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Abstract: Non-parametric methods are treasured in data analysis, particularly in finance. ST -metric is a new concept, introduced by 
Tulunay (2017). It offers non-parametric methods and a new geometric view to data analysis. In that paper, ST-metric concept has 
been applied to performance measures of portfolios. In this current paper, we purpose another ST-metric method for finding factor 
exposures in the fiv e-style-factors model. Here the style factors are value, size, minimum volatility, quality and momentum. The 
main idea is to find the factor exposures (weights) of the five-factors-model by minimizing the ST-metric between benchmark returns 
and the constructed factor model returns. We compare ST-metric method with Tracking Error method (TE-method) which is used for 
factor analysis of major indexes, decomposed into the style factors (tradable via Exchange Traded Funds (ETFs)) by Ang et al. 
(2018). We show that ST-metric method gives better estimation of the factor exposures (weights) than tracking error method, in 
general, and further how ST-metric values vary with respect to fluctuations.  This explains the reason behind the efficiency of the 
ST-metric method. We support this idea with empirical evidences. 
 
Key words: ST metric, factor investing modeling, multifactor risk models, exchange traded fund, portfolio management, 
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1. Introduction 

ST-metric, defined on discrete plane curves derives 
from entropy. Some of the advantages of the entropy 
over standard deviation has been revealed by 
Philippatos & Wilson (1972) [1]. Mainly, entropy is 
independent of the mean, contrast to standard 

 

The idea introducing ST-metric is to analyze return 
time series by measuring the “distance” between such 
series. It computes the transformed (cumulative) 
returns of two assets, viewed as discrete plane curves. 
In fact, it is a metric of any two discrete plane curves, 
taking values on the unit interval (0, 1]. In this paper, 
we purpose a new method to find factor exposures in 
the five-style-factors model by using ST-metric. We 
also show how fluctuations affect the ST-metric value. 
That provides an understanding of why ST-metric 
method gives better estimation of the factor exposures 
(weights). Empirical evidence supports these findings. 
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deviation. It captures the variation in the data. Entropy 
is a more general measure than the variance, since it 
accounts for higher order moments of a probability 
distribution function [2, 3] expressed that entropy can 
capture the uncertainty and disorder in a time series 
without imposing any constraints on the theoretical 
probability distribution, which constitutes its major 
advantage. 

Entropy is defined as negative expected value of the 
logarithm of the probabilities (with Boltzmann 
constant in statistical mechanics). Our point of view is 
Information Theoretical as in Cover & Thomas (2006) 
[4]. We note that relative entropy (Kullback-Leibler 
divergence, Kullback-Leibler Information criterion, 
KLIC) is viewed as a “distance”, but does not satisfy 
metric conditions (e.g., the triangle inequality fails). 
The symmetrized relative entropy of the average of 
two probabilities is called Topsøe distance (not a 
metric either) [5]. However, it turns out that the square 
root of Topsøe distance is a metric on probabilities [6]. 
As well-known, probabilities are required to satisfy 
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two conditions: the first condition is being between  
zero and one, and the second condition is that 
summing all values up has to be one. Removing the 
second condition, as generalization, the square root of 
Topsøe distance on values between zero and one also 
satisfy metric conditions, called ST-metric1

Ang et al. (2018) [19] focuses on the style risk 
factors as the systematic factors: value, size, quality, 
momentum and minimum volatility. They use the 

 [7] for 
proof). We include the definition in Eq. (1). 

Fama & French (1993) [8] identify the five 
common risk factors in returns on stocks and bonds. 
Since then, the factor modelling with various number 
of factors are used in finance discipline. The  key idea 
is that the returns in general can be approximated with 
a few risk factors. Determining those risk factors is 
one problem and deciding the optimization method for 
the coefficient is another problem. Academics’ and 
practitioners’ literature are rich with many studies 
related to these problems. For example, Ang (2014), 
Fama & French (2015), Clarke et al. (2016), Fama & 
French (2017), A. et al. (2017), Fama & French (2018) 
and etc. [9-14]. Particularly, factor models are popular 
among the fund managers of Exchange Traded Funds 
(ETFs). 

For general information on ETF, we refer to Abner 
(2010) [15] and Madhavan (2016) [16]. Madhavan & 
Sobcyzk (2016) [17] emphasizes that Exchange traded 
funds (ETFs) have grown substantially in diversity, 
market significance and size in recent years. They 
found that pricing efficiency varies significantly across 
funds and is systematically related to cross-sectional 
measures of liquidity. Piccotti (2018) [18] reported 
that the liquidity benefits offered by foreign ETFs and 
fixed income ETFs are revealed to be the most 
valuable to investors. In our paper, the factor indexes 
are tracked by investible ETFs, so the exposures are 
available via actual tradeable portfolios, as stated in 
Ang et al. (2018) [19]. 

