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Abstract: Antineoplastic phospholipids are a new class of antitumor agents. These molecules interact with the plasma membrane, 
changing numerous pathways that induce cell death, with high selectivity for cancer cells. A representative of this class of 
antineoplastic agents is 2-aminoethyl dihydrogen phosphate (2-AEH2P). It is present in high intracellular concentrations in various 
tissues and organelles with antitumor, antiproliferative and pro-apoptotic action. Therefore, 4T1 triple-negative tumor cells were 
treated in different concentrations in order to assess the cytotoxic potential and its effects on the modulation of cell death pathways in 
association with the chemotherapeutic drug Paclitaxel. 2-AEH2P promoted cytotoxicity in tumor cells and significant morphological 
changes, however, it did not cause these effects in normal cells. There was positive regulation of proteins involved in the intrinsic 
pathway of cell death by apoptosis and regulation of the phases of cell cycle progression. Furthermore, structural and distribution 
changes in mitochondria, as well as decreased cell density and regression of the cytoskeleton were observed. The 2-AEH2P 
demonstrated a modulatory potential of apoptotic pathways inducing cell death, being a new compound with antitumor properties. 
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1. Introduction 

Breast cancer occupies the second position in 

number of cases and, according to GLOBOCAN [1], 

for 2020, the global estimate is 2,179,457 and, for the 

year 2040, about 3,059,829 cases. In the female 

population, breast cancer is also commonly diagnosed 

(24.2%), being the most frequent in 154 countries and 

the leading cause of cancer death (15.0%) in 103 

countries [2]. 

The most commonly diagnosed histological type is 

invasive ductal carcinoma (50-75%), followed by 

invasive lobular carcinoma (5-15%), and with mixed 
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ductal/lobular carcinomas and other rarer histology 

constituting the remainder of the diagnoses [3]. The 

triple-negative subtype constitutes approximately 15% 

of all breast tumors and is characterized by the 

absence of expression of the estrogen receptor (ER), 

progesterone receptor (PR) or human epidermal 

growth factor receptor-type 2 (HER2) molecular 

targets [4]. Therefore, this type of tumor has a high 

recurrence rate between three to five years after 

diagnosis [5]. 

Primary tumor cells taken from spontaneous tumors, 

due to their similarity to breast tumor cells, can be 

used as an excellent study model [6]. Thus, the 4T1 

murine breast carcinoma orthotopic model is ideal for 

studies of molecular, cellular and pathological bases, 
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as well as studies of therapeutic strategies [7]. This 

tumor is highly tumorigenic and invasive, being able 

to spontaneously metastasize from the primary tumor 

to distant regions, as in lymph nodes, blood, liver, 

lung, brain and bone [8-10]. In addition, it has an easy 

implantation in the mammary gland and metastatic 

progression to lymph nodes and other organs similarly 

to triple negative human breast cancer, the human 

equivalent is MDA-MB-231 [11]. 

Breast cancer is known for its low response to 

traditional treatments adopted, such as chemotherapy 

and radiotherapy, therefore, the development of new 

therapeutic therapies is urgent. Thus, antineoplastic 

phospholipids and lipid precursors appear as a new 

class of antitumor agents. Without causing damage to 

DNA, these molecules interact with the plasma 

membrane, altering its update and inducing cell death, 

with high selectivity for cancer cells [12, 13]. The 

phospholipid 2-aminoethyl dihydrogen phosphate 

(2-AEH2P), present in high intracellular concentrations 

in various tissues, is related to osmoregulation, 

neuromodulation and membrane stabilization [14, 15]. 

In addition, ethanolamine-derived phospholipids are 

present in the cell membrane as an important structural 

component, performing regulatory functions in cell 

division, signaling, autophagy and phagocytosis [16]. 

Studies carried out by our group on murine 

B16-F10 melanoma cells with 2-AEH2P have 

demonstrated their antiproliferative effects and cell 

cycle block in S or G2/M phases [17]. The treatment 

caused antiproliferative effects reducing the Cyclin D1 

mRNA as well as the transcription of the vascular 

endothelial growth factor receptor 1 (VEGFR1) gene 

and the expression of the VEGFR1 receptor [18]. In 

acute promyelocytic leukemia cell lines, after 

treatment with 2-AEH2P, there was a decrease in the 

expression CD177+ and Gr-17+ in immature myeloid 

cells bone marrow, spleen and liver [19]. The action 

of 2-AEH2P in the mitochondrial intrinsic pathway, 

promoted apoptotic effects in MCF-7 breast cancer 

cells, leading to an interruption followed by the 

release of cytochrome c. The 2-AEH2P induced 

apoptosis independent of Caspase-3 and stopped the 

cell cycle in phase G1 and decreased expression of 

cyclin D1 [20]. 

