In Eq. 
(15), the quantity ( )Tµ  is a function of temperature 
T  and would be determined by the condition that the 
total number of particles should be fixed. 

Furthermore, at zero temperature ( 0T = ) 

distribution function driven by Eq. (15) is zero if 
(0)jε µ>  and it would be equal to 1 if (0)jε µ< . 

Moreover, the distribution function of Eq. (15) under 
above conditions represents the state that all cells with 
energy lower than (0)µ  are filled and all the cells 
with higher energy would be empty. 

What remains is the case, when (0)jε ε µ= = . 
With this condition in hand, we encounter the situation 
that the distribution function has a discontinuity, as it 
suddenly drops from unity to zero. In this case, the 

Fermi energy 0µ  of the filled level of highest energy 

is equal to the value µ  that is taking place in the 
distribution function provided by Eq. (15) at zero 
temperature or 0T = .  

But in Chapter 6 of Ref. [12], it is shown that in 
general the quantity µ  in Eq. (15) is the chemical 
potential which is 1 N  times the free energy F , thus 
the free energy of the electron gas at 0T =  is 

0 0F Nµ=  and easily can be verified by direct 
calculation of the various thermodynamic functions at 

0T =  and at a temperature above zero, the 
distribution temperature of Eq. (15) must be used for 
the evolution of thermodynamic functions as well [12]. 

6. Fermi-Dirac Gas Integrals Equations 

In order to derive such a relationship, we can take the 
number of electrons ( )N ε ε∆  into account for the 
energy ranging between ε  and ε ε+ ∆  by driving it 
as a function of the temperature and volume by taking 
Eq. (18) and substituting ( )C ε  into Eq. (15), then we 
obtain the number of electrons per cell as Eq. (25) here: 

3/2 1/2

2 ( )/

2( ) 4
1kT

mN V
h e ε µ

εε π −

 =   + 
        (25) 

Now using Eq. (22), we also can find another form 
of Eq. (25), which is presented here as Eq. (26): 

1/2

3/2 ( )
0

3( )
2 1kT

NN
e ε µ

εε
µ −=

+
         (26) 

in which 0µ , defined by Eq. (21), is the chemical 
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potential at 0T =  and µ  the potential at the 
temperature in question. 

The integration of Eq. (25) over all values of ε  
serves to derive the value of µ  as a function of 
temperature by equating the result the left-hand side of 

an integrated form of Eq. (26), mainly 
0

( )N dε ε
∞

∫  to 

the total number of particles N . 
Analyzing Eq. (26), one can realize that for ( )N ε ,

µ  will necessarily result as a function of 0µ  and 
kT  alone. Furthermore, the energy may be 
determined from Eq. (27) as: 

0
( )E N dε ε ε

∞
= ∫             (27) 

In order to be able to integrate any form of the 
equation such as Eq. (27), we need to deal with the 
problem of making integration of the type: 

0
( ) ( )I f g dε ε ε

∞
= ∫           (28) 

where the function ( )f ε  is some simple continuous 
function of ε  such as 1/2ε  or 3/2ε  and can be 
defined as: 

( )

1( )
1kTg

e ε µε −=
+

           (29) 

We have seen already that at 0T =  this function 
( )g ε  is a step function and is defined as: 

0

0

1
( )

0
g

ε µ
ε

ε µ
<

=  >
          (30) 

According to Mayer and Mayer [12], also for most 

metal at 0T = , the value of 0µ µ=  is extremely 

high, and kTµ  will be of the order of magnitude of 
5 × 104 to 5 × 105 K. 

Now our task is to show the analysis of evaluating 
the integral type as it is presented in Eq. (28) given the 
conditions provided by Ref. [12], which is named 
under the assumption that 1kTµ   and their 
values can be obtained in form of power series for 
small quantity of 0kT µ . 

The result will show, a posteriori, that for electrons 

in metals this assumption of 1kTµ 
 is justifiable 

up to temperatures above those values at which the 
metals start melting. Furthermore, in order to integrate 
the Eq. (28), it will be necessary to play a unique 
mathematical technique as follows. 

