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Abstract: Nearly all scientists, at conjunction with simplifying a differential equation, have probably used dimensional analysis.
Dimensional analysis (also called the Factor-Label Method or the Unit Factor Method) is an approach to the problem that uses the fact
that one can multiply any number or expression without changing its value. This is a useful technique. However, the reader should take
care to understand that chemistry is not simply a mathematics problem. In every physical problem, the result must match the real world.
In physics and science, dimensional analysis is a tool to find or check relations among physical quantities by using their dimensions.
The dimension of a physical quantity is the combination of the fundamental physical dimensions (usually mass, length, time, electric
charge, and temperature) which describe it; for example, speed has the dimension length/time, and may be measured in meters per
second, miles per hour, or other units. Dimensional analysis is necessary because a physical law must be independent of the units used
to measure the physical variables in order to be general for all cases. One of the most derivation elements from dimensional analysis is
scaling and consequently arriving at similarity methods that branch out to two different groups namely self-similarity as the first one,
and second kind that through them one can solve the most complex none-linear ODEs (Ordinary Differential Equations) and PDEs
(Partial Differential Equations) as well. These equations can be solved either in Eulearian or Lagrangian coordinate systems with their
associated BCs (Boundary Conditions) or ICs (Initial Conditions). Exemplary ODEs and PDEs in the form of none-linear can be seen in
strong explosives or implosives scenario, where the results can easily be converted to induction of energy in a control forms for a
peaceful purpose (i.e., fission or fusion reactions).

Key words: Renewable, nonrenewable source of energy, fusion and fission reactors, small modular reactors and generation four
system, nuclear micro reactor, space reactor, dynamic site, return on investment, total cost of ownership.

1. Introduction

In physics and science, dimensional analysis is a
method of analysis to find or express the relations
among physical quantities in terms of their dimensions.
The dimension of a physical quantity is the
combination of the basic physical dimensions (usually
mass, length, time, electric charge and temperature)
which describe it; for example, speed has the
dimension length/time, and may be measured in meters

per second, miles per hour, or other units [1].
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Dimensional analysis is routinely used to check the
plausibility of derived equations and computations as
well as forming reasonable hypotheses about complex
physical situations. That can be tested by experiment or
by more developed theories of the phenomena, which
allow categorizing the types of physical quantities. In
this case, units are based on their relations or
dependence on other units or dimensions, if any.

Isaac Newton (1686), who referred to it as the “Great
Principle of Similitude”, understood the basic principle
of dimensional analysis. Nineteen-century French
made

mathematician Joseph Fourier significant

contributions based on the idea that physical laws like
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F = MA should be independent of the units employed
to measure the physical variables. This led to the
conclusion that meaningful laws must be homogeneous
equations in their various units of measurement, a
result that was eventually formalized by Edgar
Buckingham with the 7 (Pi) theorem. This theorem
describes how every physically meaningful equation
involving n variables can be equivalently rewritten as
an equation of n-m dimensionless parameters, where m
is the number of fundamental dimensions used.
Furthermore, and most importantly, it provides a
method for computing these dimensionless parameters
from the given variables [1].

A dimensional equation can have the dimensions
reduced or eliminated through nondimensionalization,
which begins with dimensional analysis, and involves
scaling quantities by characteristic units of a system or
natural units of nature [1].

The similarity method is one of the standard methods
for obtaining exact solutions of PDEs (Partial
Differential Equations) in particular non-linear forms.
The number of independent variables in a PDE is
reduced one-by-one to make use of appropriate
combinations of the original independent variables as
new independent variables, called ‘“similarity
variables”.

In some cases, the dimensional analysis does not
provide an adequate approach to establish a solution of
a certain eigenvalue problem in nonlinear form, which
gives rise to the need to discuss the similarity method
as another approach. In particular, for a simple case of
dealing with a nonlinear partial differential, which can
be reduced to an ordinary differential, so it can be
solved for a closed solution, in ordinary way of
methods that we have learned in any classical text
books of applied mathematics.

In more complex scenarios, dealing with
boundary-value problems for a system of ordinary
equations with conditions at different ends of an
infinite interval requires constructing a self-similar

solution that is a more efficient way of solving such

complex bounder value problems the system of
ordinary equations directly.

In a specific, instance the passage of the solution into
a self-similar intermediate asymptotic allows not to
have a need to return to the partial differential
equations, indeed, in many cases, the self-similarity of
intermediate asymptotic can be, established and the
form of self-similar intermediate asymptotic obtained
from dimensional considerations [1, 2].

In this short review under the presented title of this
article, we are looking at some specific aspect of
dimensional analysis for dealing with a certain aspect
of explosion and implosion, which is in a very
controlled way of inducing energy by solving the most
sophisticated ODEs (Ordinary Differential Equations)
or PDEs of shock movement generated by either of
these processes. For this matter, we are introducing
method of similarity and self-similarity of first and
second kind respectively.

The human partner in the interaction of a man and a
computer often turns out to be the weak spot in the
relationship. The problem of formulating rules and
extracting ideas from vast masses of computational or
experimental results remains a matter for our brains,
our minds. This problem is closely connected with the
recognition of patterns. The word “obvious” has two
meanings, not only something easily and clearly
understood, but also something immediately evident to
our eyes. The identification of forms and the search for
invariant relations constitute the foundation of pattern
recognition; thus, we identify the similarity of large
and small triangles, etc.
called
self-similarity if the spatial distributions of its

A time-developing phenomenon s
properties at various moments of time can be obtained
from one another by a similarity transformation and the
fact that we identify one of the independent variables of
dimension with time is nothing new from the subject of
dimensional analysis point of view. However, this is
where the boundary of dimensional analysis goes

beyond Pi theorem and steps into a new arena known as
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self-similarity, which has always represented progress
for researchers.

