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Abstract: The development of space science has generated important computer codes for the simulation of the interaction between 
complex space structures (artificial satellites, solar panels, etc.) and the surrounding plasma. The basic equation to be solved is the 
Poisson equation for the electric potential around a structure. Here, we try to study analytically the shadowing effect of a spacecraft 
on an electrode for the electron number density and the electron temperature. We suggest that the electron temperature should be 
taken as a variable and not as a parameter. However, its computation involves the knowledge of the histogram of the distribution of 
the frequencies of the electron velocities inside the computational cells. Also, we have illustrated the possibilities of artefacts due to 
the design and geometry of scientific instruments for the measurement of the electron number density and the electron temperature in 
the ionosphere. We suggest an optimal design for an electrode and its guard ring. 
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1. Introduction 

The development of space science has generated 

important computer codes for the simulation of the 

interaction between complex space structures 

(artificial satellites, solar panels, etc.) and the 

surrounding plasma [1-3]. For example, when a 

satellite moves through the ionosphere, it creates an 

electrostatic wake in the downstream region. This 

modifies the trajectories of the ionized species (ions 

and electrons) of a collisionless plasma and creates a 

perturbation of the data collected for scientific 

measurements in both the upstream and the 

downstream regions. The basic equation to be solved 

is the Poisson equation for the electric potential   

around the structure: 

2 ( ) ( ( ) ( )), 0i ee N N     r r r    (1) 

Where r is the position vector, e the elementary 

charge, Ni the ion number density, and Ne the electron 
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number density. The densities are estimated by 

Particle-In-Cell methods (PIC methods), and this 

requires a large number of test particles. In the PIC 

methods, test particles are injected at random into the 

computational domain from the outer boundary and 

from a given distribution function of the velocities. 

For example, for the study of the Earth Magnetic Field 

Effects on Particle Sensors on LEO Satellites, the 

mesh consisted of 4400207 tetrahedral elements and a 

total of 500 million test particles [2]. In order to save 

computer time, and to decrease numerical noise, many 

researchers do not explicitly compute the density of 

repelled species, they utilize a hybrid Boltzmann-PIC 

code as follows [3, 4]: 
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Here, , lim ( )e eN N 


r
r  is the ambient electron 

density, kB is the Boltzmann constant, and Te is the 

electron temperature which is assumed to be a 
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parameter. ,
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is called the 

Boltzmann factor. A minor improvement, in the 

presence of a wall, would be to introduce a “weight” 

function ( )w r such as: 
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Where sr  represents one point at the surface of a 

structure. Eq. 3 takes into account the fact that a wall 

introduces a screening effect on the number density at 

the surface of an object. 

We want to illustrate that the physics is more 

complex than in Eq. 3, and in this work we shall 

consider the temperatures of the ionized species not as 
parameters but variables as functions of ,r  just like 

the number densities of the charged species in the 

vicinity of a structure (electrode or satellite).A few 

codes perform a full PIC simulation of both ions and 

electrons; for example, the Democritus code was 

written for an axially symmetric flow for a 

collisionless, magnetized plasma for the study of 

tokamaks [4, 5]. The codes were written in the limit of 

a vanishing Debye length. Also, the interaction 

between the space plasma and an artificial satellite has 

attracted theoreticians and numerical analysts. In the 

code PTetra [2], plasma species are treated fully 

kinetically with PIC models. The advance in computer 

codes and the fact that particle pushers are highly 

parallelizable have made complex Poisson solvers 

possible. 

2. Early Rocket Experiments 

Early rocket experiments have brought out spin and 

coning effects on the measurements of the electron 

temperature in the ionosphere from electrostatic 

(Langmuir) and electromagnetic probes on board a 

payload [6]. For example, Fig. 1 showed the effect of 

rocket roll on (A) the electron temperature, and (B), 

the electron number density on an earlier rocket 

experiment of the French National Center of Space 

Studies. The electron temperature illustrated an 

apparent increase in the electrostatic wake and also the 

electron number density showed a decrease. The 

instruments were mounted at the extremities of two 

opposite booms. 