Since it can be found that 4010kTe µ− −≈ , the value 

of ( )g ε  in Eq. (29) reduces to 1 at 0ε =  and 
decreases monotonously to 0 at ε = ∞  as they are 
presented here as Eq. (31): 

401 0
( ) 10

0
kTg e µε

ε
ε

− −=
= ⇒ ≈ = ∞

       (31) 

The derivation of ( )g ε  as it is given by Eq. (29) 

designated by '( )g dg dε ε= , is always a negative 

result, but has one single sharp minimum at ε µ= , as 
long as µ  is a positive value. 

For 1kTµ  , this maximum of '( )g ε−  is very 

sharp and the function '( )g ε−  is negligibly small for 
all values of ε  differing greatly from ε µ= . 
Utilizing technique of partial or part-by-part integration 

mainly (i.e. u d u duυ υ υ= −∫ ∫  over Eq. (28), may 

be applied and transformed into an integral over 
( ) '( )F gε ε− (i.e. the ( )F ε  being defined as 

0
( ) ( ') 'F f d

ε
ε ε ε= ∫ ) as it can be seen here, and 

because of the form of '( )g ε− , only the values in the 
neighborhood of ε µ=  contribute to the integral. 

The limits of integration are actually are set from 
0ε =  to ε = ∞ , but since '( )g ε−  is practically 

zero for 0ε ≤ , no greater error is introduced by 

changing the limits of integration which can be 
performed by developing the function ( )F ε  as a 
Taylor’s series in powers of ( )ε µ−  about the place 
of maximum '( )g ε−  [12]. 

For the purpose of part-by-part integration, we are in 
need of the first and second derivatives of the function 

( )g ε  that is presented in Eq. (29) and they are 



Thermal Physics and Statistical Mechanics Driven Inertial Confinement Fusion (ICF) Inducing a 
Controlled Thermonuclear Energy 

  

33 

presented here as Eqs. (32) and (33): 
( )

2( )

( )'( )
1

kT

kT

dg eg
d kT e

ε µ

ε µ

εε
ε

−

−
= = −

 + 
      (32) 

and 

( )

( )

( )

2 ( )

22 2 ( )

( )

32 ( )

( ) ( )

32 ( )

( )"( )
1

2                             
1

1
                             

1

kT

kT

kT

kT

kT kT

kT

d g eg
d kT e

e

kT e

e e

kT e

ε µ

ε µ

ε µ

ε µ

ε µ ε µ

ε µ

εε
ε

−

−

−

−

− −

−

= = −
 + 

+
 + 

 − =
 +   

    (33) 
The first derivative is always negative. The second 

derivative is zero when the following condition is 
satisfied as given in Eq. (34): 

( ) 1 0kTe ε µ− − =  

for 
ε µ=                    (34) 

At ε µ= , the function  '( )g ε− has a maximum, 

which is sharper at the lower temperature. The negative 
of the slope of the original function at this point is 
greatest. 

Using ε µ=  in Eqs. (29) and (32), we can easily 
find that the value of the function ( )g ε  at this point is 
given by: 

1( )
2

g ε =                 (35) 

and its derivative namely Eq. (32) is given by: 
with 

1 1'( )
4

g
kT

µ = −               (36) 

The Napierian logarithmic decrease in ( )g ε  with 
ln( )ε  is given by Eq. (37) as: 

ln ( ) 1
ln( ) 2

d g
d kTε µ

ε µ
ε =

 
− = 

 
            (37) 

From this, it can be seen that the relative abruptness 
of the descent of ( )g ε  from almost unity to almost 
zero increases with the value of kTµ . 

Providing all the above information and equations 
that we derived, we can generate a set of plots for the 
Fermis distribution function as it was a derivative for 
various temperatures as illustrated in Fig. 8. However, 
note that in Fig. 8, µ  should be read in place of 0µ  
everywhere. 