                                                           
1 “ST” presents “square root of Tops_e distance”, as ST-metric 
is an extension of it. 

tracking error (that is the standard deviation times the 
absolute tracking differences) as objective function in 
a factor model to find the factor  weights of major 
indexes. Tracking error smooths the absolute tracking 
differences and so produces better outcomes for the 
model optimization than the tracking differences. Our 
contribution to the subject is to suggest the ST-metric 
method, in place of tracking error used in Ang et al. 
(2018) [19]. We examine this idea with some 
empirical research where the data selection (as being 
consistent with the data set of Ang et al. (2018) [19] is 
from Exchange Traded funds (ETF) market in 
Australia and USA. We found that ST-metric method 
predominantly estimates better than the tracking error 
method. 

This paper has been organized as follows. Section 2 
starts with recalling ST-metric definition  and 
properties. In order to understand the effects of 
fluctuations on ST-metric values, some sets related to 
cumulative uniform distribution in the unit interval 
have been constructed. By using these sets, we 
establish some ST-metric inequalities, corresponding 
to different fluctuations, derived from cumulative 
uniform distribution in the unit interval. We place the 
proofs in the Appendix A. In Section 3, we explain the 
methodology of ST-metric and Tracking Error 
methods. We provide empirical evidence in Section 4. 
Finally, Section 5 presents our conclusions. 

2. ST-Metric 

In this section, we give definition of ST -metric, 
introduced in Tulunay (2017) [7] and prove some 
properties which shows how ST-metric accounts for 
fluctuations. This allows us to understand why 
ST-metric method offers better tracking the 
benchmark than tracking error method. 

ST-metric can be viewed as a distance between two 
discrete curves on (0, 1]×(0, 1]. Think of the x-axis as 
time. Let I = {1, 2, . . . , n}. Denote time by 𝑡𝑡𝑖𝑖 ∈ ℝ 
for all i∈I, where t1 < t2 < · · · < tn are n ordered 
points on the x-axis (time goes forward). For each i∈I, 
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we have the data point 𝑝𝑝𝑖𝑖 = 𝑝𝑝(𝑡𝑡𝑖𝑖) . Associating 

𝑡𝑡𝑖𝑖 →
𝑖𝑖
𝑛𝑛

, we can view the n-data points set, 

𝑃𝑃 = {𝑝𝑝𝑖𝑖 ∈ (0,1] ∣ 𝑖𝑖 ∈ 𝐼𝐼} as a discrete curve on the 
square (0,1]×(0,1]. Since there is a unique point for 
each time ti, such a n-points set defines a nonsingular 
discrete curve. Denote by 𝒳𝒳𝑛𝑛  the set of all such 

discrete curves with n points. For any 𝑃𝑃,𝑄𝑄 ∈ 𝒳𝒳𝑛𝑛 , 

define a function ST : 𝒳𝒳𝑛𝑛 × 𝒳𝒳𝑛𝑛 ↦ ℝ by 

𝑆𝑆𝑆𝑆(𝑃𝑃,𝑄𝑄) = �∑  1≤𝑖𝑖≤𝑛𝑛 𝑝𝑝𝑖𝑖 log⁡� 𝑝𝑝𝑖𝑖
𝜇𝜇(𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑖𝑖)

� + 𝑞𝑞𝑖𝑖 log⁡� 𝑞𝑞𝑖𝑖
𝜇𝜇 (𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑖𝑖)

�  (1) 

where µ is the average, i.e., 𝜇𝜇(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎+𝑏𝑏
2

 for any 

real numbers a and b. Define a function ϕ: (0,1] ×
(0,1] ↦ ℝ by 

𝜑𝜑(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎log⁡� 𝑎𝑎
𝜇𝜇(𝑎𝑎 ,𝑏𝑏)

� + 𝑏𝑏log⁡� 𝑏𝑏
𝜇𝜇(𝑎𝑎 ,𝑏𝑏)

�   (2) 

for any 𝑎𝑎, 𝑏𝑏 ∈ (0,1]. By Lemma 1 of Tulunay 
(2017) [7], we have 

ϕ ≥ 0                 (3) 
where the equality holds only if a = b. Then we can 
express ST metric in terms of ϕ function as 

𝑆𝑆𝑆𝑆(𝑃𝑃,𝑄𝑄)) = �∑  𝑖𝑖∈𝐼𝐼 𝜑𝜑(𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖)     (4) 
Then the function ST satisfies 
(1) For any 𝑃𝑃,𝑄𝑄 ∈ 𝒳𝒳𝑛𝑛 , ST (P, Q) ≥ 0, where the 

equality occurs only if 𝑝𝑝𝑖𝑖 = 𝑞𝑞𝑖𝑖  for all 𝑖𝑖 ∈ 𝐼𝐼.  
(2) For any 𝑃𝑃,𝑄𝑄 ∈ 𝒳𝒳𝑛𝑛 , ST (P, Q) = ST (Q, P), 

(symmetry). 
(3) For any 𝑃𝑃,𝑄𝑄,𝑅𝑅 ∈ 𝒳𝒳𝑛𝑛 , 𝑆𝑆𝑆𝑆(𝑃𝑃,𝑅𝑅) ≤

𝑆𝑆𝑆𝑆(𝑃𝑃,𝑄𝑄) + 𝑆𝑆𝑆𝑆(𝑄𝑄,𝑅𝑅)  (triangle inequality). 
[7]. Hence ST is a metric. More precisely, 
(𝒳𝒳𝑛𝑛 , 𝑆𝑆𝑆𝑆) is a metric space. By assuming the 
convention log 0 = 0, (0, 1] can be replaced 
by [0, 1]. We assume this convention, 
whenever we use [0, 1], in place of (0, 1]. 