 

 
Fig. 1  The effect of rocket roll on the electron temperature and the electron number density [6]. 
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Experimenters did not have a full explanation for 

these phenomena. Here, we shall assume that the 

electron temperature is a function of the position 
vector ,r and the direction and magnitude of the drift 

velocity U of a payload. We shall write the electron 
temperature as ( ).eT r The ambient electron 

temperature will be defined as 

, lim ( ).e e eT T T 
 

r
r  

3. The Definition of the Local Temperatures 
for Ionized Species 

Wu [7] defines the temperature of neutral species 

by the following integral equation: 

2 33 1
( , , )

2 2n B n nN k T m v f t d  r v v     (4) 

where Nn is the number density for neutral particles, 

Tn their temperature, 
3

2
is a factor of normalization, 

mn 
is their mass, f(r, v, t) the distribution function 

which is defines by a position vector r, a velocity 

vector v, and the time t. Therefore, it seems normal to 

link the temperature to the kinetic energy. Eq. (4) 

indicates that if the distribution function is Maxwellian, 

we have equilibrium. In this work, we define the 

temperature of neutrals in spherical coordinates by the 

expectation of the kinetic energy as follows: 
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 (5) 

Very rarely, the temperature of ionized species is 

defined in plasma physics. Generally, and by analogy 

with the neutrals, the temperature is taken as a 

constant parameter, but this does not fully explain the 

anomalies that we observe experimentally. In their 

computer code SCEPTIC3D, Patacchini and 

Hutchinson [5] defined an ion temperature by a 

covariance around a sphere and for a highly 

anisotropic medium. Here they assumed a constant 

electron temperature. In the code UPIC3dE, Gatsonis 

and Spirkin [1] defined mass-average temperatures for 

different species 
*

sT  by an expectation: 

* (*)23 1
( , ) .

2 2B s sk T t m v  r       (6) 

The subscript s identifies the species. 

4. The Case of a Potential Well: A 
Hypothesis 

For simplicity, we shall consider the case of an 

electric potential well with no wall effects [8]. We 

shall develop formulas for repelled species only, i.e., 

electrons for a negative potential well ( ).r  Let us 

consider particles of mass m  and charge q  (either 

ions or electrons) immersed in a three-dimensional 

potential well. Let us consider particles coming from 

infinity. Far from the well, ionized particles have a 

kinetic energy 21
( ) .

2
E mv r  These 

particles can reach a point r  of the well, if at this 

point, 21
( ) ( ) ( ) 0.

2
E q mv  r r r  For 

attracted ionized species, the lower bound of 

integration for the velocity is 

 1/2
( ) 2 ( ) / .v q m r r  For repelled ionized 

species, we must take as the lower bound of 

integration, ( ) 0.v r For all repelled species, 

including electrons in a negative potential well, we 

can apply the same definition that the one for neutrals 

at a point ,r and obtain : 
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  (7) 
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If ( ) 0,   r  we obtain the same relation 

as the one for neutral species. For attracted species, 

the formula is more complicated because of the lower 

bound of integration. We need to compute numerically 

the right-hand side of (7) by estimating the histogram 

( )h v of the distribution of frequencies for velocities. 

We have: 

2 2
,

3 1
( ) ( )4

2 2e B e eN k T m v h v v v  r   (8) 

Note that h(v) is not the true distribution function. 

In the ionosphere, the distribution functions for ions 

and electrons are rarely Maxwellian, and if these 

distributions are available, it would be one way to 

estimate the temperatures. Moreover, Eqs. (7) and (8) 

illustrate the limitations of the fluid models for the 

modeling of the ionosphere, because the temperatures 

are linked to the distribution functions. The presence 

of a conducting structure (electrode, satellite) will 

truncate the distribution function, and it introduces a 

shadowing effect, and a particle removal. Fig. 2 shows 

the interaction between a spherical spacecraft and an 

electrode mounted at the extremity of a boom. 

In 1974, Laframboise and Godard computed the 

populated fraction (E) of orbits at a point of interest, in 

the vicinity of a spherical spacecraft [9]. Here, E is the 

total energy. They integrated over the velocity space 

to obtain the total density reduction at a point r  in 

the space. For a repelling spacecraft, we have: 

3/2 2
2

,

1 / 2
( ) exp ( )4

2
e e

e e
B e B eE q

m q m v
N r N E v dv

k T k T

  







   
    

   
               (9) 

 

or more generally: 

2( )
( ) exp ( , , )4e
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Here, we take into account the shadowing effect, 

and a more complex distribution function than a 

Maxwellian one, in .h  The situation is very complex 

for 3D spacecraft. Indeed, scientists do not compute 

the electron number density from Eq. 10. They just 

count the number of test particles in a computational 

cell, and then they normalize this number with respect 

to the ambient number density. We can generalize Eq. 