In the global scenario, speaking of the incidence of 

breast cancer, as well as resistance and low responses 

to therapies and non-specific treatments, it is 

necessary to search for new therapeutic strategies. In 

the study, therefore, we sought to evaluate the 

cytotoxicity of 2-AEH2P and its therapeutic effects, as 

well as the modulation of the pro-apoptotic pathway 

in murine 4T1 breast adenocarcinoma cells. 

2. Material and Methods 

2.1 Compound Preparation Monophosfoester 2-AEH2P 

The monophosphoester 2-aminoethyl dihydrogen 

phosphate (2-AEH2P) was obtained from 

(PhosphoPure®), the pure product was analyzed in 

plasma by inductive coupling and mass spectrometry. 

2.2 Cell Culture 

The 4T1 line obtained from the American Type 

Culture Collection (ATCC® CRL-2539 ™, Rockville, 

MD, USA) and FN1 human fibroblast cells obtained 

from patients undergoing blepharoplasty normal 

dermatological surgery procedures, which were part of 

the FMUSP project 921/06, was grown in RPMI 

medium (LGC Biotecnologia, Cotia, SP, Brazil). The 

medium was supplemented with 2 mM l-glutamine 

(Cultilab, Campinas, SP, Brazil), 10 mM HEPES 

(Cultilab, Campinas, SP, Brazil), 24 mM sodium 

bicarbonate, 0.01% antibiotics and 10% of fetal 

bovine serum (Cultilab, Campinas, SP, Brazil). The 

cells were grown in 5% ambient CO2 at 37 °C as 

monolayer cultures. The cells were checked for 

viability using the trypan blue exclusion test. 

2.3 Cytotoxicity Assay by the MTT Method 

Tumor cells 4T1 (105 cells/well) were seeded in 

6-well plates and incubated for 24 and 48 h and were 

treated with concentrations of 2-AEH2P ranging from 
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10 to 100 mM, Paclitaxel in concentrations from 0.5 

to 8, 5 μM and Paclitaxel in combination with 

2-AEH2P in concentration at 40 mM. The absorbance 

quantification was performed in an ELISA reader, and 

the inhibitory concentration of 50% (IC50%) of 

2-AEH2P was determined from the dose-response 

curve. 

2.4 Analysis of the Potential of Mitochondrial 

Membrane (Δ�m) 

The 4T1 tumor cells (105 cells/well) were seeded in 

6-well plates and incubated for 24 h and treated with 

concentrations of 20, 40, 60 mM of 2-AEH2P. After 

24 h, the cells were harvested and washed once with 

phosphate-buffered saline (PBS) and stained with 

Rhodamine-123 (Rho 123) for 15 min at 37 ºC. Then, 

the cells were washed once with PBS and maintained 

at 4 °C during measurements. The mitochondrial 

membrane potential (Δ�m) was measured by flow 

cytometry with FACScalibur (Becton Dickinson). A 

total of 10,000 cells/samples were analyzed and the 

average fluorescence intensity recorded. 

2.5 Evaluation of Morphological Changes in the 

Cytoskeleton by Laser Confocal Microscopy 

The 4T1 tumor cells were plated in 24 wells (105 

cells/well) at a concentration of 20, 40 and 60 mM of 

2-AEH2P, for 24 h. After the treatment period, the 

supernatant was removed and the cells were fixed with 

4% paraformaldehyde in PBS for 20 min at room 

temperature. Then, the cells were washed with PBS 3 

times for 5 min each. The cell membrane was 

permeabilized with 0.1% Triton X-100 at room 

temperature for 15 min. The non-specific binding sites 

were blocked with PBS+1% BSA + 0.1% (100 µg/mL) 

at 37 °C for 40 min. After blocking, the cells were 

incubated with the combined FITC-Phalloidin (2 

µg/mL) (Sigma Aldrich Code P5282) for 1 h. The 

cells were then washed with PBS 3 times for 5 

minutes each and incubated with propidium iodide (PI) 

(20 µg/ml) for 5 min. Following the same cell culture 

above and the same concentrations, the cells were 

marked by rhodamine-123 (Molecular Probes, USA), 

for 15 min at 37 °C. After incubation, excess 

rhodamine-123 was removed and the cells washed in 

culture medium. After labeling the fluorochrome, the 

cells were washed 3 times with PBS for 5 min each 

under a confocal laser microscope (Carl Zeiss LSM 

700; Leica, Mannheim, Germany). 

