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Abstract: Nearly all scientists, at conjunction with simplifying a differential equation, have probably used dimensional analysis. 
Dimensional analysis (also called the Factor-Label Method or the Unit Factor Method) is an approach to the problem that uses the fact 
that one can multiply any number or expression without changing its value. This is a useful technique. However, the reader should take 
care to understand that chemistry is not simply a mathematics problem. In every physical problem, the result must match the real world. 
In physics and science, dimensional analysis is a tool to find or check relations among physical quantities by using their dimensions. 
The dimension of a physical quantity is the combination of the fundamental physical dimensions (usually mass, length, time, electric 
charge, and temperature) which describe it; for example, speed has the dimension length/time, and may be measured in meters per 
second, miles per hour, or other units. Dimensional analysis is necessary because a physical law must be independent of the units used 
to measure the physical variables in order to be general for all cases. One of the most derivation elements from dimensional analysis is 
scaling and consequently arriving at similarity methods that branch out to two different groups namely self-similarity as the first one, 
and second kind that through them one can solve the most complex none-linear ODEs (Ordinary Differential Equations) and PDEs 
(Partial Differential Equations) as well. These equations can be solved either in Eulearian or Lagrangian coordinate systems with their 
associated BCs (Boundary Conditions) or ICs (Initial Conditions). Exemplary ODEs and PDEs in the form of none-linear can be seen in 
strong explosives or implosives scenario, where the results can easily be converted to induction of energy in a control forms for a 
peaceful purpose (i.e., fission or fusion reactions). 
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1. Introduction 

In physics and science, dimensional analysis is a 

method of analysis to find or express the relations 

among physical quantities in terms of their dimensions. 

The dimension of a physical quantity is the 

combination of the basic physical dimensions (usually 

mass, length, time, electric charge and temperature) 

which describe it; for example, speed has the 

dimension length/time, and may be measured in meters 

per second, miles per hour, or other units [1]. 
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Dimensional analysis is routinely used to check the 

plausibility of derived equations and computations as 

well as forming reasonable hypotheses about complex 

physical situations. That can be tested by experiment or 

by more developed theories of the phenomena, which 

allow categorizing the types of physical quantities. In 

this case, units are based on their relations or 

dependence on other units or dimensions, if any. 

Isaac Newton (1686), who referred to it as the “Great 

Principle of Similitude”, understood the basic principle 

of dimensional analysis. Nineteen-century French 

mathematician Joseph Fourier made significant 

contributions based on the idea that physical laws like 
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F = MA should be independent of the units employed 

to measure the physical variables. This led to the 

conclusion that meaningful laws must be homogeneous 

equations in their various units of measurement, a 

result that was eventually formalized by Edgar 

Buckingham with the   (Pi) theorem. This theorem 

describes how every physically meaningful equation 

involving n variables can be equivalently rewritten as 

an equation of n-m dimensionless parameters, where m 

is the number of fundamental dimensions used. 

Furthermore, and most importantly, it provides a 

method for computing these dimensionless parameters 

from the given variables [1]. 

A dimensional equation can have the dimensions 

reduced or eliminated through nondimensionalization, 

which begins with dimensional analysis, and involves 

scaling quantities by characteristic units of a system or 

natural units of nature [1]. 

The similarity method is one of the standard methods 

for obtaining exact solutions of PDEs (Partial 

Differential Equations) in particular non-linear forms. 

The number of independent variables in a PDE is 

reduced one-by-one to make use of appropriate 

combinations of the original independent variables as 

new independent variables, called “similarity 

variables”. 

In some cases, the dimensional analysis does not 

provide an adequate approach to establish a solution of 

a certain eigenvalue problem in nonlinear form, which 

gives rise to the need to discuss the similarity method 

as another approach. In particular, for a simple case of 

dealing with a nonlinear partial differential, which can 

be reduced to an ordinary differential, so it can be 

solved for a closed solution, in ordinary way of 

methods that we have learned in any classical text 

books of applied mathematics. 

In more complex scenarios, dealing with 

boundary-value problems for a system of ordinary 

equations with conditions at different ends of an 

infinite interval requires constructing a self-similar 

solution that is a more efficient way of solving such 

complex bounder value problems the system of 

ordinary equations directly. 

