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Abstract: Partial discharge (PD) measurements are a standard method to determine insulation integrity since many years. For new 
equipment, the partial discharge level should be below a certain standardized level to be commissioned successfully. However, what 
is when a monitoring system detects upcoming partial discharges during the lifetime of an electrical equipment? Unfortunately, the 
discharge magnitude is not directly proportional to the remaining lifetime or the breakdown risk or breakdown voltage. Expert 
systems or experienced professionals can identify the PD defect root cause with a good certainty. This helps to determine the given 
risk. Nevertheless, clear risk quantification is missing. In this paper, a new approach is presented to predict the AC and lightning 
breakdown voltages of the equipment based on patterns from PD measurements. The method is validated with PD test data of several 
tip-plate configurations in air. A neuronal network is trained with these measurements. For control measurements with a different tip, 
it can be shown that the breakdown voltage can be predicted with an average failure of 5.3% for AC and 9.1% for lightning. 
 
Key words: Breakdown voltage prediction, partial discharges, risk evaluation, neural networks. 
 

1. Introduction 

Reliable supply of electrical energy is an essential 
requirement for modern industrial societies. With the 
increasing demand on electricity and volatile energy 
sources like wind or sun, the power grid operators are 
obligated to be flexible and to offer their services for 
moderate costs. Therefore, the operators have to 
utilize equipment to their absolute maximum ratings 
and eventually to postpone necessary inspections. 

The wear of the high voltage (HV) equipment on 
one hand and possible errors during fabrication or 
repair of HV equipment on the other hand can cause 
partial discharges (PDs) and impair the quality of 
service. PD presence and evolution is a good indicator 
for the equipment insulation integrity. Such 
information shall help to estimate the actual risk of a 
system breakdown. 

 

Advances in sensors, electronics and digital signal 
processing have helped engineers in past decades to 
detect PDs and to monitor the HV equipment. For 
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example, monitoring by means of ultra-high frequency 
(UHF) partial discharge measuring techniques in 
gas-insulated switchgear (GIS) is today a routine in 
industry. The PD monitoring of GIS is done using 
UHF-sensors [1-13]. In generators and transformers 
capacitive couples are used to monitor PD. 
Unfortunately, the discharge magnitude measured 
with all such monitoring systems is not directly 
proportional to the remaining lifetime or breakdown 
risk of the HV equipment. For some PD defect types 
physical or statistical models exist to calculate the AC 
or lightning breakdown voltages, which correlates to 
the remaining insulation strength. In general, the exact 
defect geometry is required to perform such calculation. 
However, this defect geometry is just known after 
defect localization and repair. To the authors 
knowledge just one approach exists for bouncing 
particles in GIS to calculate the AC breakdown 
voltage based on the measured PD data [14, 15]. 

Today PD expert system or experienced 
professionals can identify the defect root cause with a 
good certainty. This helps to get a certain idea on the 
given risk. Nevertheless, clear risk quantification is 
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missing. In this paper, a general approach is presented 
how AC and lightning breakdown voltages can be 
predicted based on PD measurement data. 

2. Neural Networks 

Artificial neuronal networks (ANN) have been used 
in the last decades to solve pattern recognition tasks or 
to predict output data based on complex input data in 
which normal regression algorithms fail due to the 
complexity of the problem. In general, an ANN can be 
described as an adaptive learning algorithm that is 
inspired by our brains structure [16]. At the synapse—the 
nerve cell releases a chemical compounds called 
neurotransmitters, which excite or inhibit a 

chemical/electrical discharge in the neighboring nerve 
cells. The summation of the responses of the adjacent 
neurons will elicit the appropriate response in the 
neuron. An ANN consists of a set of algebraic 
equations and functions, which determine the best 
output given a set of inputs. These equations simulate 
the behavior of our nerve cells (Fig. 1). 

To solve complex problems a multitude of such 
base cells are connected in rows and layers. To predict 
the AC and lightning breakdown voltage an ANN was 
chosen with 512 cells in the inputs layer, 23 cells in 
the hidden layer and 3 cells in the output layer. The 
512 input data are the repetition rates of a pixel 
reduced PRPD-pattern (Fig. 2). 

 

 
Fig. 1  Base cell of an artificial neural network. 
 

 
Fig. 2  ANN structure to predict breakdown voltages (BV) from PRPD-patterns. 
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3. Data Acquisition and ANN Training 

To train the ANN for good results excessive data 
pairs consisting of PRPD pattern and associated 
breakdown voltage (BV) are required. For simplicity, 
a tip plain configuration in air was chosen to validate 
this relatively general approach. Fig. 3 shows the 
experimental set up. The air gab between the 
electrodes is 25 mm. Tips with four different tip 
radius (150 μm, 0.35 mm, 0.5 mm and 1.25 mm) have 
been investigated. 

For all, the tip length into the air gap was modified 
in for steps (0 mm, 5 mm, 10 mm and 15 mm). 

3.1 Breakdown Voltages Measurements 

For all these 4 × 4 = 16 configurations the 50% 
breakdown voltages have been tested for AC, positive 
lightning and negative lightning. 