In recent years, there has been a surge of interest in
self-similar solutions of the first and second kind. Such
solutions are not newly discovered; they had been
identified and, in fact, named by Zel’dovich, famous
Russian Mathematician in 1956, in the context of a
variety of problems, such as shock waves in gas
dynamics and filtration through elasto-plastic materials
[3].

Self-similarity has simplified computations and the
representation of the properties of phenomena under
investigation, and it handles experimental data and
reduces what would be a random cloud of empirical
points to lie on a single curve or surface, construct
procedure that is, known to us as self-similar where
variables could be, chosen in some special way.

The self-similarity of the solutions of partial
differential equations, either linear or non-linear form,
has allowed their reduction to ordinary differential
equations, which often simplifies the investigation.
Therefore, with the help of self-similar solutions,
researchers and scientists have attempted to envisage
new phenomena’ characteristic properties.

Nonlinearity plays a major role in understanding
most physical, chemical, biological, and engineering
sciences. Nonlinear problems fascinate scientists and
engineers but often elude exact treatment. However
elusive may be the solutions do exist—if only one
perseveres in seeking them out [2].

2. Eulerian and Lagrangian Coordinate
Systems

Before we go forward with the subject of
dimensional analysis and utilization of similarity or
self-similarity, we have to pay attention to coordinate
systems, which are known to engineers and scientists
as either Eulerian or Lagrangian coordinate systems. In
dealing with the complexity of partial differential
exact solutions

equations and quest for their

analytically, one needs a certain defined boundary

condition that describes the problem at hand. These
boundary conditions need to be defined either in the
Eulerian or Lagrangian coordinate system when time is
varying for the problem of interest. Therefore, we have
to have a grasp of Eulerian and Lagrangian coordinate
systems and the difference between them as well.

To have a concept for the time, we need a motion,
and motion is always determined with respect to some
reference system known as the coordinate system in
three-dimensions. A correspondence between numbers
and points in space is established with the aid of a
coordinate system. For three-dimensional space we
assume three numbers X;, X, and X; correspond to
and Z
coordinate system in the Cartesian coordinate system

points as three components of X , Y

and accordingly for Curvilinear coordinate system for
its own designated components according to Figs. la
and 1b and they are called the coordinates of the point.

In Figs. la and 1b, for lines along with any two
coordinates remain constant, are called coordinate lines.

For example, the line for which X, is constant and X,

Z=x,
Y =x,
X=x

(a)

X3

X
X1

(b)

Fig. 1 Cartesian and Curvilinear coordinate systems.
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is constant, defines the coordinate line X;, along which
different points are fixed by the values of X ; the
direction of increase of the coordinate X; defines the
direction along this line. Three coordinate lines may be
depicted through each point of space. However, for
each point, the tangents to the coordinate lines do not
lie in one plane and, in general, they form a
non-orthogonal trihedron. Now let us assume, these
three points mathematically are presented as X, for
i=1,2,3, and the coordinate lines X; are straight,
then the system of coordinates is rectilinear; and if not,
then the system is curvilinear. For our purpose of
discussion on subject of motion of a continuum
anywhere that we encounter it, would be necessary to
present the curvilinear coordinate system, which is
essential in continuum mechanics.

Now that we start our introduction with concept of
time t, then we need to make a notation of time and
coordinate system X; . Therefore, the symbols X;, X,
and X; will denote coordinates in any system which
may also be Cartesian, the symbolsof X , Y and Z
in orthogonal form, are presentation Cartesian
coordinate system while the fourth dimension time is
designated with symbol of t. Thus, if a point moves
relative to the coordinate systems X;, X, and X;,
while its coordinate changes in time, then we can

mathematically present motion of point as follow:
X = fi (t)
for
i=1,2,3 (1

With this notation, the motion of the point will be
known if one knows the characteristic and behavior of
Eq. (1), providing that the moving point coincides with
different points of space at different instants of time.
This is, referred to as the Law of Motion of the point,
and by knowing this law, we can now define the motion
of a continuum. A continuous medium represents a
continuous accumulation of points, and by definition,

knowledge of the motion of a continuous medium

result in knowledge of the motion of all points. Thus, in
general, as one can see, for the study of the motion of a
volume of a continuous body as whole, it is insufficient
proposition.

For the above situation, one must treat each distinct
point individually in order to form a geometrical point
of view that is entirely identical points of the
continuum. This is, referred to as individualization of
the points of a continuum, and below how this law is
used in theory and is, determined by the fact that the
motion of each point of a continuous medium is subject
to certain physical laws that we need to take under
consideration [4].

Let the coordinates of points at the initial time {, be
denoted by &, &,,and & or for that matter denoted
by & for i =1,2,3 and the coordinated of points at
an arbitrary instant of time t by X, X,,and X;, orin
general noted as X for 1 =1,2,3 as we have done it
before. For any point of a continuum, specified by the
coordinates &, &, and &, one may write down the
law of motion which contains not only functions of a
single variable, as in the case of the motion of a point,
but of four variables (i.e. all three coordinates plus
time), therefore the initial coordinates fl , &,and &

as well as the time t, we can write [1, 2]:

X =X%(&,8,,651)
X, =%(5,5,,6,1) = X =%(&,8,,8:1)
X; =%(8,6,, 6351

2)

If in Eq. 2), &, &, and &; are fixed and t
varies (Eulerian), then Eq. (2) describes the law of
motion of one selected point of the continuum. If fl ,
&, and & vary and the time t is fixed, then Eq. (2)
gives the distribution of the points of the medium in
space at a given instant of time (Lagrangian). If &,
&, , and & including time t vary, then one may
interpret Eq. (2) as a formula which determines the
motion of the continuous medium and, by definition,
the functions in Eq. (2) yield the Law of Motion of the
continuum. The coordinates & , 52 , and §3 or



Dimensional Analysis and Similarity Method Driving Self-similar Solutions of the 237
First and Second Kind Inducing Energy

sometime definite functions of these variables,
which individualize the points of a medium, and the
time tare referred to as Lagrangian coordinates. In
case of, continuum mechanics, the fundamental
problem is to determine the functions presented in
Eq. (2).