2.6 Analysis of the Cell Cycle Phases 

The 4T1 tumor cells were treated with 20, 40 and 

60 mM of 2-AEH2P at a density of 1 x 106 per well for 

24 h. The cultured cells were collected and fixed with 

70% ethanol/20 mg/mL RNase (Sigma), and stored at 

-20 ºC for 24 h. The samples were centrifuged and 

resuspended in 200 µL of Fac’s buffer, 20 µL of 

Triton X-100 (Sigma-Aldrich), and 50 µg/mL of 

propidium iodide (Sigma-Aldrich) maintained for 30 

min at room temperature. The DNA content of each 

sample (10,000 events) was quantified for by flow 

cytometry, the data were analyzed by CellQuest 

software (Becton Dickinson) and the data were 

analyzed by ModFit program. 

2.7 Apoptosis and Necrosis Detection Test 

For the detection and evaluation of apoptosis, cells 

were seeded in 6-well culture plates and treated with 

20, 40 and 60 mM 2-AEH2P within 24 h. Cells were 

collected, washed and resuspended in 100 μL PBS, 

followed by incubation. Then, the cells were stained 

with the apoptosis detection kit Anexina V-FITC/PI 

(BD Bioscience) and incubated in the dark at room 

temperature for 15 min. After incubation, 400 µL 

binding buffer was added and the cells were analyzed 

by flow cytometry (FACScalibur, Becton Dickinson) 

using the CellQuest software to determine the 

percentage of apoptotic cells with at least 10,000 

events per sample. 

2.8 Expression of Markers by Flow Cytometry 

The 4T1 tumor cells treated with 2-AEH2P and the 
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control groups were incubated with 1 µg of the 

specific antibodies involved in cell death for 1 h at 

4 °C, using cell cycle progression regulators 

(cytocrome-c, Bax, Bad, Bcl-2, p53, Ki-67, caspase-3, 

caspase-8 and TNF-DR4). After this period, the cells 

were centrifuged at 1500 rpm and washed twice with 

ice-cold PBS and 0.2% BSA. The supernatant was 

discarded and the pellet was resuspended in 200 µl of 

Facs buffer containing 0.1% paraformaldehyde. Read 

and analysis the expression of receptors on the surface 

of tumor cells was performed in a flow cytometer 

FACSCalibur (BD) at FL-1 intensity, and histograms 

were obtained and analyzed in Cell-Quest (BD). A 

least 10,000 events were purchased for each sample. 

2.9 Synergy Finder 2.0 Analysis of Multiple Drug 

Combinations 

The 4T1 adenocarcinoma cells were treated with 

phospholipid 2-AEH2P and chemotherapy paclitaxel 

at 24 h and 48 h, respectively, to determine the 

synergistic effect between the drugs. SynergyFinder 

2.0 software quantified the degree of synergy of a 

single drug’s doubling effect as if they were acting 

independently (Bliss). The following higher-order 

formulations are used to quantify the multi-drug 

combination effect between 2 drugs: 

ܵ஻௅ூௌௌ ൌ ஺,஻ܧ െ ሺܧ஺ ൅  ஻ሻܧ

݁ݎ݋ܿܵ ݕ݃ݎ݁݊ݕܵ ൌ
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3. Results 

3.1 2-AEH2P Has Cytotoxic Activity in 4T1 
Triple-Negative Breast Tumor Cells 

In order to investigate the cytotoxic effects of 

2-aminoethyl dihydrogen phosphate (2-AEH2P) in 

4T1 tumor cells, a MTT colorimetric assay was 

performed in the periods of 24 and 48 h. In 4T1 tumor 

cells, 2-AEH2P produces cytotoxic effects, with IC50% 

values of 17.4 mM, 2.6 mM and 0.8 mM, in 24 h, 48 h 

and 72 h respectively. The cells when treated with 

Paclitaxel showed IC50% values of 6.3 μM in 24 h, 0.9 

μM in 48 h and 0.5 μM in 72 h. The association of 

Paclitaxel and 2-AEH2P obtained a result of greater 

cell cytotoxicity at lower concentrations, with IC50% of 

2.4 μM in the 24 h period and for the period of 48 and 

72 h the IC50% was 0.2 and 0.08 μM respectively 

(Figure 1B, 1C and Table 1). 

After 24 h treatment, 4T1 tumor cells showed 

significant morphological changes with the presence 

of cells in abnormal cell division containing 

aneuploidy. After the treatment of 2-AEH2P 

associated with Paclitaxel, groupings of dead and 

detached cells from the substrate and spherical 

morphology were observed, as well as the formation 

of apoptotic bodies. Thus, the cytotoxic effect of 

2-AEH2P on 4T1 tumor cells has been proven and, in 

association with Paclitaxel, have a marked cytotoxic 

effect (Figure 1A). 