If P and Q are probabilities then the ST-metric 
definition above coincides with the square root of 
Topsøe distance which is symmetrized 
Kullback-Leibler divergence (Kullback-Leibler 

Information Criterion (KLIC), relative entropy) by 
average of the probabilities [7]. 

We will now show how ST-metric accounts for 
fluctuations. To see this, we examine the ST-distance 
between cumulative uniform distribution and one with 
a few small up or down movements over the unit 
interval. 

Consider the cumulative uniform distribution, 

𝑈𝑈𝑛𝑛 = � 𝑖𝑖
𝑛𝑛
∣ 𝑖𝑖 ∈ 𝐼𝐼�. If we view the n-points, t1 < t2 <… < 

tn of time in the x-axis as the discretised points on (0, 1], 

(associating 𝑡𝑡𝑖𝑖 →
𝑖𝑖
𝑛𝑛
) then the graph of Un is the y = x 

line in the square  (0, 1] × (0, 1]. 
For any 𝑘𝑘 ∈ 𝐼𝐼  and for each 𝜀𝜀 ∈ (0,1]  with 

𝑘𝑘
𝑛𝑛

± 𝜖𝜖 ∈ (0,1], define 

𝑈𝑈𝑛𝑛((𝑘𝑘, 𝜖𝜖)+) = �1
𝑛𝑛

, 2
𝑛𝑛

, … , 𝑘𝑘−1
𝑛𝑛

, 𝑘𝑘
𝑛𝑛

+ 𝜖𝜖, 𝑘𝑘+1
𝑛𝑛

, … , 𝑛𝑛−1
𝑛𝑛

, 1�  (5) 

𝑈𝑈𝑛𝑛((𝑘𝑘, 𝜖𝜖)−) = �1
𝑛𝑛

, 2
𝑛𝑛

, … , 𝑘𝑘−1
𝑛𝑛

, 𝑘𝑘
𝑛𝑛
− 𝜖𝜖, 𝑘𝑘+1

𝑛𝑛
, … , 𝑛𝑛−1

𝑛𝑛
, 1�  (6) 

for any 𝑘𝑘 ∈ 𝐼𝐼, 𝑘𝑘 ≠ 1 and 𝑘𝑘 ≠ 𝑛𝑛 . The 𝑈𝑈𝑛𝑛((𝑘𝑘2, 𝜀𝜀)+) 
is the curve obtained from the curve Un by moving the 

point 𝑘𝑘
𝑛𝑛
 to  𝑘𝑘

𝑛𝑛
+ 𝜀𝜀. This creates one up-movement with 

magnitude ε of the y = x line in the square (0,1]×(0,1] 
of the real plane. Similar interpretation is valid for 
𝑈𝑈𝑛𝑛((𝑘𝑘, 𝜀𝜀)−) with one down-movements (Fig. 1). 

The rest of this section is devoted to show the 
following properties of ST-Metric. 
1) Structure of fluctuations: The up-movement has a 

shorter ST-distance than the down-movement 
with the same magnitude at the same point of 
time. 

2) Timing of fluctuations: Recent fluctuations have 
shorter ST-distance. 

3) Magnitude of fluctuations: If the magnitude of a 
fluctuation increases then ST-distance increases. 

4) Quantity of fluctuations: If the quantity of 
fluctuations increases then ST-distance increases. 

The following propositions in this section are 
mathematical statements of the above facts. Their 
proofs can be found in Appendix A. 
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2.1 Structure of Fluctuations 

Proposition 1  For any 𝑘𝑘 ∈ 𝐼𝐼 and 𝜀𝜀 ∈ (0,1], such 

that 𝑘𝑘
𝑛𝑛

± 𝜀𝜀 ∈ (0,1] 

𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛 ��𝑘𝑘,𝜀𝜀�
+
�� < 𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛((𝑘𝑘, 𝜖𝜖)−)�  (7) 

Note that ST-metric behaves risk aversive way, as 
negative movements are counted as the farther than the 
positive movements. In finance, a measure which 
accounts for up and down movements is very valuable. 
Profitable strategies can be constructed if it is used 
appropriately. 

 
Fig. 1  The graphs of Un and 𝑈𝑈𝑛𝑛((𝑘𝑘, 𝜖𝜖)+) for n = 19, k = 11 and ε = 0:08. 
 