Note that the function ( )g ε  and '( )g ε  are 
plotted in Fig. 8 for various values of kT . 

By partial integration of Eq. (28) of the integral I , 
we can easily find that: 

0

0

( ) ( )

  ( ) ( ) ( ) '( )

I f g d

F g F g d

ε ε ε

ε ε ε

∞

∞

=

= ∞ ∞ −

∫
∫

     (38) 

where 

0
( ) ( ') 'F f d

ε
ε ε ε= ∫          (39) 

Analyzing the results of these integral operations, 
we can easily see that, if ( )f ε  is not infinity at 

0ε = , then (0)F  and the product (0) (0)F g  are 
zero. If ( )f ε  does not go exponentially to    
infinity with ε , the product ( ) ( )F g∞ ∞  will be zero 
since ( )g ε  approaches zero as kTe ε−  with 
increasing ε  

One may consequently write the result as Eq. (40): 

0 0
( ) ( ) ( ) '( )I f g d F g dε ε ε ε ε ε

∞ ∞
= = −∫ ∫     (40) 

We now introduce a new variable that we can 
transfer to as Eq. (41): 

x
kT

ε µ−
=                (41) 

and develop the function ( )F x  as a power series of 
x  as demonstrated in Eq. (42) as: 

( )

0
( ) ( 0)

!

n
n

n

xF x F x
n

∞

=

= =∑          (42) 

where, in the old variable form, we establish Eq. (43): 
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Fig. 8  Fermi distribution function for ( )gε  and ( )g'ε  illustration. 
 

0
( 0) ( )F x f d

µ
ε ε= = ∫             (43) 

Thus, we have a new form as Eq. (44) here: 

( )

1

1

( 1)

( )( 0) ( )

( )                 ( )

                 ( ) ( )

n
n n

n

n
n

n

n n

d FF x kT
d

d FkT
d

kT f

ε µ

ε µ

ε
ε

ε
ε

µ

=

−

−
=

−

 
= =  

 

 
=  

 

=

      (44) 

By substituting Eq. (44) into Eq. (40), we may be 
able to write Eq. (45) as: 

0

( 1)

1

(0) '( )

( )     ( ) '( )
!

n
n n

x kT
n

I F g d

kT f x g x dx
n µ

ε ε

µ

∞

∞ ∞−

=−
=

= −

−

∫

∑ ∫
 

    (45) 
The integral of the first term is given as Eq. (46) as: 

0
'( ) (0) ( )

              (1 ) 1kT

g d g g

e µ

ε ε
∞

−

− = − ∞

= + ≅

∫       (46) 

The function '( )g x  is obtained by using the 
expression of Eq. (35) for x  in Eq. (32) and write the 
new equation as Eq. (47) here: 

2

1'( )
( 1)

1 1        
( 1)( 1)

x

x

x x

eg x
kT e

kT e e−

= −
−

= −
+ +

      (47) 

The function '( )g x  in Eq. (48) is completely 
symmetrical in x , and can be written as 

'( ) '( )g x g x= − . The function approaches zero 
exponentially as x  approaches −∞ . If kTµ is 
larger, the value of the function is already negligible at 
the lower limit, x kTµ= − , of the integral in Eq. 
(45). No error is introduced and consequently by 
changing the limits of integration of the terms in the 
sum of Eq. (45) to x = −∞ and x = +∞ . 

We must now evaluate the integral of the form as Eq. 
(48) here: 

( 1)( 1)

n

x x

x dx
e e

+∞

−
−∞

 
 + + 

⌠

⌡

        (48) 

From the symmetry of the denominator, it is seen 
that the integrand is anti-symmetrical in x  if n  is 
odd, that is, it changes sign if x  is replaced by x−  
and the integral is therefore zero for odd n . For even 
values of n , we may integrate from zero to infinity 
and multiply by 2 and since then the integrand is 
symmetrical in x . 
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By developing the following relationship as: 

2

2 3

1

1
( 1)( 1) (1 )