3.2 Evaluation of Mitochondrial Electrical Potential 

and Cytoskeleton Rearrangement 

The changes in the mitochondrial membrane 

potential were evaluated in the 4T1 tumor cells with the 

Rodamina 123 probe and showed a significant decrease 

in the mitochondrial electrical potential after the 24 h 

treatment with 2-AEH2P. As well as integrity, the 

distribution of mitochondria has been altered, 

preferentially passing from the nucleus to the 

cytoplasm. In fact, the transfer of mitochondria from 

the nucleus to the cytoplasm is more accentuated in the 

higher concentrations of 2-AEH2P (Figure 2A, 2C and 

2D). 

It is possible to observe by the staining with Faloidin 

and Propidium Iodide (PI) that the treatment with 

2-AEH2P promoted a reduction in cell confluence and 

some cells showed aneuploidy, aberrant cell division 

and cells showing increased cell volume. It was 

observed that the control group showed similar 

morphology, with spindle and mononucleated cells. 

The tumor cells in those treated with 60 mM became 

spherical due to themodification of the cytoskeleton, as 

well as the presence of nuclear fragmentation (Figure 

2B). 
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Fig. 5  Analysis of marker expression in 4T1 murine triple-negative breast tumor cells. The expression of the markers was 
quantified by flow cytometry, after 24 h of treatment with the monophospester 2-AEH2P. (a) Expression of caspase 3, caspase 
8 and TNF-DR4; (b) Expression Bcl-2, BAD and BAX; (c) Expression of P53, cytochrome C and Ki-67 depending on the 
treatments. Bar graphs demonstrate the protein expression level as mean ± SD of three independent experiments. The 
statistical differences were obtained by ANOVA and the Tukey-Kramer multiple comparison test. * p < 0.05, ** p < 0.01 and 
*** p < 0.001. 
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4. Discussion 

Antineoplastic phospholipids emerge as a new 

antitumor strategy that acts directly on the plasma 

membrane, altering its renewal and, consequently, 

inducing cell death [12, 13]. Therefore, the 

monophosphoester 2-AEH2P was shown to be 

effective in the ability to inhibit the proliferation of 

4T1 tumor cells, after 24 and 48 h of treatment. The 

data obtained corroborate studies published by our 

group, which 2-AEH2P showed cytotoxic potential in 

human breast adenocarcinoma cells MCF-7 and in 

human chronic myeloid leukemia cells K562 and 

K562-Lucena MDR+ (Multi drug resistance related to 

P-Glycoprotein) [19, 20]. 

Due to the rapid cell division and high proliferation 

rate, tumor cells have a greater energy requirement 

than normal cells [21]. Thus, the tumor cells alter their 

metabolism and these changes try to supply the 

constant need for nutrients and energy [22]. Therefore, 

since mitochondria serve as the “potency” of cells, 

they can be successful targets for tumor cell therapies 

[22]. These organelles are dynamic and play a central 

role in the apoptotic process, therefore, the decrease in 

mitochondrial potential (Δ�m) is known as a trigger 

for cell death due to apoptosis and this mechanism 

may be associated with the intrinsic apoptotic signaling 

pathway [23]. Analyzing the Δ�m of Ehrlich tumor 

cells, it showed that the effects of 2-AEH2P are 

attributed to its ability to induce apoptosis by reducing 

Δ�m [24]. These data corroborate the results obtained 

in this work, since 2-AEH2P induced a similar 

mechanism in 4T1 tumor cells, reducing Δ�m, which 

may be a key event to trigger signals that will result in 

cell death due to apoptosis. 

The reduction in mitochondrial electrical potential 

and the increase in pro-apoptotic proteins, linked to 

membrane permeability are related to the release of 

cytochrome c by mitochondria [25]. It was possible to 

observe the increased expression of cytochrome c in 

4T1, as well as in other tumor lines after treatment 

with 2-AEH2P, reinforcing its role in modulating the 

intrinsic pathway of apoptosis [19, 20, 26-28]. 

Most of these apoptotic events are modulated by 

caspases, which are divided into initiators (8, 9 and 12) 

and executors (3, 6 and 7), the latter being responsible 

for morphological changes in the nucleus and 

cytoskeleton [29]. The 2-AEH2P increased the 

expression of caspases 3 and 8 in 4T tumor cells. The 

activation of different caspases can initiate or amplify 

the apoptosis processes, depending on the 

mitochondrial pathway or independent caspases [30]. 