To expand the above discussions into fluid
mechanics in order to analyze fluid flow, the different
viewpoints can be taken, very similar to using different
coordinate systems. For this matter, two different
points of view will be discussed for describing fluid
flow. They are called Lagrangian and Eulerian

viewpoints.
2.1 Lagrangian Viewpoint

The flow description via the Lagrangian viewpoint is
a view in which a fluid particle is followed. This point
of view is widely used in Dynamics and Statics and
easy to use for a single particle. As the fluid particle
travels about the flow field, one needs to locate the
particle and observe properties’ change [1, 2].
That is:
r(1) Position
T(,¢,,4,,t) Temperature

p(§1 5 52 5 53 ) t) Density
P(,&,,&,,t)  Pressure

where &, & and & represent a particular particle

©)

or object. One example of Lagrangian description is the
tracking of whales (position only). In order to better
understand the behavior and migration routes of the
whales, they are commonly tagged with satellite-linked
tags to register their locations, diving depths and
durations as illustrated in Figs. 3a and 3b [1, 2].

In summary, in Lagrangian schema, frame of
reference is moving along with boundary and initial
conditions (see Fig. 2).

2.2 Eulerian Viewpoint

The first approach to describe fluid flow is through
the Eulerian point of view. The Eulerian viewpoint is

bt \_
O > _.7—.-_
(a)
ﬂ
_r_ﬂx\\&
L _/-—
(b)

Fig. 2 Lagrangian viewpoint.

(a) Tracking of Wales

(b) Weather Balloon
Fig. 3 Lagrangian examples [1, 2].

implemented by selecting a given location in a flow
field (X;,X,,X;), and observes how the properties
(e.g., velocity, pressure and temperature) change as the
fluid passes through this particular point. As such, the
properties at the fixed points generally are functions of
time, such as what is written in Eq. (4) and illustrated in
Figs. 4aand 4b [1, 2]:
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(b)
Fig. 4 Eulerian viewpoint.
V (X, %, ,%;,1)
T(X,X,,%;,t) Temperature
P(X,X,,X;,t)  Density
P(X,,X,,X,,t) Pressure

Velocity

“4)

It should be noted that the position function 7(t) is
not used in Eulerian viewpoint. This is a major
difference from the Lagrangian viewpoint, which is,
used in particle mechanics (i.e., Dynamics and Statics).

However, if the flow is steady, then the properties
are no longer the function of time. The Eulerian
viewpoint is commonly used, and it is the preferred
method in the study of fluid mechanics. Taking the
experimental setup, as shown in Fig. 5a, for example,
thermocouples (temperature sensors) are usually
attached at fixed locations to measure the temperature
as the fluid flows over the non-moving sensor location.

Another intuitive explanation can be given in terms
of weather stations. The Eulerian system can be
thought as land-based weather stations that record
temperature, humidity etc. at fixed locations at
different time.

In summary, in Eulerian schema, the frame of
reference is fixed with respect to the boundary and

initial conditions.

(b)
Fig. 5 Eulerian examples [1, 2].

In general, both Lagrangian and Eulerian viewpoints
can be used in the study of fluid mechanics. However,
the Lagrangian viewpoint is seldom used since it is not
practical to follow large quantities of fluid particles to
obtain an accurate portrait of the actual flow fields. The
Lagrangian viewpoint is commonly used in dynamics,
where the position, velocity, or acceleration over time
are important to describe in a single equation. As it
turns out, there is a big difference in how we express
the change of some quantity depending on whether we
think in the Lagrangian or the Eulerian sense.

In summary, there are two different mathematical
representations of fluid flow:

(1) The Lagrangian picture in which we keep track
of the locations of individual fluid particles. Picture a
fluid flow where each fluid particle carries its own
properties such as density, momentum, etc. As the
particle advances, its properties may change in time.
The procedure of describing the entire flow by
recording each fluid particle’s detailed histories is the

Lagrangian description. In other words, pieces of the
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fluid are “tagged”. The fluid flow properties are
determined by tracking the particles’ motion and
properties as they move in time. A neutrally buoyant
probe is an example of a Lagrangian measuring device.

The particle properties at position #(t) such as
temperature, density, pressure, --- can be
mathematically represented as follows: T(&,t) ,
p(&.1), P(&,t),---for i=1,2,3. Note that & is
representation of a fixed point in three-dimensional
space at given time t, which it may include initial time
t,.

The Lagrangian description is simple to understand
conservation of mass and Newton’s laws apply directly
to each fluid particle. However, it is computationally
expensive to keep track of all the fluid particles’
trajectories in a flow, and therefore, the Lagrangian
description is used only in some numerical simulations
[1,2].

(2) The Eulerian picture in which coordinates are
fixed in space (the laboratory frame). The fluid
properties such as velocity, temperature, density and
pressure are written as space and time functions.

The flow is determined by analyzing the behavior of
the functions. In other words, rather than following
each fluid particle, we can record the evolution of the
flow properties at every point in space as time varies.
This is the Eulerian description. It is a field description.
A probe fixed in space is an example of a
Eulerian-measuring device [1, 2].

This means that the flow properties at a specified
location depend on the location and on time. For
example, the velocity, temperature, density, pressure,

- can be mathematically represented as follows:
Vx,t), T(x,t), p(x,t), P(x,t), - for
i =1,2,3. Note that X; is the location of fluid at time
t.

The Eulerian description is harder to understand:
how do we apply the conservation laws?