2.2 Timing of Fluctuations 

Proposition 2  For 𝑘𝑘, 𝑙𝑙 ∈ 𝐼𝐼  and 𝜀𝜀 ∈ (0,1]  such 

that 𝑘𝑘 < 𝑙𝑙  and 𝑘𝑘
𝑛𝑛

± 𝜖𝜖, 𝑙𝑙
𝑛𝑛

± 𝜖𝜖 ∈ (0,1] , the followings 

hold:  

𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑙𝑙, 𝜖𝜖)⊛1�� < 𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘, 𝜖𝜖)⊛2��  (8) 

where ⊛1,⊛2∈ {+,−}. 
It is well-known that the recent financial data is more 

relevant than the farther historical data in calculating 
the prices or forecasting. The methods, with high 
weights on the recent data are attractive (e.g., 
exponentially weighted moving average (EWMA) 
method). 

2.3 Magnitude of Fluctuations 

Proposition 3 For  k ∈ I  and ϵ1, ϵ2 ∈ (0,1]  such 

that 𝜖𝜖1 < 𝜖𝜖2 and 𝑘𝑘
𝑛𝑛

± 𝜖𝜖1, 𝑘𝑘
𝑛𝑛

± 𝜖𝜖2 ∈ (0,1], we have 

𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘, 𝜖𝜖1)⊛1�� < 𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘, 𝜖𝜖2)⊛2�� (9) 

where ⊛1,⊛2∈ {+,−}. 
Even the magnitude of fluctuations supplies 

important information for forecasting in finance or 
more generally in statistics, the usual statistical 
measures, like standard deviation give either none or 
very restricted information. Indeed, magnitude does 
matter in Finance. We note that ST-metric methods do 
not require to consider the jump events separately. 

2.4 Quantity of Fluctuations 

Similar to our definition of one fluctuation, we can 
define two (or more) fluctuations by 

 
 



ST-metric Estimation of Factor Exposures 

  

36 

𝑈𝑈𝑛𝑛�(𝑘𝑘1, 𝜖𝜖1)⊛1 , (𝑘𝑘2, 𝜖𝜖2)⊛2� = �
1
𝑛𝑛

,
2
𝑛𝑛

, … ,
𝑘𝑘1 − 1
𝑛𝑛

,
𝑘𝑘1

𝑛𝑛
⊛1 𝜖𝜖1,

𝑘𝑘1 + 1
𝑛𝑛

, …� 

𝒌𝒌𝟐𝟐 − 𝟏𝟏
𝒏𝒏

,
𝒌𝒌𝟐𝟐
𝒏𝒏
⊛𝟐𝟐∈𝟐𝟐,

𝒌𝒌𝟐𝟐 + 𝟏𝟏
𝒏𝒏

�⋯ ,
𝒏𝒏 − 𝟏𝟏
𝒏𝒏

,𝟏𝟏� 

where ⊛1,⊛2∈ {+,−}, 𝑘𝑘1, 𝑘𝑘2 ∈ 𝐼𝐼, 𝜀𝜀1, 𝜖𝜖2 ∈ (0,1] and 
𝑘𝑘1
𝑛𝑛

± 𝜖𝜖1, 𝑘𝑘2
𝑛𝑛

± 𝜖𝜖2 ∈ (0,1]. 

Proposition 4  For 𝑘𝑘1, 𝑘𝑘2 ∈ 𝐼𝐼, 𝜀𝜀1, 𝜖𝜖2 ∈ (0,1] such 

that 𝑘𝑘1
𝑛𝑛

± 𝜖𝜖1, 𝑘𝑘2
𝑛𝑛

± 𝜖𝜖2 ∈ (0,1], we have 

𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘𝑖𝑖 , 𝜖𝜖𝑖𝑖)⊛𝑖𝑖�� < 𝑆𝑆𝑆𝑆 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘1, 𝜖𝜖1)⊛1 , (𝑘𝑘2, 𝜖𝜖2)⊛2�� (10) 
where ⊛1,⊛2∈ {+,−} and i =1, 2. 

This is obvious as 𝜑𝜑(𝑎𝑎, 𝑏𝑏) > 0 by Eq. (3) and  
𝜑𝜑(𝑎𝑎, 𝑏𝑏) < 𝜑𝜑(𝑎𝑎, 𝑏𝑏) + 𝜑𝜑(𝑐𝑐,𝑑𝑑) 

for all distinct 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ (0,1] . Adding more 
fluctuations would add positive values to ST-distances. 
In Finance, more fluctuations imply higher variations 
of the returns and so less stability and higher risk. In 
terms of ST-metric, the longer the distance, the higher 
the risk. 

Remark 1  Note that the standard deviation of n 
variables can be viewed as the ℒ2-Euclidean distance 
from a point in an n-dimensional space to the mean 
point (𝜇𝜇, 𝜇𝜇, … , 𝜇𝜇) ∈ ℝ𝑛𝑛  (up to a scalar). 