In a specific, instance the passage of the solution into 

a self-similar intermediate asymptotic allows not to 

have a need to return to the partial differential 

equations, indeed, in many cases, the self-similarity of 

intermediate asymptotic can be, established and the 

form of self-similar intermediate asymptotic obtained 

from dimensional considerations [1, 2]. 

In this short review under the presented title of this 

article, we are looking at some specific aspect of 

dimensional analysis for dealing with a certain aspect 

of explosion and implosion, which is in a very 

controlled way of inducing energy by solving the most 

sophisticated ODEs (Ordinary Differential Equations) 

or PDEs of shock movement generated by either of 

these processes. For this matter, we are introducing 

method of similarity and self-similarity of first and 

second kind respectively. 

The human partner in the interaction of a man and a 

computer often turns out to be the weak spot in the 

relationship. The problem of formulating rules and 

extracting ideas from vast masses of computational or 

experimental results remains a matter for our brains, 

our minds. This problem is closely connected with the 

recognition of patterns. The word “obvious” has two 

meanings, not only something easily and clearly 

understood, but also something immediately evident to 

our eyes. The identification of forms and the search for 

invariant relations constitute the foundation of pattern 

recognition; thus, we identify the similarity of large 

and small triangles, etc. 

A time-developing phenomenon is called 

self-similarity if the spatial distributions of its 

properties at various moments of time can be obtained 

from one another by a similarity transformation and the 

fact that we identify one of the independent variables of 

dimension with time is nothing new from the subject of 

dimensional analysis point of view. However, this is 

where the boundary of dimensional analysis goes 

beyond Pi theorem and steps into a new arena known as 
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is constant, defines the coordinate line 1x , along which 

different points are fixed by the values of 1x ; the 

direction of increase of the coordinate 1x  defines the 

direction along this line. Three coordinate lines may be 

depicted through each point of space. However, for 

each point, the tangents to the coordinate lines do not 

lie in one plane and, in general, they form a 

non-orthogonal trihedron. Now let us assume, these 

three points mathematically are presented as ix  for 

1, 2,3i  , and the coordinate lines ix  are straight, 

then the system of coordinates is rectilinear; and if not, 

then the system is curvilinear. For our purpose of 

discussion on subject of motion of a continuum 

anywhere that we encounter it, would be necessary to 

present the curvilinear coordinate system, which is 

essential in continuum mechanics. 

Now that we start our introduction with concept of 

time t , then we need to make a notation of time and 

coordinate system ix . Therefore, the symbols 1x , 2x  

and 3x  will denote coordinates in any system which 

may also be Cartesian, the symbols of X , Y  and Z  

in orthogonal form, are presentation Cartesian 

coordinate system while the fourth dimension time is 

designated with symbol of t . Thus, if a point moves 

relative to the coordinate systems 1x , 2x  and 3x , 

while its coordinate changes in time, then we can 

mathematically present motion of point as follow: 

( )i ix f t  

for 

1, 2,3i                  (1) 

With this notation, the motion of the point will be 

known if one knows the characteristic and behavior of 

Eq. (1), providing that the moving point coincides with 

different points of space at different instants of time. 

This is, referred to as the Law of Motion of the point, 

and by knowing this law, we can now define the motion 

of a continuum. A continuous medium represents a 

continuous accumulation of points, and by definition, 

knowledge of the motion of a continuous medium 

result in knowledge of the motion of all points. Thus, in 

general, as one can see, for the study of the motion of a 

volume of a continuous body as whole, it is insufficient 

proposition. 

For the above situation, one must treat each distinct 

point individually in order to form a geometrical point 

of view that is entirely identical points of the 

continuum. This is, referred to as individualization of 

the points of a continuum, and below how this law is 

used in theory and is, determined by the fact that the 

motion of each point of a continuous medium is subject 

to certain physical laws that we need to take under 

consideration [4]. 