However, it turns out that it is mathematically
simpler to apply. For this reason, we use mainly the

Eulerian description in fluid mechanics.

The aforementioned locations are described in
coordinate systems [1, 2].

3. ALE (Arbitrary Lagrangian Eulerian)
Systems

The Arbitrary Lagrangian-Eulerian that is noted as
ALE is a formulation in which computational system is
not a prior fixed in space (e.g., Eulerian Based
Formulation) or attached to material or fluid stream
(e.g., Lagrangian Based Formulations). ALE Based
Formulation can alleviate many of the drawbacks that
the traditional Lagrangian-based and Eulerian-based
formulation or simulation have.

When using the ALE technique in engineering
simulations, the computational mesh inside the
domains can move arbitrarily to optimize the shapes of
elements, while the mesh on the boundaries and
interfaces of the domains can move along with
materials to precisely track the boundaries and
interfaces of a multi-material system.

ALE-based finite element formulations can reduce
either Lagrangian-based finite element formulations by
equating mesh motion to material motion or
Eulerian-based finite element formulations by fixing
mesh in space. Therefore, one finite element code can
be used to perform comprehensive engineering
fluid flow,

fluid-structure interactions and metal manufacturing.

simulations, including heat transfer,

Some applications of ALE in finite element
techniques that can be applied to many engineering
problems are:

* Manufacturing (e.g., metal forming/cutting,
casting);

* Fluid-structure interaction (combination of pure
Eulerian mesh, pure Lagrangian mesh and ALE mesh
in different regions);
fields  with
multi-materials (moving boundaries and interfaces).

Another important application of ALE is the PIC

* Coupling of multi-physics

(Particle-In-Cell) analyses, particularly is plasma
physics. The PIC method refers to a technique used to
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solve a certain class of partial differential equations. In
this method, individual particles (or fluid elements) in a
Lagrangian frame are tracked in continuous phase
space, whereas moments of the distribution such as
densities and currents are computed simultaneously on
Eulerian (stationary) mesh points.

PIC methods were already in use as early as 1955 [5],
even before the first FORTRAN compilers were
available. The method gained popularity for plasma
simulation in the late 1950s and early 1960s by
Buneman, Dawson, Hockney, Birdsall, Morse and
others. In plasma physics applications, the method
amounts to following the trajectories of charged
self-consistent

particles in electromagnetic  (or

electrostatic) fields computed on a fixed mesh [6].
4. Similar and Self-similar Definitions

We need to understand better similar and self-similar
methods and their definition in the subject of
dimensional analysis. Once we have these methods
appropriately defined, we can extend it to Motion of a
Medium, particularly from a self-similarity point of
view. Also, we are able to deal with the complexity of
partial differential equations of conservation laws, such

Law, the
and finally, the

as Mass-Conservation

Momentum-Conservation Law,
Energy-Conservation Law of non-linear type both in
Eulerian and in Lagrangian schemes using all three
coordinates systems that we are familiar with. These
coordinates are, i.e., Cartesian, Cylindrical and
Spherical coordinate systems. Further, this allows us to
have a better understanding of the self-similarity of
first and second kind, their definitions, the differences
between them, and where and how they get applied to
our physics and mathematics problems at hand. A few
of these examples that we can mention here are,
self-similar motion of a gas with central symmetry,
both sudden explosion [7, 8] and sudden implosion [9]
problems. The first one is, considered self-similarity of
first kind while the

self-similarity of

lateral is considered as

second kind. Through these

understandings, we can have a better grasp of

gas-dynamics  differential equations and their
properties in a medium. In addition, the analysis of
such differential equations for a gas motion with
central symmetry becomes much easier by utilizing a
self-similar method.

The self-similar motion of a medium is one in which
the parameters that are characterizing the state and
motion of the medium vary in a way as the time varies,
the spatial distribution of any of these parameters
remains similar to itself. However, the scale
characterizing this perturbation/distribution can also
vary with time in accordance with definite rules. In
other words, if the variation of any of the above
parameters with time is specified at a given point in
space, then the variation of these parameters with time
will remain, the same at other points lying on a definite
line or surface, providing, that the scale of the given
parameter and the value of the time are suitably
changed [8].

The analytical conditions for self-similar motion
lead to one or more relations between the independent
variables, defining functions, which play the role of
new independent variables using dimensional analysis
and self-similarity approach [7]. This approach follows
that, in the case of self-similar motion, the number of
independent variables in the fundamental systems of
equations is correspondingly reduced. This technique
considerably simplifies the complex and non-linear
partial differential equations to sets of ordinary
differential equations. Thus, sometimes, this makes it
possible to obtain several analytical solutions
describing, for example, the self-similar motion of the
medium; as it was said, in the case of two independent
variables, and sometimes even in the case of three
independent variables, the fundamental system of
equations becomes a system of ordinary rather than
partial differential equations [8].

Applications of self-similar approach can be seen to
all unsteady self-similar motions with symmetry, all

steady plane motions and certain axial symmetrical
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motions as well. These types of approaches have
solved problems of self-similarity of first kind [7, 8]
and second kind [9] in past, where complex partial
differential equations of conservations law are
described by

equations.

systems of ordinary differential
Investigation of the most important modern gas

dynamics motions or plasma physics such as

laser-driven pellet for fusion confinement via
self-similar methods enables us to produce very useful
conclusions by solving the conservation law equations
in them, using self-similarity model. To be concerned
about more general types of motion of the medium also
allows us to develop and establish laws of motion in
various cases of practical interest.

They may include the propagation of strong shock
waves in case of explosion and implosion events,
propagation of soliton waves, and the reflection of
shock waves are few examples that can fall into the
category of self-similarity methods. To further have a
better

self-similarity requires knowledge of the fundamental

understanding of subject similarity and
equation of gas dynamics, where we can investigate a
compressible liquid or gas. Therefore, the next few
sections of this chapter are allocated to this matter and
related thermodynamics aspect of the state of medium
equations.