Let’s compare the above results of ST-metric 
distance with ℒ2 -Euclidean distance in an 
n-dimensional space: 

ℒ2(𝑋𝑋,𝑌𝑌) = � �  
1≤𝑖𝑖≤𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2 

for 𝑋𝑋,𝑌𝑌 ∈ ℝ𝑛𝑛 . It is straightforward to show that, for 

any 𝑘𝑘 ∈ 𝐼𝐼 and for each 𝜀𝜀 ∈ (0,1] with 𝑘𝑘
𝑛𝑛

± 𝜀𝜀 ∈ (0,1] 

ℒ2 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘, 𝜖𝜖)⊛�� = 𝜖𝜖 

where ⊛∈ {+,−}. That is independent of k. Hence, 
ℒ2-Euclidean distance provides no information about 
the structure of fluctuation and the timing of fluctuation, 
but agrees with the ST-metric on the properties of 

magnitude and quantity (Eq. (9) and Eq. (10)): For all 
𝜀𝜀1, 𝜀𝜀2 ∈ (0,1]  

𝜖𝜖1 = ℒ2 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘, 𝜀𝜀1)⊛1�� < ℒ2 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘, 𝜖𝜖2)⊛2�� = 𝜖𝜖2  

𝜖𝜖𝑖𝑖 = ℒ2 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘𝑖𝑖 , 𝜖𝜖𝑖𝑖)⊛𝑖𝑖��

< ℒ2 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘1, 𝜀𝜀1)⊛1 , (𝑘𝑘2, 𝜖𝜖2)⊛2�� = �(𝜖𝜖1
2 + 𝜀𝜀2

2) 

Remark 2  Recall that ℒ1-Euclidean distance in an 
n-dimensional space is defined as 

ℒ1(𝑋𝑋,𝑌𝑌) = �  
1≤𝑖𝑖≤𝑛𝑛

|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖| 

for 𝑋𝑋,𝑌𝑌 ∈ ℝ𝑛𝑛 , It is straightforward to show that, for 

any 𝑘𝑘 ∈ 𝐼𝐼 and for each 𝜀𝜀 ∈ (0,1] with 𝑘𝑘
𝑛𝑛

± 𝜖𝜖 ∈ (0,1]. 

ℒ1 �𝑈𝑈𝑛𝑛 ,𝑈𝑈𝑛𝑛�(𝑘𝑘, 𝜖𝜖)⊛�� = 𝜖𝜖 

where ⊛∈ {+,−}. That is independent of k. Hence, 
ℒ1-Euclidean distance provides no information about 
the structure of fluctuation and the timing of fluctuation, 
but agrees with the ST-metric on the properties of 
magnitude and quantity (Eq. (9) and Eq. (10)). 

3. ST-Metric Method for Solving the 
Optimization Problem in Five-Factors 
Model 

We consider the five-style-factors model as in the 
paper of Ang et al. (2018) [19]. The five-style factors 
and their MSCI indexes are as follows: 

1) Value: (MSCI Value Weighted Indexes) 
Capture Value factor by weighting according to 
four fundamental variables (Sales, Earnings, 
Cash Flow, Book Value). 

2) Size: (MSCI Equal Weighted Indexes) Capture 
low size effect by equally weighting all stocks 
in a given parent index. 

3) Quality: (MSCI Quality Indexes) Capture high 
quality stocks by weighting, based on 
debt-to-equity, return-on-equity, and earnings 
variability. 

4) Momentum: (MSCI Momentum Indexes) 
Reect the performance of high momentum 
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stocks by weighting based on 6 and 12-month 
momentum scaled by volatility. 

5) Minimum Volatility: (MSCI Minimum 
Volatility Indexes) Reect empirical portfolio 
with lowest forecast volatility using minimum 
variance optimization. 

For more information on factor investing, we refer to 
Kassam et al. (2013) [20]. 

Let S = {1, 2, …, 5} be the indices for the risk factors 
and I = {1, 2, …, n} the indices of time for the 
concerned time series. For each s∈S and i∈I, denote by 
fs,i the returns of the risk factor s at time ti. Let ws,i be 
the risk exposure (weight) corresponding to each factor 
fs,i, satisfying 
(Condition C):  

, ,1 and 0s i s i
s S

w w
∈
∑ = ≥  for all i∈I and s∈S  (11) 

Let bi be the benchmark returns at time ti for each i∈I. 
Then the set of all benchmark returns is 

{ }iB b i I= ∈∣  

Denote by pi the constructed portfolio return at time 
ti for each i∈I by the factors and the weights. Namely, 

, ,i s i s i
s S

p w f
∈

= ∑  

Then the set of all constructed portfolio returns is 

{ }iP pıI= ∈∣ . 

Further, we construct a set, say ün consisting of B 

and all possible sets P. 