2 3

( 1) (  even)

x

x x x

x x x

m mx

m

e
e e e

e e e

me n

−

− −

− − −

∞
−

=

=
+ + +

= − + −

= − −∑

     (49) 

Using Eqs. (46) and (47) with Eqs. (43) and (49), we 
come to the conclusion as Eq. (50): 

0 0

(2 1)
20

1 1

2 1
(2 1)

2 1

( ) ( ) ( ) '( )

( 1)  ( ) 2 ( ) ( )

( )( )

m
n

n
n m

n
n

n

I f g d F g d

f d kT f
m

d ff
dε ε µ

ε ε ε ε ε ε

ε ε µ

εµ

∞ ∞

∞ ∞∞ −

= =

−
−

−
=


 = = −
 − = −

  
 =  
  

∫ ∫

∑ ∑∫  

           (50) 
The sums occurring have the numerical values as 

demonstrated in Eq. (51) here: 
2

2
1

4

4
1

( 1)
12

and
( 1) 7

720

m

m

m

m

m

m

π

π

∞

=

∞

=

 −
− =



 −− =


∑

∑

            (51) 

so that 

  

( )
0

2
2

0

4 3

3

( )
1

( ) ( )
6

7 ( )
360

kT

fI d
e

dff d kT
d

d fkT
d

ε µ

ε µ

ε µ

ε ε

πε ε
ε

π
ε

∞

−

∞

=

=

=
+

 = +  
 

 
+ + 

 

⌠
⌡

⌠

⌡



    (52) 

Eq. (52) will now be applied to calculate µ . Using 
Eq. (26), we obtain Eq. (53) as: 

1/2

3/2 ( )0 0
0

3( )
2 1kT

N dN N d
e ε µ

ε εε ε
µ

∞ ∞

−= =
+∫ ∫       

(53) 

One finds that 1/2( )f ε ε=  in this problem. The 
integral ( )F µ  is becoming as: 

1/2 3/2

0 0

2( )
3

f d d
µ µ

ε ε ε ε µ= =∫ ∫      (54) 

The derivatives are as Eq. (55): 

1/2

3
5/2

1
2

and

3
8

df
d

d f
d

ε µ

ε µ

µ
ε

µ
ε

−

=

−

=

  = 
 



  =  

        (55) 

Using Eqs. (54) and (55) with Eq. (52) in Eq. (53), 
one finds Eq. (56) here as: 

3/2 2 42 4

0

71 1
8 640

kT kTµ π π
µ µ µ

      
+ + + =      

       
  

    (56) 

which determines µ  as a function of 0µ  and T . 

In order to make the equation explicit in µ , we use 
the development as Eq. (57) here: 

2

2/3

1 2 51
(1 ) 3 9

x x
x

= − + −
+

       (57) 

which is used to obtain the following for µ  as Eq. 
(58): 

2 42 4

0 1
12 720

kT kTπ πµ µ
µ µ

    
= − + +    

     
    (58) 

and here ( )( )22 2 2
0 01 6 kTµ µ π µ− −  = +   is 

substituted in the quadratic term. In the quartic term, 
which is the last correction, 0µ  is simply substituted 
for µ . One obtains Eq. (59) for chemical potential µ  
as: 

2 42 4

0
0 0

1
12 80

kT kTπ πµ µ
µ µ

    
 = − − +   
     

          

(59) 
as an equation for µ , it is the chemical potential as we 
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stated above, in terms of kT and 0µ . 

0µ  is the chemical potential at 0T =  which is 
given in turn as function of the volume V  as it is 
indicated in Eq. (21). 

The energy E  may be calculated by using the 
following relationship as Eq. (60) driven by Eq. (26): 

0
3/2

3/2 ( )/0
0

( )

3   
2 1e kT

E N d

N d
e µ

ε ε ε

ε ε
µ

∞

∞

−

=

=
+

∫

∫
      (60) 

In the above integral 3/2( )f ε ε=  and then we can 

write: 
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        (61) 

so that 
3/2 2 42 4

0

3 5 71
5 8 384

kT kTE N µ π πµ
µ µ µ

      
= + − +      

       


           (62) 
is obtained. 