For this, we also need to understand the difference
between compressible and incompressible flows. In
addition, the details analysis of similarity can be found
in the books by the second author of this article and
short review, so we do not have to repeat the same
information here [1, 2].

5. Dimensional Analysis and Scaling Concept

Scaling is the branch of measurement that involves
constructing an instrument that associates qualitative
constructs with quantitative metric units, and the term
describes a very simple situation. S.S. Stevens came up
with the simplest and most straightforward definition
of scaling. He said:

“Scaling is the assignment of objects to numbers
according to a rule”.

However, what does that mean?

Most physical magnitudes characterizing nano-scale
systems differ enormously from those familiar with
macro-scale systems. However, estimating some of
these magnitudes can apply to scale laws to the values
for macro-scale systems. There are many different
scaling laws. At one extreme, there are simple scaling
laws that are easy to learn, easy to use, and very useful
in everyday life. This has been true since Day One of
modern science. Galileo presented several important
scaling results in 1638 [10].

The existence of a power-law relationship between
certain variables Y and X.

y = Ax“ 5)

where A and « are constants values. This type of
relationship often can be seen in the mathematical
modeling of various phenomena, not only in
mechanical engineering and physics, but also in other
science fields such as biology, economics and other
engineering discipline.

Distribution of Power-Law is unique and has certain
interesting features and graphically can be presented as
a log-log scale as a straight line. This can methodically

be shown, if we take the base 10 of logarithm of Eq.
(6):

log(y) = log(AX")

log(y) =log A+log x“

Assume ©)
logA=B

Then

logy=B+alogx

Last relationship in Eq. (6) has a general form of a
linear function as presented by log Y, and the slope of
this linear logarithmic function is the exponential of
power law ¢ and it is known as Hausdorff-Besicovitch

or fractal dimension [11].
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6. Energy in a High Intense Explosion

When the United States exploded the first nuclear
bomb under code name “Trinity” as part of Manhattan
Project at a location about 100 miles south of Los
Alamos in the aptly-named Jornada del Muerto
(Journey of Death) in the Alamogordo Desert of
southern New Mexico in 1945, the site was selected to
test the implosion device. Oppenheimer named the site
“Trinity” after a poem that he had been reading.

The event of this
associated with it was under shroud of secrecy, and

explosion and everything

both data and the motion picture of explosion footage
from the explosion were highly classified. Two years
later, when US government released a series of pictures
of the explosion, along with a size scale and time
stamps of the explosion (See Figs. 6 and 7, Trinity
explosion and its sequence). Taylor [7, 8] managed to
determine the energy released during the explosion
using only the expansion radius of the blast wave at
time t and the principle of dimension analysis. Later
on, when data were declassified, his analysis and
calculations were remarkably accurate to what these
data were showing.

Taylor first treated the problem in 1941, with a
numerical solution for an explosion in air. Taylor’s
initially classified paper on the subject was published
in 1949 as the formation of a blast wave by a very
intense explosion [7] “Theoretical Discussion”. The
theoretical discussion of 1941 included some fairly,
crude experimental comparisons, based on the blasts of
conventional weapons, and Taylor also added some
better conventional weapons data for the 1949
publication.

As a better experimental test, Taylor produced a
companion article “The Formation of a Blast Wave by
a Very Intense Explosion II. The Atomic Explosion
of 1945” [8]. Using a time series of then recently
declassified photographs of the Trinity explosion near
Alamogordo, New Mexico, Taylor tested his scaling

hypothesis and calculated the energy of the blast.

0.025 SEC.
N

»—lQ0 METERS

Fig. 6 Trinity explosion after = 0.025 sec.

The frequently quoted strength of the explosion—18.6
kilotons (the equivalent of 18.6 thousand tons of
trinitrotoluene) is quite close to Taylor’s calculated
value of 16.8 kilotons.

While Taylor’s scaling law was correct, and his
numerical solution worked remarkably well for the
case of air, a more general solution was needed to study
a blast wave propagating into a cold gas with a more
general equation of state. This is important, for
example, in the study of supernova explosions. This
need had been already answered by the time Taylor
published his paper in 1949. Sedov and von Neumann
independently found an analytic solution to the
problem for the same set of approximations that Taylor
used. For this reason, the solution to the blast problem
is conventionally known as the “Sedov solution” [4].

Basically, for his calculation, first, he needed two
assumptions as follows:

(1) The energy E was released in a small space;

(2) The shock wave was spherical.

Then the questions by him were that:

We have the size of the fireball radius (R ) as a
function of time (t) at several different times. How does
the radius ( R ) depend on:

* Energy (E);

* Time (1);

* Density of the surrounding medium ( O, initial
density of air).
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Fig. 7 Trinity explosion sequence.

In a nuclear explosion, there is an essentially
instantaneous release of energy E in a small region
of space. This produces a spherical shock wave,
with the pressure inside the shock wave thousands of
times greater than the initial air pressure, which may
be neglected. How does the radius R of this shock
wave grow with time t ? The relevant governing
variables and [R]=L as function of these variable
are E,t, and the initial air density p, , with
dimensions [ E ] = [E]=MLUT™, [t=T ], and
[p,]=ML" [2].

This set of variables has independent dimensions, so

n=3, k=3. We next determine the exponents by

substituting the following [2]:
R=f(E, p,.1)

[Rl1=L=[E]'[p,I'[t]"
— [ML2T—2]a[ML—3]b[T]c
or
L = V] &+0| 2a-3bT ~2a+c

M is to the a+b power because energy and
density are both dependenton M .