9 to the definition of the temperatures for ionized 

species. For example, for a repelling spacecraft: 
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Fig. 2  The figure represents the interaction between a spherical structure and an electrode mounted at the extremity of a 

boom. We see the cut-off angle 2 for particle orbits all corresponding to the same total energy at the electrode location. 
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In such case, this will be the definition of a local 

electron temperature at the position .r  Eq. (11) 

explains that the presence of a structure modifies the 

local temperature in its vicinity. If the distribution is 

not Maxwellian, and if we take into account the 

shadowing effect, we shall obtain: 

2 2
,

3 1
( ) ( , , )4

2 2e B e eN k T m v h v v   r r v
 (12) 

The PIC methods automatically take into account 

the shadowing effect of a spacecraft, and particle 

removals, but the Boltzmann factor does not. Note 

that Eq. (12) does not imply a modification of the 

Vlasov equation. This last equation states that the 

distribution function stays constant along a trajectory 

in the phase plane [10]. Here, h  implies that we 

have a sink of particles or an artificial perturbation of 

the electron temperature at the point .r  More 

specifically, scientific instruments are mounted at the 

extremity of a boom, away from the body of a 

spacecraft. Then, Eq. (12) implies that: 

( ) ( ( ), ( ), ).e e sT a T a a  r        (13) 

Here a  is, for example, the radius of a spherical 

electrode. We suggest adjusting the Boltzmann factor 

by: 

,

( )
( ) exp ( ( ), ( ), ), 0e e s

B e

e
N N K a

k T

   

 
  

 

r
r r r (14) 

where 1K   is not a constant. 

Let us re-examine the definition of the repelled 

electron flux collected by a spherical electrode from 

Laframboise and Parker in 1973 [8], but here we also 

include the shadowing effect of a structure. They used 

spherical coordinates ( , , )v    in the velocity space, 

with polar axis in the x  direction so that the flux I is 

given by: 

3( ) .x

E q

I fv E d







  v           (15) 

Eq. (15) does not possess an analytical solution, 

except in the case where ( ) 1,E   i.e., if we have 

no shadowing effect, we obtain the classical result of 

the electron flux for a negative potential [12, 15]: 

,

81
exp ; 0.

4
B e

e e
e B e

k T e
I N e

m k T

 


 
  

 
 (16) 

It is difficult to estimate the shadowing effect or a 

wake effect on the flux. (E) is a non-linear function 

of the potential of the electrode. For example, if (E) 

is weaker near the plasma potential than expected, this 

will translate to an apparently higher measured 

electron temperature by a Langmuir probe, 

5. Applications to Data Processing of the 
Earlier Rocket Experiment 

In Fig. 1B, the electron density profile was obtained 

directly from an impedance probe, also called a Sayers 

probe. Two small grid-like electrodes formed a 

capacitor at a probing frequency of 39 MHz. The 

measured capacitance between the electrodes was 

proportional to the electron number density [6, 13, 14]. 

This impedance probe was therefore an 

electromagnetic instrument. It is easy to explain the 

strong payload roll effect because of a bad separation 

between the rocket and the payload. Because the 

payload had a larger drift velocity U  than the ion 

velocity 2 / ,B i ik T m  they had formation of an 

electrostatic wake in the downstream region. Here, the 

subscript i  refers to the ions, iT  is the ion 

temperature, and im  the average ion mass. Note that, 

as McMahon [11] said, "The ion number density field 

in the wake of a structure has a complicated behaviour 

which is strongly dependent upon the drift velocity 

",U the plasma parameters, and the geometry of a 

structure. Scientists divide the wake into three regions: 

the near wake where the ion depletion may be 

important; the mid wake, where enhanced ion number 

densities may exist because of a focusing effect of ion 

trajectories; and finally the last region is called the far 

wake. Because electrons and ions are linked through 
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the Poisson equation, the electron number density is 

also affected in the wake region. However, our Eq. (14) 

shows that even in the upstream region, we may have 

a shadowing effect and a depletion of the electron 

number density. Also, in the upstream region, 

measurements can be affected by encircling 

trajectories around the structure. It is most unfortunate 

that modellers studied in depth only the behaviour of 

the ion number density in the electrostatic wake, and 

not the electron number density. It would be 

interesting to know the behaviour of the electron 

number density in the near wake, the mid wake, and 

the far wake. 

Note that for this particular rocket experiment, 

andin Fig. 1A, we observed an increase of the electron 

temperature in the wake region. At this stage, we must 

distinguish two different situations: the local 

temperature which is defined by Eq. (12), and an 

estimation of the electron temperature from an 

instrument on board and its collected current (Eq. 