Let the coordinates of points at the initial time 0t  be 

denoted by 1 , 2 , and 3  or for that matter denoted 

by i  for 1, 2,3i   and the coordinated of points at 

an arbitrary instant of time t  by 1x , 2x , and 3x , or in 

general noted as ix  for 1, 2,3i   as we have done it 

before. For any point of a continuum, specified by the 

coordinates 1 , 2 , and 3  one may write down the 

law of motion which contains not only functions of a 

single variable, as in the case of the motion of a point, 

but of four variables (i.e. all three coordinates plus 

time), therefore the initial coordinates 1 , 2 , and 3  

as well as the time t , we can write [1, 2]:  

1 1 1 2 3

2 2 1 2 3 1 2 3

3 3 1 2 3

( , , , )

( , , , ) ( , , , )

( , , , )
i i

x x t

x x t x x t

x x t

  
     
  


   
 

   

(2) 

If in Eq. (2), 1 , 2 , and 3  are fixed and t  
varies (Eulerian), then Eq. (2) describes the law of 

motion of one selected point of the continuum. If 1 , 

2 , and 3 vary and the time t  is fixed, then Eq. (2) 

gives the distribution of the points of the medium in 

space at a given instant of time (Lagrangian). If 1 , 

2 , and 3  including time t  vary, then one may 

interpret Eq. (2) as a formula which determines the 

motion of the continuous medium and, by definition, 

the functions in Eq. (2) yield the Law of Motion of the 

continuum. The coordinates 1 , 2 , and 3 or 
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fluid are “tagged”. The fluid flow properties are 

determined by tracking the particles’ motion and 

properties as they move in time. A neutrally buoyant 

probe is an example of a Lagrangian measuring device. 

The particle properties at position ( )t

r  such as 

temperature, density, pressure,  can be 

mathematically represented as follows: ( , )iT t , 

( , )i t  , ( , )iP t , for 1, 2,3i  . Note that i  
is 

representation of a fixed point in three-dimensional 

space at given time t , which it may include initial time 

0t . 

The Lagrangian description is simple to understand 

conservation of mass and Newton’s laws apply directly 

to each fluid particle. However, it is computationally 

expensive to keep track of all the fluid particles’ 

trajectories in a flow, and therefore, the Lagrangian 

description is used only in some numerical simulations 

[1, 2]. 

(2) The Eulerian picture in which coordinates are 

fixed in space (the laboratory frame). The fluid 

properties such as velocity, temperature, density and 

pressure are written as space and time functions. 

The flow is determined by analyzing the behavior of 

the functions. In other words, rather than following 

each fluid particle, we can record the evolution of the 

flow properties at every point in space as time varies. 

This is the Eulerian description. It is a field description. 

A probe fixed in space is an example of a 

Eulerian-measuring device [1, 2]. 

This means that the flow properties at a specified 

location depend on the location and on time. For 

example, the velocity, temperature, density, pressure,

 can be mathematically represented as follows: 

( , )ix t

V , ( , )iT x t , ( , )ix t , ( , )iP x t ,   for

1, 2,3i  . Note that ix  is the location of fluid at time 

t . 

The Eulerian description is harder to understand: 

how do we apply the conservation laws?  

However, it turns out that it is mathematically 

simpler to apply. For this reason, we use mainly the 

Eulerian description in fluid mechanics. 

The aforementioned locations are described in 

coordinate systems [1, 2]. 

3. ALE (Arbitrary Lagrangian Eulerian) 
Systems 

The Arbitrary Lagrangian-Eulerian that is noted as 

ALE is a formulation in which computational system is 

not a prior fixed in space (e.g., Eulerian Based 

Formulation) or attached to material or fluid stream 

(e.g., Lagrangian Based Formulations). ALE Based 

Formulation can alleviate many of the drawbacks that 

the traditional Lagrangian-based and Eulerian-based 

formulation or simulation have. 

When using the ALE technique in engineering 

simulations, the computational mesh inside the 

domains can move arbitrarily to optimize the shapes of 

elements, while the mesh on the boundaries and 

interfaces of the domains can move along with 

materials to precisely track the boundaries and 

interfaces of a multi-material system. 

ALE-based finite element formulations can reduce 

either Lagrangian-based finite element formulations by 

equating mesh motion to material motion or 

Eulerian-based finite element formulations by fixing 

mesh in space. Therefore, one finite element code can 

be used to perform comprehensive engineering 

simulations, including heat transfer, fluid flow, 

fluid-structure interactions and metal manufacturing. 