L is to the 2a—3D power because energy is
dependent on the square of distance and density is
dependent on one over the cube of distance. T is to
the —2a+C power because energy is dependent on
one over the square of time and time is dependent on
time. Therefore, this provides three simultaneous

equations as follows:

a+b=0, 2a-3b=1, -2a+c=0

with solution a=1/5, b=-1/5 and ¢c=2/5.
The radius R is given by Eq. (7) as:

R — CE]/SpO—I/StZ/S (7)

with C an undetermined constant. If we could plot
the radius R of the shock as a function of time t on a
log-log plot, the slope of the line should be 2/5. The
intercept of the graph would provide information about
the energy E released in the explosion, if the constant
C could be determined. By solving a model
shock-wave problem, Taylor estimated C to be close
to unity ( C=1.033 for adiabatic index of air
y =1/4); he was able to take declassified movies of
nuclear tests, and using his model, infer the yield of the
bombs. The final version of his analysis and calculation

is, summarized in Eq. (8).
R — E1/5p0—1/5t2/5 (8)

Again, we have assumed the constant C is
approximately 1 (C=1) and this implies that, to a
good approximation radius of shock wave R can be

presented by above equation.
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We can now convert to a linear function in order to
compute the energy. Taking the logarithm of both sides

produces:

log,,R = %10&0 t +élog10 (E}

0

gloglo R=log,,t +110g10 =
2 2 o,

0
where P, =1.2 kg/m’. Figs. 6 and 7 illustrate the
transformed data from Taylor’s original values given in
Table 1.

A least-square fit of these data gives an estimate of

(1/2)1og,,(E/p,) =6.90 so that we have E=8.05

x 10" ( Fig. 8).
Using the conversion factor of 1 Kiloton = 4.168 x

10" Joules gives the strength of Trinity as 19.2
Kilotons. It was later revealed that the actual strength
of Trinity explosion was 21 Kilotons. This demonstrates
the predictive power of dimensional analysis.

Solving the equation for E  we get:
E=(R°p,)/t’ ©)

Looking at Fig. 6 and using the number on the slide,
we see that at £ =0.025 seconds, the radius of the
shock wave front was approximately 100 meters. The
density of air O, typically is P, =1.2 kg/m’.
Plugging these values into the energy equation gives:

E =(100)° x 1.2/(0.025)* [kg-m* /s |
=1.92x 10" [kg-m’ /s’ |
=1.92 x 10" ergs

Table 1 Taylor’s original data with the time # measured in milliseconds and the radius R in meter [13].

t R(t) t R(t) t R(t) t R(t) t R(t)
0.10 11.1 0.80 342 1.50 44.4 3.53 61.1 15.0 106.5
0.24 19.9 0.94 36.3 1.65 46.0 3.80 62.9 25.0 130.0
0.38 254 1.08 38.9 1.79 46.9 4.07 64.3 34.0 145.0
0.52 28.8 1.22 41.0 1.93 48.7 4.34 65.6 53.0 175.0
0.66 31.9 1.36 42.8 3.26 59.0 4.61 67.3 62.0 185.0
Uny E 21 Kilotons of TNT
+ 4t ++++H+ b y* = 6.9044 This datum, of course, was strictly classified; it came
69F -~ ——— — - — = = Ei - ~ F3oo 7 as a surprise to the American intelligence communities
+ kT that this datum was essentially publicly available to
~ 68} those well versed in dimensional analysis. Later,
Taylor [7, 8] processing of the photographs taken by
61t H. E. Mack (Figs. 6 and 7) of the first atomic
explosion in New Mexico in July 1945 confirmed this
6oLt . . B . . scaling law a well-deserved triumph of Taylor
T4 35 03 a5 2 a5 intuition.
log, ot Note that the entire solution was taking advantages
Fig. 8 The graph  of  1/2log,,(E/p,) of dimensional analysis along with integration of

y =5/2log,r-log,yt is identified with the quantity. A
least square fit yields y*=6.90 and because Po is

known, it is possible to solve for E | the energy released
during the explosion.

Now, we know that 1 gram of TNT is equal to 4 x
10" ergs, and hence

self-similarity of first kind. For more details refer to

references by Zohuri [1, 2].

7. Energy in a High Intense Implosion

The focusing of spherical and cylindrical shock

waves has been for various engineering and scientific
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applications. It is an effective and economical means of
producing high temperature and pressure gas at the
implosion center as a focal point. For instance, the
converging shock waves process has been successfully
adopted in the production of high temperature and
density plasma as part of Laser Driven Fusion
Program'®?” for imploding pellet of hydrogen isotopes
such as deuterium and tritium.

Or for that matter, in man-made explosion of the
Physical Principles of Thermonuclear Explosive
Devices [14] or in nature such as supernovae [15] or
other application such as synthetic diamonds from
graphite carbide and neutrons [16], they are also used
in research related to particles lunched at hypersonic
velocity. Moreover, they are associated with research
related to substance behavior under server conditions
in a high-energy medium [17].

Analytically, Guderley [9] was the first to present a
comprehensive investigation involving cylindrical and
spherical, shock wave propagation in air, and he
obtained a similarity solution. In his solution, shock
strength was found to be proportional to R" where

R is the distance of shock from the center of
implosion and N , a constant that depends on adiabatic

index y which is specific heat ratio is shown as before
(r=C, / C,) . This model clearly implies that
theoretically a converging shock wave can increase in
strength indefinitely as the radius R approaches zero.
In practice, at the center of implosion, temperature and
pressure can attain very high but finite values due to
experimental limitation. Following Guderley’s theory
other scientists such as Butler [18] and Stanyukovich
[17] focused their effort on the development of similar
solutions for the converging process.

Guderley has analyzed the flow behind a converging
spherical or cylindrical shock. His treatment of the
incoming shock and the flow immediately behind it is
complete, but less attention seems to have been paid to
the reflected shock and the associated region of
disturbance. Butler’s paper presented the physical
assumptions underlying Guderley’s analysis of the

incoming shock are clarified and the reflected shock is
treated.