3.1 Tracking Error method (TE-method) 

Tracking error method has been used in the paper of 
Ang et al. (2018) [19]. They claimed that “Tracking 
Error captures the absolute differences in return 
between the index and the mimicking portfolio and is, 
thus, a measure of the goodness of fit of the 
optimization exercise to create a long-only 
representation”. 

Denote by σ the standard deviation of the benchmark 
returns B. Then Tracking Error is defined as a function 

: n n×     by 

( , ) i i
i I

P B p bσ
∈

= −∑  

The optimization problem for the Tracking Error 
method is to find ws,i such that ( , )P B  is minimal 

where the minimum is taken over all elements of the set 

X. Namely, 

, , ,min ( , ) min
s iP w s i s i i

i I s S
P B w f bσ

∞∈
∈ ∈

= −∑ ∑   (12) 

subject to Condition C in Equation (11). 

3.2 ST-metric Method 

For this application, there are some advantages to 
consider ST-metric defined on values in [0, 1], instead 
of (0, 1], by assuming the convention log 0 = 0. 

In order to be able to apply ST-metric, we first need 
all values to be in [0, 1]. However, the returns of an 
asset may not be in [0, 1]. We need to transform all 
returns onto [0, 1] in a way that timing order of the data 
and the distributions remain invariant. This problem 
has been tackled in Tulunay (2017) [7]. Such a 
transformation is called Maximal Invariant 
transformation that leaves the parameter space of 
distributions invariant [21]. In particular, assuming X 
is a set of random variables, for any fixed x0∈X, 
transformations of subtracting x0 or of dividing by x0 or 
a combination of both are all examples of a maximal 
invariant transformation [21]. Vertically shifting all 
historical returns above the x-axis (y = 0 line) and 
vertically shrinking below y = 1 line ensure all returns 
to be in [0, 1]. Clearly, such transformations leave 
distributions invariant. Now, we are going to present 
the maximal invariant transformation that we consider 
for this application in mathematics language. 

Let { } { }, ,s i iD f s S i I b i I= ∈ ∈ ∪ ∈∣ ∣  be the 

set of all available historical returns of all factors and 
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the benchmark. Define a maximal invariant 

transformation 𝑔𝑔: [0,1]D  by 

𝑔𝑔(𝑑𝑑) = 𝑑𝑑+𝛼𝛼
𝛽𝛽

              (13) 

where 

min{ }  if min{ } 0
0  otherwise 

d D d D

d d
α ∈ ∈

− <
= 


 

and  

max{ }  if max{ } 1

1  otherwise 
d Dd D

d dα α
β ∈∈

+ + >= 


 

In this case, the constructed portfolio is 

( ) ( ), ,g
s S

i s i s ip w g f
∈

= ∑  

Condition C in Eq. (11) implies that ( ) 0g ip ≥ . 

Further, since all affine combinations of a nonempty 
set in an n dimensional real space lie on that set [22], 
we have ( ) [0,1]g ip ∈ . Hence, the range of this 

transformation, g(D) is a subset of [0; 1]. 
So ST-metric is well-defined on the set 

{ ( )} { ( )}g gP B∪ and 

( ) ( )( )( ( ), ( )) ,g g g gi i
i I

P B p bϕ
∈

= ∑  (14) 

where the function ϕ is as in Equation (2). The 
optimization problem for the ST-metric method 
becomes finding ws,i such that ST(g(P), g(B)) is 
minimal. Namely, 

( ) ( )
,

, ,( )
min ( ( ), ( )) min ,

nP
g g g g

ws i
s i s i ig i I s S

P B w f bϕ
∈

∈ ∈

 =  
 

∑ ∑
  

subject to Condition C in Eq. (11). 
Remark 3 In practice, it may be difficult to decide 

whether the minimal value in Eq. (15) is optimal or not. 
Tulunay (2017) [7] argue that two discrete curves are 
indistinguishable if their ST-metric is smaller than and 
equal to ST-metric of cumulative uniform distribution 
and Lorenz curve. The ST-metric of cumulative 
uniform distribution and Lorenz curve only depends on 
the size n of the time series. It is easy to calculate it. 

Instead of minimizing the ST-metric in Eq. (15), we 
can set the problem to approach the ST-metric between 
the constructed portfolio and the benchmark returns to 
the ST-metric of cumulative uniform distribution and 
Lorenz curve. The optimization problem becomes 

Find the weights ws,i such that 

( ),( ( ), ( ))g g n nST P B U L→   

where Un is cumulative uniform distribution as above, 
and Ln is the Lorenz Curve, that is as a set 

1.16

n
iLıI
n

   = ∈  
   



∣  

4. Empirical Evidence 

Note that we use the data service of Thomson 
Reuters News Analytics (TRNA) to attain our data 
sets. 

We choose two sets of data: one from Australian 
market and another one from US market in a similar 
way of Ang et al. (2018) [19]. 