Some applications of ALE in finite element 

techniques that can be applied to many engineering 

problems are: 

 Manufacturing (e.g., metal forming/cutting, 

casting); 

 Fluid-structure interaction (combination of pure 

Eulerian mesh, pure Lagrangian mesh and ALE mesh 

in different regions); 

 Coupling of multi-physics fields with 

multi-materials (moving boundaries and interfaces). 

Another important application of ALE is the PIC 

(Particle-In-Cell) analyses, particularly is plasma 

physics. The PIC method refers to a technique used to 
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solve a certain class of partial differential equations. In 

this method, individual particles (or fluid elements) in a 

Lagrangian frame are tracked in continuous phase 

space, whereas moments of the distribution such as 

densities and currents are computed simultaneously on 

Eulerian (stationary) mesh points. 

PIC methods were already in use as early as 1955 [5], 

even before the first FORTRAN compilers were 

available. The method gained popularity for plasma 

simulation in the late 1950s and early 1960s by 

Buneman, Dawson, Hockney, Birdsall, Morse and 

others. In plasma physics applications, the method 

amounts to following the trajectories of charged 

particles in self-consistent electromagnetic (or 

electrostatic) fields computed on a fixed mesh [6]. 

4. Similar and Self-similar Definitions 

We need to understand better similar and self-similar 

methods and their definition in the subject of 

dimensional analysis. Once we have these methods 

appropriately defined, we can extend it to Motion of a 

Medium, particularly from a self-similarity point of 

view. Also, we are able to deal with the complexity of 

partial differential equations of conservation laws, such 

as Mass-Conservation Law, the 

Momentum-Conservation Law, and finally, the 

Energy-Conservation Law of non-linear type both in 

Eulerian and in Lagrangian schemes using all three 

coordinates systems that we are familiar with. These 

coordinates are, i.e., Cartesian, Cylindrical and 

Spherical coordinate systems. Further, this allows us to 

have a better understanding of the self-similarity of 

first and second kind, their definitions, the differences 

between them, and where and how they get applied to 

our physics and mathematics problems at hand. A few 

of these examples that we can mention here are, 

self-similar motion of a gas with central symmetry, 

both sudden explosion [7, 8] and sudden implosion [9] 

problems. The first one is, considered self-similarity of 

first kind while the lateral is considered as 

self-similarity of second kind. Through these 

understandings, we can have a better grasp of 

gas-dynamics differential equations and their 

properties in a medium. In addition, the analysis of 

such differential equations for a gas motion with 

central symmetry becomes much easier by utilizing a 

self-similar method. 

The self-similar motion of a medium is one in which 

the parameters that are characterizing the state and 

motion of the medium vary in a way as the time varies, 

the spatial distribution of any of these parameters 

remains similar to itself. However, the scale 

characterizing this perturbation/distribution can also 

vary with time in accordance with definite rules. In 

other words, if the variation of any of the above 

parameters with time is specified at a given point in 

space, then the variation of these parameters with time 

will remain, the same at other points lying on a definite 

line or surface, providing, that the scale of the given 

parameter and the value of the time are suitably 

changed [8]. 

The analytical conditions for self-similar motion 

lead to one or more relations between the independent 

variables, defining functions, which play the role of 

new independent variables using dimensional analysis 

and self-similarity approach [7]. This approach follows 

that, in the case of self-similar motion, the number of 

independent variables in the fundamental systems of 

equations is correspondingly reduced. This technique 

considerably simplifies the complex and non-linear 

partial differential equations to sets of ordinary 

differential equations. Thus, sometimes, this makes it 

possible to obtain several analytical solutions 

describing, for example, the self-similar motion of the 

medium; as it was said, in the case of two independent 

variables, and sometimes even in the case of three 

independent variables, the fundamental system of 

equations becomes a system of ordinary rather than 

partial differential equations [8]. 

Applications of self-similar approach can be seen to 

all unsteady self-similar motions with symmetry, all 

steady plane motions and certain axial symmetrical 
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motions as well. These types of approaches have 

solved problems of self-similarity of first kind [7, 8] 

and second kind [9] in past, where complex partial 

differential equations of conservations law are 

described by systems of ordinary differential 

equations. 