Ashraf [19] is considering imploding spherical and
cylindrical shocks near the center (axis) of implosion
when the flow assumes a self-similar character. The
shock becomes stronger as it converges toward the
center (axis) and there is high temperature behind the
shock leading to intense exchange of heat by radiation
or condition.

His assumption is that the flow behind the shock is
not adiabatic but is approximately isothermal, and the
time-dependent temperature behind the shock goes on
changing as the shock propagates and this temperature
is different from that ahead of the shock. The flow
behind the shock is likely to have a nearly uniform
spatial distribution and that is why the temperature
gradient is considered to be zero. This type of flow is
known as “homo-thermal flows” and has been dealt by
scientists. Except for the idealized intense heat
exchange behind the shock, the problem is the same as
has been discussed by Guderley (see Fig. 9).

All of them obtained similarity solutions by reducing
the problem to nonlinear first order differential
equations. The similarity exponent O of the shock
trajectory R oc (—t)(S , where t is the time taken by
the shock to cover the distance R to reach the origin,
cannot be evaluated from dimensional considerations
as occurs in the Taylor’s explosion problem [7]. The
time t taken to be negative before the shock
converges to the center (axis) of symmetry and t =()
is instant at which the shock converges to the center
(axis).

The shock position is assumed, to be given by Eq.
(10):

R = A(-t)”

r r

TR

(10)

where R is the radial distance of the shock from
center (axis) and A along with « are positive
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constants. The interval for variables that are involved
with solution that we are seeking includes all of
space up to infinity, so that the intervals for the

variables are
—oo<t£0,RSl’<oo,lS§<oo

Note that the self-similar solution holds only in a
region with radius of the order of R, and at large
distance, it is connected with the solution of the
complete non-self-similar problem in some manner [3].

At the shock front & =1 and the front velocity is

directed toward the center and is negative, with
R= aR/t = —(aR/|t|) <0

The basic equations governing the one-dimensional
flow in terms of Lagrangian coordinate 77 and time t,

having temperature as function of time only are Eq.

(11):

o1
on  pr'!
NP (11)
ot on

I _o

or

where I is the distance of the particle from the center
or axis of symmetry, and U, 2, P and T are the

particle velocity, density, pressure and temperature

behind the shock wave respectively. 77 is the
Lagrangian coordinate defined by Eq. (12):
dn = poroj_ldro (12)

where p, is the ambient density, Iy is the value of
r at the initial instant of time and J=2,3 for
cylindrical and spherical symmetry respectively.

The continuity equation of (1st set) of Eq. (12) may
be expressed in terms of particle velocity U as Eq.

(13):
ou 1

on  pr

op . pu
- ) 13
{&HJ )r} (13)

Shock wave

N ¥
= -~
—— —-——
e -

X 4 \ *,

Fig. 9 Diagram of motion of implosion point in front of the
core adiabatic compression.

For strong shock, we can now establish the boundary
conditions at the shock assuming that the radiative flux
across the optically thin shock layer is continuous so
that the classical shock condition holds [19], and they

are written as:

u,=(1-4R

ps = pO /ﬂ

p, =(1-p)p,R*
where O, is the ambient density, R the shock
velocity and [ the density ratio across a strong shock
7/ J—
y+1

Ashraf [19] is carrying on a self-similarity solution

and is equal to

in this case when he introduces a similarity variable
M= 77/ 17, . In his analysis, he seeks a closed form
solution via an approximate analytic approach and
shows this solution up to second order terms in /3.
He also demonstrates for the zeroth order
approximation the particle velocity is same as the
shock velocity while the density and pressure are linear
functions of 1/, where implies that the first and second
order terms from his established equations contribute
more significantly to velocity than to the density and
pressure. His solution also describes the Eulerian
distance r and Eulerian similarity variable & as
function of Lagrangian similarity variable 4, which
also will indicate that zeroth approximation the
Eulerian distance is same as the shock distance.
Analysis of differential equations of gas dynamics
associated with this problem allows the similarity
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Table 2 Values of & obtained from the analytic
expression.
Cylindrical  Spherical
j=2 J=13
6/5 0.7767 0.6349
7/5 0.7285 0.5730
5/3 0.6978 0.5359
Table 3 Values of & obtained from the numerical
integration.
Cylindrical ~ Spherical
6(5 0.7963 0.6553
7/5 0.7530 0.5965
3/3 0.7218 0.5589

exponent «
differential

numerically.

to be, obtained by solving these
equations  either  analytically or

His finding for values of similarity exponent & for
the adiabatic flow both analytically and numerically is
shown in the Tables 2 and.

He finds that the value of similarity exponent & is
smaller for the homo-thermal flows that the adiabatic
flows so that the shock velocity Roc R™%% is
larger in the former case than in the latter as the shock
approaches the center of axis. The shock velocity and
hence pressure tend to infinity as t — 0 being the
instant of shock implosion.

Zel’dovich and Raizer [3] also show as the shock
converges, energy becomes concentrated near the
shock front as the temperature and pressure there
increase without limit, but the dimensions of the
self-similar region decrease with time. They consider a
self-similar solution within sphere whose radius

decreases in proportion to the radius of the front R.

The effective boundary of this similar region is then

considered to be at constant  value

(r/R):é::é:l-

They present an equation for energy contained in

some

spherical implosion situation with the variable radius

IL=¢&R asEq. (14):

n 2
Es :J 47rr2drp£L£+u—j
Im plosion o }/_110 2

4 )
:47rR3pOR2J g[Lﬁﬂ—jgzdg

o \r-lg 2
(14)
The integral with respect to & from 1 to & is a

constant, so that the energy

0 R’R?*0 R The exponent of R is

SIm plosion
positive for all real values of the specific heat ratio
(adiabatic index) y. For example, for y =7/5, the

similar exponent & =0.717 , which is close to what is
shown by Ashraf calculation [19] in Tables 2 and 3.