(15)). We believe that we can explain the roll effect 

and the data presented on Fig. 1 with our model, if we 

accept that the population of occupied orbits is not the 

same in the upstream region and the downstream 

region (the wake) at the position of the instrument. 

There is one possibility that they had an artefact due to 

the geometry and the design of the instrument. The 

electron temperature sensor was a Sayers-Langmuir 

probe [8, 12, 15]. A Langmuir probe is an electrostatic 

instrument where an electrode is biased in potential, 

and the collected electron current enables the 

estimation of the electron temperature. We are going 

to split the interaction between a moving spacecraft 

and the ionosphere into two types of effect: a global 

effect, and a local effect in the vicinity of the 

instrument. The global effect includes the spacecraft, a 

boom, and an instrument mounted at the extremity of 

the boom, while the local effect is linked to the 

geometry and the design of the instrument. In this 

present work, we can only study the local effect 

because the global effect requires the knowledge of 

the velocity of the payload and the attitude that we 

don’t have. It would be also a complex full 3D 

simulation process. 

In the Sayers-Langmuir electron temperature sensor 

[6], the apparatus consisted of two spherical electrodes, 

slightly differently biased in potential. These 

electrodes were separated from a cylindrical guard 

ring by an insulator of Teflon. Our purpose is to study 

the behaviour of the electric potential near the 

electrodes. Fig. 3 represents our computational grid. 

For simplicity, we have put a Neumann condition on 

the potential on the left side of the grid, a Neumann 

condition at the bottom of the grid, and two Dirichlet 

conditions on the other sides of the grid. They had a 

little rectangular electronic box at the end of the guard 

rings. However, we have artificially rounded the 

corners of the box in our grid structure for computational 

purposes. Also we have biased the electrode to a weak 

potential of -0.1 volt, the insulator to a potential of -1 

volt, the guard ring at a potential of -0.1 volt, and the 

electronic box at a potential of -1 volt. The insulator is 

at a floating potential, i.e., the net collected current is 

zero. We assumed that the value of -1 volt was 

reasonable for the floating potential. This potential 

must be negative so that positive ions are attracted and 

the electrons are repelled. 

Fig. 4 represents the contour map of the potential 

around the instruments. We observe potential barriers 

in the vicinity of the insulator. These barriers will 

prevent the collection of small energy electrons by the 

electrode. Consequently, they will correspond to a 

weaker electron current near the potential zero, which 

is also called the plasma potential. This will translate 

to an apparent higher electron temperature. Note also 

that the vicinity of the insulator corresponds to a concave 

region, and this may affect the collection of charged 

species. Now it is also possible that the ion and electron 

currents collected by the insulator were different in the 

upstream and downstream regions. This would affect 

the electron temperature measurements. 
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These perturbing effects of an isolator have inspired 

us to propose new designs of an electrode where the 

insulators are hidden [16]. 

Finally, we should emphasize that our definition of 

the local electron temperature differs from a 

temperature measured with a scientific instrument. 

This instrument may be subject to all types of 

anomalies, and perturbations. 

6. Conclusion: Numerical Verifications of 
our Hypothesis about the Local Electron 
Temperature 

For a very long time, the Boltzmann factor has been 

utilized by modelers for the solution of the Poisson 

equation. It is a convenient formula, easy to 

implement, and it has some smoothing properties for 

numerical solution of the Poisson equation. It may 

work well for a one-body problem, or it may be used 

as a guess field for full PIC simulation processes. For 

example, McMahon's PIC-Boltzmann code for the 

study of the interaction of infinite and finite 

cylindrical electrodes with a drifting collisionless 

Maxwellian plasma [11] fitted well with 

Laframboise’s exact numerical results of a plasma at 

rest [12]. But these codes don't enable us to compute a 

contour map of the electron temperature around a 

body. Indeed, the case of a multi-body problem is 

more difficult. It will be computer time consuming to 

accurately compute the cut-off orbits. However, fully 

PIC codes would enable us to compute a map of the 

electron temperature and the electron number density 

around a complex structure. This would enable us to 

improve the design of space experiments, and provide 

better data processing. The computation of Eq. (12) 

would require 50 to 100 particles per populated cell in 

order to build an accurate histogram. The computation 

of the orbits for repelled species requires skill, and 

control of the total energy. For example, we must 

avoid shooting test particles directly at a structure, 

because the equations of motion for repelled species 

may not be defined at a turning point. 
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