Investigation of the most important modern gas 

dynamics motions or plasma physics such as 

laser-driven pellet for fusion confinement via 

self-similar methods enables us to produce very useful 

conclusions by solving the conservation law equations 

in them, using self-similarity model. To be concerned 

about more general types of motion of the medium also 

allows us to develop and establish laws of motion in 

various cases of practical interest. 

They may include the propagation of strong shock 

waves in case of explosion and implosion events, 

propagation of soliton waves, and the reflection of 

shock waves are few examples that can fall into the 

category of self-similarity methods. To further have a 

better understanding of subject similarity and 

self-similarity requires knowledge of the fundamental 

equation of gas dynamics, where we can investigate a 

compressible liquid or gas. Therefore, the next few 

sections of this chapter are allocated to this matter and 

related thermodynamics aspect of the state of medium 

equations. 

For this, we also need to understand the difference 

between compressible and incompressible flows. In 

addition, the details analysis of similarity can be found 

in the books by the second author of this article and 

short review, so we do not have to repeat the same 

information here [1, 2]. 

5. Dimensional Analysis and Scaling Concept 

Scaling is the branch of measurement that involves 

constructing an instrument that associates qualitative 

constructs with quantitative metric units, and the term 

describes a very simple situation. S.S. Stevens came up 

with the simplest and most straightforward definition 

of scaling. He said: 

“Scaling is the assignment of objects to numbers 

according to a rule”. 

However, what does that mean? 

Most physical magnitudes characterizing nano-scale 

systems differ enormously from those familiar with 

macro-scale systems. However, estimating some of 

these magnitudes can apply to scale laws to the values 

for macro-scale systems. There are many different 

scaling laws. At one extreme, there are simple scaling 

laws that are easy to learn, easy to use, and very useful 

in everyday life. This has been true since Day One of 

modern science. Galileo presented several important 

scaling results in 1638 [10]. 

The existence of a power-law relationship between 
certain variables y  and x : 

y Ax                (5) 

where A  and   are constants values. This type of 

relationship often can be seen in the mathematical 

modeling of various phenomena, not only in 

mechanical engineering and physics, but also in other 

science fields such as biology, economics and other 

engineering discipline.  

Distribution of Power-Law is unique and has certain 

interesting features and graphically can be presented as 

a log-log scale as a straight line. This can methodically 

be shown, if we take the base 10 of logarithm of Eq. 

(6): 

log( ) log( )

log( ) log log

Assume  

log   

Then

logy=B+ logx

y Ax

y A x

A B







 


 








       (6) 

Last relationship in Eq. (6) has a general form of a 

linear function as presented by log y , and the slope of 

this linear logarithmic function is the exponential of 

power law   and it is known as Hausdorff-Besicovitch 

or fractal dimension [11]. 
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applications. It is an effective and economical means of 

producing high temperature and pressure gas at the 

implosion center as a focal point. For instance, the 

converging shock waves process has been successfully 

adopted in the production of high temperature and 

density plasma as part of Laser Driven Fusion 

Program18-20 for imploding pellet of hydrogen isotopes 

such as deuterium and tritium. 

Or for that matter, in man-made explosion of the 

Physical Principles of Thermonuclear Explosive 

Devices [14] or in nature such as supernovae [15] or 

other application such as synthetic diamonds from 

graphite carbide and neutrons [16], they are also used 

in research related to particles lunched at hypersonic 

velocity. Moreover, they are associated with research 

related to substance behavior under server conditions 

in a high-energy medium [17]. 

Analytically, Guderley [9] was the first to present a 

comprehensive investigation involving cylindrical and 

spherical, shock wave propagation in air, and he 

obtained a similarity solution. In his solution, shock 

strength was found to be proportional to nR  where 
R  is the distance of shock from the center of 
implosion and n , a constant that depends on adiabatic 

index   which is specific heat ratio is shown as before 

( )P VC C  . This model clearly implies that 

theoretically a converging shock wave can increase in 

strength indefinitely as the radius R  approaches zero. 