0R* > 0asR—>0 (15a)

SIm plosion

With integration with respect to &£ extended to
infinity (&, =0 ) the integral diverges, thus the total
energy in all space is infinite within the framework of
the self-similar solution.

In summary, in order to find the value of &
numerically a trial and error analysis, where a value of
o is assumed and related differential equation is
integrated numerically from the initial point A & =1,
and the behavior of the integral curve is determined. In
our value, case for & = 7/ 5 the limiting density is
(behind the shock front ©, =60, )
Pimit =21.60, . The density at large distance from
the front I' — o0 before the instant of collapse at the

about

center (or axis) is also Oy =21.60, , since for
R#0 and r—w cfz(l’/R)—)oo and
p/Py=G(&) > ().
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Under these conditions, the collapsed energy
concentrated at the center of sphere is given as [3]:

n 2
J 47zr2drp[L£+u—jD r>=7%  (15b)
o y=lp 2

0 R5—2/a

Justas E which is seen in above.

SIm plosion

Note that again, the entire solution was taking
advantages of dimensional analysis along with
integration of self-similarity of second kind. For more

details refer to references by Zohuri [1, 2].
8. Similarity and Estimating

The notion of similarity is familiar with geometry.
Two triangles are similar if all of their angles are equal,
even if the two triangles’ sides are of different lengths.
The two triangles have the same shape; the larger one is
simply a scaled-up version of the smaller ones. This
notion can be generalized to include physical
phenomena. This is important when modeling physical
phenomena, such as testing a plane prototype with a
scale model in a wind tunnel. The design of the model
is dictated by dimensional analysis. The similarity is an
extension of geometrical similarity. By definition, two
systems are similar if their corresponding variables are
proportional at corresponding locations and times. The
famous of all and familiar similarity that one can even
buy in today’s market is Russian nested dolls (Fig. 10).
See Refs. [1, 2] for more details.

A Matryoshka doll or a Russian nested doll (often
incorrectly referred to as a Babushka doll—babushka
means “grandmother” in Russian), is a set of dolls of
decreasing sizes placed one inside the other.
“Matryoshka” (Marpémka) is a derivative of the
Russian female first name “Matryona”, which was a
very popular name among peasants in old Russia. The
name “Matryona” in turn is related to the Latin root
“mater” and means “mother”, so the name is closely
connected with motherhood and in turn, the doll has

come to symbolize fertility.

Fig. 10 Russian nested dolls.

A set of matryoshkas consists of a wooden figure,
which can be pulled apart to reveal another figure of the
same sort inside. It has, in turn, another figure inside, and
so on. The number of nested figures is usually five or
more. The shape is mostly cylindrical, rounded at the
top for the head and tapered towards the bottom, but
little else; the dolls have no hands (except those that are
painted). Traditionally the outer layer is a woman,
dressed in a sarafan. Inside, it contains other figures
that may be of both genders, usually ending in a baby
that does not open. The artistry is in the painting of each
doll, which can be extremely elaborate (see Fig. 10).

Return to the mathematical statement of the II
-Theorem, Eq. (16).

a
=aP 'O — kL
a=aq'...q (apk“ a,'k”j (16)
L

We can identify the following dimensionless
parameters:

(amn

and so on, such that Eq. (16) can be written as

=o01,...,10,_,)
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The parameters ILIT,,...,IT, , are known as
similarity parameters. Now if two physical phenomena
are similar, they will be described by the same function
@ . Denote the similarity parameters of the model and
and P ,

respectively. Then if the two are similar, their

the prototype by the superscripts M

similarity parameters are equal:
(P — (M P —r(m
P =™, 1P =" (18)

So that
H(P) — H(m) (19)

Therefore, in order to have an accurate physical
model of a prototype, we must first identify all of the
similarity parameters, and then ensure that they are
equal for the model and the prototype.

Finally, we come to estimating. In this course, we
will often make order of magnitude estimates, where
we try to obtain an estimate to within a factor of ten
(sometimes better, sometimes worse). This means that
we often drop factors of two, etc., although one should
exercise some caution in doing this. Estimating in this
fashion is often aided by first doing some dimensional
analysis. Once we know how the governed parameter
(which we are trying to estimate) scales with other
quantities, we can often use our own personal
experience as a guide in making the estimate.
Similarity is one of the most fundamental concepts,
both in physics and mathematics. This first aspect,
geometrical similitude is the best known, the best
understood, and another one, more abstract, deals with
the physical similitude. Since all systems must obey the
same physical laws, in addition to the geometrical
scaling factors, relations between different physical
quantities must be fulfilled in order to make two
systems similar. Again, Russian nested dolls (Fig. 10)
are very good example of such similarity.

We recognize how central will be these ideas in the
theory of modeling. Such reduced models play a
central role in shipbuilding, aeronautical engineering,
oceanography, etc. In engineering quite often, many
different phenomena, belonging to different branches

of science take place simultaneously and conflicts are
possible. However, other aspects of similarity can be
found in the logic of a machine or in an algorithm.
Under its geometrical and logical aspects, similarity
and self-similarity appear as rather regular, easy to
distinguish patterns. Nature has more fantasy and in
some cases, it likes to add some randomness.
Self-similarity, in that case, is more difficult to
distinguish but is still there.

9. Conclusion

This article was presented as a short review for the
readers that are very interested to increase their
knowledge, just beyond Pi or Buckingham Theory, and
are anxious to understand the mathematics behind
energy driven by intense explosion and implosion and
how dimensional analysis is driving similarity and
self-similarity as well.

More details of this subject would be found in the
two books that are written by author Zohuri [1, 2].
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