By using Eq. (59) to replace µ  with 0µ , one can 
find out Eq. (63) for the energy E  as: 

2 42 4

0
0 0

3 51
5 12 16

kT kTE N π πµ
µ µ

    
 = + − +   
     

  

          (63) 

7. The Thermodynamic Functions of a 
Degenerate Fermi-Dirac Gas 

The chemical potential µ  as illustrated in Eq. (59) 
and the energy E  from Eq. (63) for the generate 
Fermi-Dirac gas have been derived as a power series of 
the temperature T  in terms of 0µ  as well volume 
V  as Eq. (21). 

Eq. (63), giving energy E  as a function of 

temperature T  and volume V , can be obtained as: 
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    (64) 
With help from Eq. (21), we can then write the 

following set of Eq. (65) as: 
2/32

0 0
0

23
8 3

dh N
m V dV V

µ µµ
π

 = = − 
 

        (65) 

which would be sufficient to permit the calculation of 
all other thermodynamic functions at entropy of 

0S =  at the temperature 0T = . [12] 
The heat capacity at constant volume VC  is found 

by direct differentiation of results of Eq. (64). Then we 
can write: 

22 2

0 0
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kT kTC Nk π π
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      (66) 

The entropy S  may be obtained by integration of 

0
( )

T

VC T dT∫ , thus we can write: 
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    (67) 
The work function of A E TS= −  is from Eqs. (64) 

and (67) in the following form of Eq. (68): 
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    (68) 

The pressure P  is given by ( )T
A V− ∂ ∂  and 

with help from Eq. (65) being substituted in Eq. (68), 
one can get the result that is shown in Eq. (4), and that 
is the result we are looking for, thus we may establish 
the Eq. (69) as: 
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          (69) 
The equation 2 3PV E V=  is found at 0T =  

Kelvin, and Eq. (70) is seen to be independent of 
temperature T  [12]. 
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3 2 2
5 5 3
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V V V V
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    (70) 

We can also derive the heat content with help of 
H E PV= +  and it accordingly yields Eq. (71) as: 
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          (71) 
Finally, forming F H TS= −  would provide us 

with Eq. (72) as: 
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           (72) 
which is, of course, can be seen to be as Nµ  by 
comparison with Eq. (59). 

All the above equation for degenerate Fermi-Dirac 
gas was derived based on FkT ε , which is an 
indication of strongly degenerate gas case. 

It is to be noted that in all the equations for the 
thermodynamic properties of the gas the 

temperature-dependent part occurs as 0kT µ . Since 

0 kµ  is about 105 K for the molar volumes of an 

electron in metals, 0kT µ  is about 10-3 K to 10-2 K 
for ordinary temperatures. The thermodynamic 
functions of degenerate gas, at the concentrations 

considered, do not depend greatly on temperature T . 
In particular, the heat capacity is almost negligible 
compared to that due to the vibrations of the ions up to 
considerable temperature. 

In the case of FkT ε , which is considered to a 
non-degenerate gas, the considerations will be very 
similar to the corresponding case discussed in Eliezer, 
et. al. [26] for a Bose-Einstein gas except that we 
would have to use the following expansion as 
illustrated in Eq. (73) [26]: 
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(73) 
The final results for the various thermodynamic 

functions have already been given in the book Eliezer 
et. al. [26], chapter (5.64) and (5.68); the lower signs 
correspond to Fermi-Dirac statistics and for an electron 
gas G=2. 

With this, we come to the conclusion of the short 
review. 

8. Conclusion 

In conclusion, we are hoping that we have managed 
to bring the functions of a degenerate Fermi-Dirac gas 
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together as a short review via statistical mechanics 
approach and readers are no longer need to search for 
them and their related derivation by looking all over the 
textbooks as well as internet these days, such as 
Wikipedia.org or any other resource. 
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