In practice, at the center of implosion, temperature and 

pressure can attain very high but finite values due to 

experimental limitation. Following Guderley’s theory 

other scientists such as Butler [18] and Stanyukovich 

[17] focused their effort on the development of similar 

solutions for the converging process. 

Guderley has analyzed the flow behind a converging 

spherical or cylindrical shock. His treatment of the 

incoming shock and the flow immediately behind it is 

complete, but less attention seems to have been paid to 

the reflected shock and the associated region of 

disturbance. Butler’s paper presented the physical 

assumptions underlying Guderley’s analysis of the 

incoming shock are clarified and the reflected shock is 

treated. 

Ashraf [19] is considering imploding spherical and 

cylindrical shocks near the center (axis) of implosion 

when the flow assumes a self-similar character. The 

shock becomes stronger as it converges toward the 

center (axis) and there is high temperature behind the 

shock leading to intense exchange of heat by radiation 

or condition. 

His assumption is that the flow behind the shock is 

not adiabatic but is approximately isothermal, and the 

time-dependent temperature behind the shock goes on 

changing as the shock propagates and this temperature 

is different from that ahead of the shock. The flow 

behind the shock is likely to have a nearly uniform 

spatial distribution and that is why the temperature 

gradient is considered to be zero. This type of flow is 

known as “homo-thermal flows” and has been dealt by 

scientists. Except for the idealized intense heat 

exchange behind the shock, the problem is the same as 

has been discussed by Guderley (see Fig. 9). 

All of them obtained similarity solutions by reducing 

the problem to nonlinear first order differential 

equations. The similarity exponent   of the shock 
trajectory ( )R t   , where t  is the time taken by 

the shock to cover the distance R  to reach the origin, 
cannot be evaluated from dimensional considerations 

as occurs in the Taylor’s explosion problem [7]. The 

time t  taken to be negative before the shock 

converges to the center (axis) of symmetry and 0t   

is instant at which the shock converges to the center 

(axis). 

The shock position is assumed, to be given by Eq. 

(10): 

( )R A t    

( )

r r

R A t   


           (10) 

where R  is the radial distance of the shock from 

center (axis) and A  along with   are positive 
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constants. The interval for variables that are involved 

with solution that we are seeking includes all of   

space up to infinity, so that the intervals for the 

variables are 

0t   , R r   ,1     

Note that the self-similar solution holds only in a 

region with radius of the order of R , and at large 

distance, it is connected with the solution of the 

complete non-self-similar problem in some manner [3]. 

At the shock front 1   and the front velocity is 

directed toward the center and is negative, with 

  0R R t R t     . 

The basic equations governing the one-dimensional 
flow in terms of Lagrangian coordinate   and time t , 

having temperature as function of time only are Eq. 

(11): 

1

1

1

0

j

j

r

r

u p
r

t

T

r

 







 
    






      (11) 

where r  is the distance of the particle from the center 

or axis of symmetry, and u ,  , p  and T  are the 

particle velocity, density, pressure and temperature 

behind the shock wave respectively.   is the 

Lagrangian coordinate defined by Eq. (12): 

1
0 0 0

jd r dr               (12) 

where 0  is the ambient density, 0r  is the value of 

r  at the initial instant of time and 2,3j   for 

cylindrical and spherical symmetry respectively. 

The continuity equation of (1st set) of Eq. (12) may 

be expressed in terms of particle velocity u  as Eq. 

(13): 

2 1

1
( 1)

j

u u
j

r t r

 
  

        
    (13) 

 
Fig. 9  Diagram of motion of implosion point in front of the 
core adiabatic compression. 
 

For strong shock, we can now establish the boundary 

conditions at the shock assuming that the radiative flux 

across the optically thin shock layer is continuous so 

that the classical shock condition holds [19], and they 

are written as: 

0

2
0

(1 )

(1 )

s

s

s

u R

p R


  

 

  



  





 

where 0  is the ambient density, R  the shock 

velocity and   the density ratio across a strong shock 

and is equal to 
1

1






. 

Ashraf [19] is carrying on a self-similarity solution 

in this case when he introduces a similarity variable 

0   . In his analysis, he seeks a closed form 

solution via an approximate analytic approach and 

shows this solution up to second order terms in  . 