Results also obtained in other studies corroborate that 

2-AEH2P modulates the intrinsic pathway of apoptosis 

in response to the activation of caspase 8 [17, 31]. 

The Bcl-2 protein exhibits an anti-apoptotic effect 

and Bax and Bad work in the opposite way, being able 

to induce cell death, therefore being pro-apoptotic 

proteins [25]. Our results show an increase in Bad and 

Bax expression and a reduction in Bcl-2 in 4T1 tumor 

cells after treatment with 2-AEH2P. These data 

obtained are convergent to those reported in the 

literature [32] where 2-AEH2P increased the 

expression of Bax and Bad and had a negative 

regulation of Bcl-2 in human hepatocarcinoma [33] 

and human breast adenocarcinoma MCF-7 [27]. 

The p53 protein regulates the S transition to the 

G2/M phase of the cell cycle, which involves the 

regulation of cell division cycle 2 (Cdc2 kinase), 

essential for cells to enter mitosis [32]. Thus, our 

results showed an increase in p53 expression in the 

treatment with 2-AEH2P and similar data were found 

in squamous cell tumor lines of the oral cavity 

squamous cell carcinoma (SCC9 and SCC25) [26] and 

in human breast tumor lines [27] when treated with 

2-AEH2P. 

We analyzed the percentage of distribution of tumor 

populations in the phases of the cell cycle after 

treatment with 2-AEH2P and the data show an 

increase in fragmented DNA and a significant 

decrease in all other phases of the cycle. The increase 

in the population of cells in the G2/M phase was also 
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observed, when treated with 2-AEH2P, in murine 

melanoma cells B16-F10 and in breast cancer MCF-7 

[17, 20]. 

The 2-AEH2P induced cell death by apoptosis and 

not by necrosis, which was confirmed by the 

Annexin/PI assay. In this study, 2-AEH2P increased 

the percentage of cells in late apoptosis compared to 

the treated control group. This same compound was 

tested in other tumor cell lines and obtained results 

similar to those observed in this work [17, 19, 28]. 

Therefore, the data indicate that 2-AEH2P modulates 

the cell cycle of 4T1 tumor cells by altering the cell 

proliferation process that is so intense in these tumor 

cell types. 

The cytotoxic effect of 2-AEH2P associated with 

the chemotherapy drug Paclitaxel was evidenced, an 

increase in the antiproliferative potential. The effect of 

this association was clearly evident in changes in cell 

morphology, which showed a marked cytoplasmic 

retraction and regression of the cytoskeleton. 

Paclitaxel inhibits cell growth and stabilizes the 

polymerization of microtubules, preventing the cell 

from replicating and remaining in the G2 phase of the 

cell cycle [34, 35]. 

The association with Paclitaxel was considered a 

potent antineoplastic agent used in several types of 

tumors, such as pancreas, breast, stomach, ovary and 

lung cancer [36, 37]. This chemotherapy promotes the 

formation of exceptionally stable microtubules, 

inhibiting the normal dynamics of the reorganization 

of the network formed by microtubules necessary for 

mitosis and cell proliferation [38]. In addition, 

Paclitaxel induces the accumulation of cells in the 

G2/M phases of the cell cycle and leads to apoptosis 

in sensitive cells [39, 40]. It was observed, in MCF-7 

breast cancer cells, treated with this drug, the presence 

of apoptotic bodies in 24 h of treatment and peaks in 

48-72 h [41, 42]. 

5. Conclusions 

The 4T1 triple-negative breast tumor cell, after 

treatment with the 2-aminoethyl dihydrogen 

phosphate monophosphoester, showed selective 

cytotoxicity and significant morphological changes in 

cell death due to apoptosis. The association with the 

chemotherapy drug Paclitaxel, then, which had 

additive effects, may favor antitumor therapy and 

mitigate possible adverse effects. In addition, when 

the cells were treated with 2-AEH2P, there was 

positive regulation of proteins involved with the 

intrinsic pathway of cell death by apoptosis. There 

was an increase in populations of cells in late 

apoptosis, as well as structural and distribution 

changes in mitochondria and a decrease in cell density. 

In addition, 2-AEH2P decreased the proteins that 

regulate cell proliferation, increased fragmented DNA 

and altered the distribution of the cell cycle phases. 

Thus, the 2-AEH2P monophosphoester has been 

shown to have specificity in tumor cells and plays a 

modulatory role in apoptotic pathways, thus being a 

promising antitumor and antiproliferative agent. 
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