4.1 Australian Market Case 

Our Australian market data consists of 
 The Benchmark: AUMF; iShares Edge MSCI 

Australia Multifactor ETF (Exchange Traded 
Funds), 

 The indexes to approximate style risk factors 
are 
 Value: MSCI AUSTRALIA: S VALUE 

WEIGHTED - PRICE INDEX 
 Size: MSCI AUSTRALIA RISK 

WEIGHTED - PRICE INDEX 
 Quality: MSCI AUSTRALIA QUALITY - 

PRICE INDEX 
 Momentum: MSCI AUSTRALIA 

MOMENTUM - PRICE INDEX 
 Minimum Volatility: MSCI AUSTRALIA 

MINIMUM VOL(AUD) - PRICE INDEX 
The inception date of the benchmark AUMF is 11th 

of October, 2016. The first-historical-data-available is 
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2th of November, 2016. The date range is from 
2-Nov-2016 to 19-Jun-2018. We take monthly returns 
for 20 months. The actual weights of the style risk 

factors, disjoining the benchmark AUMF can be seen 
in Fig. 2. Apparently, the main driving risk factors for 
AUMF financial product are size and momentum. 

 
Fig. 2  The Risk Factors Decomposition of AUMF from Oct 2016 to Jun 2018. 

 

We consider two sets of time intervals: 6-months of 
returns and 3-months of returns. Shifting one month 
yields 14 scenarios for the 6-monthly experiment and 
17 scenarios for the 3-monthly experiment. 

For the 6-monthly experiment, the in-sample data 
consists of monthly returns for 6-months duration. We 
apply both TE-method and ST-metric methods to 
calculate monthly weights of the constructed portfolio. 
We choose the out of sample as the 7th month for 
forecasts. The forecasted weights for the 7th month is 
the average of the monthly weights over six months. 
Then we attain the forecasted return of the constructed 
portfolio as the weighted averages. We compute actual 
weights of the factors for the 7th months to compare the 
results of TE-method and ST-metric methods. The 
comparison is by looking at two types of errors: 

1) Forecast Error: Absolute error of the forecasted 
value with the actual value for the 7th month, 

2) Weights Error: The sum of the square errors of 
the forecasted weights for the 7th month with 
the actual weights of the factors.  

The 3-monthly experiments are similar to the 
6-monthly experiment with in-sample size 3, and the 
out-of-sample is the 4th month for forecasts. Apart 

from averaging weights for forecast, we also examine 
finding one fixed set of weights over 3-months2

#{ - - }
#{ exp }

         
      

ST metric method error is less than TE method error
all scenarios in the eriment

. 
The success rate of the ST-metric method over 

TE-method can be computed as 

 

The results are given in Table 1 where Experiment 1 
is the 6-monthly experiment, Experiment 2 is the 
3-monthly experiment with averaging the weights over 
3 months, and Experiment 3 is the 3-monthly 
experiment with a fixed set of weights over 3-months. 

As we mentioned in Remark 3, we find the weights 
by approaching the ST-metric between the constructed 
portfolio and the benchmark returns to the ST-metric of 
cumulative uniform distribution and the Lorenz curve: 

ST(U6, L6) = 0.06 for n = 6 (six monthly experiment) 
ST(U3, L3) = 0.09 for n = 3 (three monthly experiments) 
 
Table 1  The success rate of the ST-metric method over 
TE-method. 
Error type Experiment 1 Experiment 2 Experiment 3 
Forecast error 71% 65% 65% 
Weights error 100% 94% 88% 

                                                           
2 Note that our experiments of finding one set of weights for 
all 6-months failed. The 6-months fixed weights are practically 
not acceptable. 
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4.2 US Market Case 

We choose the next set of the data from USA market. 
 The Benchmark: Russell 1000 Index, 
 The indexes to approximate style risk factors 

are 
 Value: MSCI USA ENHANCED VALUE 

- PRICE INDEX 
 Size: MSCI USA RISK WEIGHTED - 

PRICE INDEX 
 Quality: MSCI USA SECTOR NEUTRAL 

QLTY - PRICE INDEX 
 Momentum: MSCI USA MOMENTUM - 

PRICE INDEX 

 Minimum Volatility: MSCI USA 
MINIMUM VOLATILITY - PRICE 
INDEX 

The actual weights of the style risk factors, 
disjoining the benchmark are given in Fig. 3. 

The success rates of ST-metric method over 
TE-method for USA market are given in Table 2 where, 
as in the case of Australian Market above, Experiment 
1 is the 6-monthly experiment, Experiment 2 is the 
3-monthly experiment with averaging the weights over 
3 months, and Experiment 3 is the 3-monthly 
experiment with a fixed set of weights over 3-months. 

 
Fig. 3  The Risk Factors Decomposition of Russell 1000 from Oct 2016 to Jun 2018. 

 

Table 2  The success rate of the ST-metric method over 

TE-method. 