He also demonstrates for the zeroth order 

approximation the particle velocity is same as the 

shock velocity while the density and pressure are linear 
functions of  , where implies that the first and second 

order terms from his established equations contribute 

more significantly to velocity than to the density and 

pressure. His solution also describes the Eulerian 

distance r  and Eulerian similarity variable   as 

function of Lagrangian similarity variable  , which 

also will indicate that zeroth approximation the 

Eulerian distance is same as the shock distance. 

Analysis of differential equations of gas dynamics 

associated with this problem allows the similarity  
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Table 2  Values of   obtained from the analytic 

expression. 

 
 

Table 3  Values of   obtained from the numerical 

integration. 

 
 

exponent   to be, obtained by solving these 

differential equations either analytically or 

numerically. 

His finding for values of similarity exponent   for 

the adiabatic flow both analytically and numerically is 

shown in the Tables 2 and. 

He finds that the value of similarity exponent   is 

smaller for the homo-thermal flows that the adiabatic 

flows so that the shock velocity (1 )/R R     is 

larger in the former case than in the latter as the shock 

approaches the center of axis. The shock velocity and 

hence pressure tend to infinity as 0t   being the 

instant of shock implosion. 

Zel’dovich and Raizer [3] also show as the shock 

converges, energy becomes concentrated near the 

shock front as the temperature and pressure there 

increase without limit, but the dimensions of the 

self-similar region decrease with time. They consider a 

self-similar solution within sphere whose radius 

decreases in proportion to the radius of the front R . 

The effective boundary of this similar region is then 

considered to be at some constant value 

  1r R    . 

They present an equation for energy contained in 

spherical implosion situation with the variable radius 

1 1r R  as Eq. (14): 

1

Im

1

2
2

2
3 2 2

0

1

1
4

1 2

1
            4

1 2

plosion

r

S

R

p u
E r dr

R R g d
g



 
 

    


 
   

 
   











 

(14) 

The integral with respect to   from 1 to 1  is a 

constant, so that the energy 

Im

3 2 5 (2 )

plosionSE R R R � � . The exponent of R  is 

positive for all real values of the specific heat ratio 

(adiabatic index)  . For example, for 7 5  , the 

similar exponent 0.717  , which is close to what is 

shown by Ashraf calculation [19] in Tables 2 and 3. 

Im

2.21 0
plosionSE R � as 0R     (15a) 

With integration with respect to   extended to 

infinity ( 1   ) the integral diverges, thus the total 

energy in all space is infinite within the framework of 

the self-similar solution. 

In summary, in order to find the value of   

numerically a trial and error analysis, where a value of 

  is assumed and related differential equation is 

integrated numerically from the initial point A 1  , 

and the behavior of the integral curve is determined. In 

our value, case for 7 5   the limiting density is 

(behind the shock front 1 06  ) about 

lim 021.6it  . The density at large distance from 

the front r   before the instant of collapse at the 

center (or axis) is also lim 021.6it  , since for 

0R   and r  ,  r R     and 

0 ( ) ( )G G     . 
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Under these conditions, the collapsed energy 

concentrated at the center of sphere is given as [3]: 

1 2
2 5 21

4
1 2

r

R

p u
r dr r  

 
 

  





�   (15b) 

Just as 
Im

5 2

plosionSE R �  which is seen in above. 

Note that again, the entire solution was taking 

advantages of dimensional analysis along with 

integration of self-similarity of second kind. For more 

details refer to references by Zohuri [1, 2]. 

8. Similarity and Estimating 

The notion of similarity is familiar with geometry. 

Two triangles are similar if all of their angles are equal, 

even if the two triangles’ sides are of different lengths. 

The two triangles have the same shape; the larger one is 

simply a scaled-up version of the smaller ones. This 

notion can be generalized to include physical 

phenomena. This is important when modeling physical 

phenomena, such as testing a plane prototype with a 

scale model in a wind tunnel. The design of the model 

is dictated by dimensional analysis. The similarity is an 

extension of geometrical similarity. By definition, two 

systems are similar if their corresponding variables are 

proportional at corresponding locations and times. The 

famous of all and familiar similarity that one can even 

buy in today’s market is Russian nested dolls (Fig. 10). 