Error type Experiment 1 Experiment 2 Experiment 3 
Forecast error 71% 82% 76% 
Weights error 93% 100% 100% 

5. Conclusion 

Time series analysis is generally based on statistical 
methods. By introducing ST-metric method, we 
purpose to view time series as transformed discrete 
curves on the unit interval. By the nature of its 
definition, the ST-metric accounts for up or down 
movements, recent or older historical data, magnitude 
of movements and the quantity of movements. As far as 
the authors know, there is no statistical method which 
accounts for all of these features simultaneously. 
Therefore, ST-metric method is efficient. If it is 
appropriately applied, ST-metric methods are 

promising to introduce profitable investment strategies. 
ST-metric is a new concept, and only two applications 
have been investigated so far: performance measures 
of fund managers [7] and finding the factor exposures 
of factor models. There are many open questions on the 
subject of ST-metric to discover further. For example, 
since ST-metric increases with the respect to number of 
fluctuations, one may wish to investigate how to apply 
ST-metric as a noise reduction method. If one can 
understand how to use ST-metric on pricing financial 
instruments, that would be the start of a new avenue in 
financial mathematics. 
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Appendix 
The Jensen Inequality for any convex function f is given by 

 ( )
1 1

n n

i i i i
i i

f w a w f a
= =

 
≤ 

 
∑ ∑   (16) 

Where 
1

1
n

i
i

w
=

=∑ , wi∈[0; 1], ai are in the domain of f, for each i = 1, 2, …, n.  

Before starting the proofs of the propositions in Section 2, note that the definition of ST-distance between { }(0,1]iA a i I= ∈ ∈∣  

and { }(0,1]iB b i I= ∈ ∈∣  can be written as 

 ( )( , ) ,i i
i I

A B a bϕ
∈

= ∑   

where ϕ is defined as in Eq. (2). 
The proofs of the propositions in Section 2 are as follows. 



ST-metric Estimation of Factor Exposures 

  

42 

A.1 Proof of Proposition 1 

Proof: Assume k∈I, ϵ∈ (0; 1) and (0,1]k
n

ε± ∈ . Since ϕ(x, x) = 0 for all x∈[0, 1], we have 

 
( )( )

( )( )

, 3

,

( , ) ,

, ) ,

n n

n n

k kU U k
nn

k kU U k
n n

ε ϕ ε

ϕ

+

−

 = + 
 
 〈 = − 
 

 




  

Hence, it is sufficient to show that 

 , , 0k k k k
n n n n

ξ ϕ ε ϕ ε   = − − + ≥   
   

  

Let 
ka
n

= , for simplicity. Then we have 

 
2 2( ) 2 2( )log ( ) log log ( ) log

2 2 2 2
a a a aa a a a

a a a a
εξ ε ε

ε ε ε ε
− +       = + − − − +       − − + +       


        (17) 

 
2 2log ( ) log

2 2( )
a aa a

a a
ε εε

ε
   −  − = − + − −     −     

                               (18) 

 
2 2( )log ( ) log

2 2
a aa a

a a
εε

ε ε
   +    + − + + −      + +      

                              (19) 

Applying Jensen’s inequality for the convex function -log, it is straightforward to show that 

 
2 21 2 2( )log 2

4 4 2
a aa

a a a
ξ εε

ε
  + +

≥ − − +   +  
  

 
21 (2 )log 2

4 2
aa

a a
εε
ε

  +
= − − +   +  

  

log(1) 0= − =   

Since ϕ(a, a-ϵ) ≠ϕ(a, a + ϵ) for any ϵ ∈ (0; 1), ξ ≠ 0. Hence ξ > 0, as required. 

A.2 Proof of Proposition 2 

Proof: We will only prove the inequality for the case ⊛1 = + and ⊛2 = +. The others can be proven in a similar way. To prove the 
first inequality, it is enough to show that 
 ( , ) ( , ) 0a a b bξ ϕ ε ϕ ε= + − + >   

Where  and k la b
n n

= =  Similar to the calculation in Eq. (17), by Jensen’s Inequality for the convex function -log,  

2 21 2 2( )log 2
2( ) 2( ) 2

b ba
a b a b b

ξ εε
ε ε ε

  + +
≥ − + +   + + + + +  

 

21 (2 )log 2
2( ) 2

ba
a b b

εε
ε ε

  +
= − + +   + + +  

 

log(1) 0= − =  

Since k < l, ξ > 0, as required. 
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A.3 Proof of Proposition 3 

Proof: We will only prove the inequality for the case ⊛1 = + and ⊛2 = +. The others can be proven in a similar way. To prove the 
first inequality, it is enough to show that 

 2 1, ,k k k k
n n n n

ξ ϕ ε ϕ   = + − +   
   

   

For simplicity, let 
1ka

n
−

=  and 
kb
n

= . Then we need to show that 
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4 4 2
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a a a
εξ ε

ε ε ε

  + +
  ≥ − + +

  + + + + +   
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21log 2
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a a
ε

ε
ε ε ε

  +
  = − + +

  + + +  
 

log(1) 0= − =  
Since ϵ1 ≠ϵ2, ξ > 0, as required. 