See Refs. [1, 2] for more details. 

A Matryoshka doll or a Russian nested doll (often 

incorrectly referred to as a Babushka doll—babushka 

means “grandmother” in Russian), is a set of dolls of 

decreasing sizes placed one inside the other. 

“Matryoshka” (Матрёшка) is a derivative of the 

Russian female first name “Matryona”, which was a 

very popular name among peasants in old Russia. The 

name “Matryona” in turn is related to the Latin root 

“mater” and means “mother”, so the name is closely 

connected with motherhood and in turn, the doll has 

come to symbolize fertility.  

 

 
Fig. 10  Russian nested dolls. 
 

A set of matryoshkas consists of a wooden figure, 

which can be pulled apart to reveal another figure of the 

same sort inside. It has, in turn, another figure inside, and 

so on. The number of nested figures is usually five or 

more. The shape is mostly cylindrical, rounded at the 

top for the head and tapered towards the bottom, but 

little else; the dolls have no hands (except those that are 

painted). Traditionally the outer layer is a woman, 

dressed in a sarafan. Inside, it contains other figures 

that may be of both genders, usually ending in a baby 

that does not open. The artistry is in the painting of each 

doll, which can be extremely elaborate (see Fig. 10). 

Return to the mathematical statement of the 
-Theorem, Eq. (16). 

1 1

1
1

1
k k

p r k
k p r

l

a
a a a

a a 

 
  

 



      (16) 

We can identify the following dimensionless 

parameters: 

1

n
p r

k

a

a a
 


 

1 1

1
1

1
k k

k
p r

k

a

a a 

 


         (17) 

and so on, such that Eq. (16) can be written as 

1( , , )n k      
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The parameters 
1, , , n k    are known as 

similarity parameters. Now if two physical phenomena 

are similar, they will be described by the same function 

 . Denote the similarity parameters of the model and 

the prototype by the superscripts m  and P , 

respectively. Then if the two are similar, their 

similarity parameters are equal: 

( ) ( ) ( ) ( )
1 1 , ,p m p m

n k n k             (18) 

So that 
( ) ( )p m               (19) 

Therefore, in order to have an accurate physical 

model of a prototype, we must first identify all of the 

similarity parameters, and then ensure that they are 

equal for the model and the prototype. 

Finally, we come to estimating. In this course, we 

will often make order of magnitude estimates, where 

we try to obtain an estimate to within a factor of ten 

(sometimes better, sometimes worse). This means that 

we often drop factors of two, etc., although one should 

exercise some caution in doing this. Estimating in this 

fashion is often aided by first doing some dimensional 

analysis. Once we know how the governed parameter 

(which we are trying to estimate) scales with other 

quantities, we can often use our own personal 

experience as a guide in making the estimate. 

Similarity is one of the most fundamental concepts, 

both in physics and mathematics. This first aspect, 

geometrical similitude is the best known, the best 

understood, and another one, more abstract, deals with 

the physical similitude. Since all systems must obey the 

same physical laws, in addition to the geometrical 

scaling factors, relations between different physical 

quantities must be fulfilled in order to make two 

systems similar. Again, Russian nested dolls (Fig. 10) 

are very good example of such similarity. 

We recognize how central will be these ideas in the 

theory of modeling. Such reduced models play a 

central role in shipbuilding, aeronautical engineering, 

oceanography, etc. In engineering quite often, many 

different phenomena, belonging to different branches 

of science take place simultaneously and conflicts are 

possible. However, other aspects of similarity can be 

found in the logic of a machine or in an algorithm. 

Under its geometrical and logical aspects, similarity 

and self-similarity appear as rather regular, easy to 

distinguish patterns. Nature has more fantasy and in 

some cases, it likes to add some randomness. 

Self-similarity, in that case, is more difficult to 

distinguish but is still there.  

9. Conclusion 

This article was presented as a short review for the 

readers that are very interested to increase their 

knowledge, just beyond Pi or Buckingham Theory, and 

are anxious to understand the mathematics behind 

energy driven by intense explosion and implosion and 

how dimensional analysis is driving similarity and 

self-similarity as well. 

More details of this subject would be found in the 

two books that are written by author Zohuri [1, 2]. 
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