3.2 Partial Discharge Measurements 

Also the PD activity has been measured 
(PRPD-pattern). As the algorithm is intended to predict 
the breakdown voltage (which is hopefully well above 
the actual operation voltage) PD data have been 
measured at several voltages below the measured AC 
breakdown voltage (40%, 50%, 60%, 80% of AC BV). 

The measurements were repeated 10 times to gain 
some statistical variance. 

3.3 Training of the Neuronal Network 

For the training of the ANN the breakdown 
voltages are normalized to the BV value of the 25 mm 
plate/plate air gap representing the sound insulation 
status. These normalized BV values can be interpreted 
as percent of remaining insulation strength. Fig. 4 
shows four training datasets from a tip with 150 μm 
radius protruding 10 mm into the air gap. They belong 
all to the same AC or lightning breakdown voltages. 

4. Results 

Fig. 5 shows the data of the same tip protruding 15 
mm into the air gap. They look similar but relate to 
significantly different breakdown voltages. This 
explains why this prediction is relatively difficult for 
humans. 

Based these 4 × 4 × 10 = 160 datasets obtained in 
the experiments the ANN algorithm has been training 
and validated. Data from only 3 of the 4 different tips 
were used to train the ANN. The algorithm learned the 
BV voltages of these 3 tips after only 1,500 learning 
cycles with an acceptable error of less than 1% (back 
error propagation method). Then the PD data of the 
not trained tip were presented to the network and the 
predicted BV was recorded. 

The results obtained with relatively small number 
of training datasets for an ANN are surprisingly good. 

 

 
Fig. 3  Adjustable tip/plane configuration. 
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Fig. 4  Training datasets from a tip with 150 μm radius protruding 10 mm into the air gap. 
 

 
Fig. 5  Training datasets from a tip with 150 μm radius protruding 15 mm into the air gap. 
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Fig. 6  Prediction of the normalized AC breakdown voltage of an “untrained” 0.35 mm tip. 
 

 
Fig. 7  Prediction of the normalized negative lightning breakdown voltage of an “untrained” 0.35 mm tip. 
 

 
Fig. 8  Prediction of the normalized positive lightning breakdown voltage of an “untrained” 0.35 mm tip. 
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Figs. 6-8 show the results for the tip with 0.35 mm 
radius, which has not been trained to the ANN before. 
The AC breakdown voltage can be predicted with an 
average failure of 5.3%. The negative lightning BV is 
with an error of 7.5% and for positive lightning 
voltages with 9.1% error. 

5. Conclusion 

The approach of predicting the remaining insulation 
strength/breakdown voltages based on PD data by an 
artificial neural network was validated successfully. 
Even if the results are encouraging, it has to be 
pointed out that they have been archived at an 
academic set up only. It is clear that this approach 
must be further investigated for full-scale equipment 
and for insulation systems with higher relevance like 
SF6, oil or PE. But it is also clear that this approach is 
general and open to all types of equipment and 
insulations where PD can be measured and a 
significant amount of training data sets can be 
obtained. 

Approximately 50 years ago researchers have 
started to measure PD. Twenty-five (25) years ago we 
introduced first classification algorithms to identify 
the PD root cause type. The author hopes that with 
this work a small contribution can be made to quantify 
insulation breakdown risk based on PD data by 
predicting the actual breakdown voltage. 

References 

[1] Hucker, T., and Krantz, H. G. 1995. “Requirements of 
Automated PD Diagnosis Systems for Fault Identification 
in Noisy Conditions.” IEEE Transactions on Dielectrics 
and Electrical Insulation 2 (4): 544-56. 

[2] Gorablenkow, J., Huecker, T., and Schichler, U. 1998. 
“Application of UHF Partial Discharge Monitoring and 
Expert System Diagnosis.” In Conference Record of the 
1998 IEEE International Symposium on Electrical 
Insulation (Cat. No. 98CH36239), 61-4. 

[3] Huecker, T., and Gorablenkow, J. 1998. “UHF Partial 
Discharge Monitoring and Expert System Diagnosis.” 
IEEE Transactions on Power Delivery 13 (4): 1162-7. 

[4] Schichler, U., et al. 2016. “UHF Partial Discharge 
Detection System for GIS: Application Guide for 
Sensitivity Verification: CIGRE WG D1.25.” IEEE 
Transactions on Dielectrics and Electrical Insulation 23 
(3): 1313-21. 

[5] Liu, M., and Li, Z. 2010. “An Online UHF PD 
Monitoring System for Power Transformer and Its 
Applications.” Presented at 2010 Asia-Pacific Power and 
Energy Eng. Conference, Chengdu. 

[6] Hücker, T., Seierl, O., Katschinski, U., Kirchesch, P., 
Neumann, C., Ostermeier, A., and Rudolph, T. 1998. 
“Intelligent Monitoring and Control Systems for Modern 
AIS and GIS Substations.” Presented at Cigre General 
Meeting, Paris. 

[7] Aschenbrenner, D. 2006. “Computergestützte 
Teilentladungsfehler-Identifikation: Eine Grundlage für 
die Bestimmung des Betriebsrisikos von Betriebsmitteln 
der elektrischen Energieversorgung.” PhD thesis, 
Shaker-Verlag. 

[8] Wu, M., Cao, H., Cao, J., Nguyen, H. L., Gomes, J. B., 
and Krishnaswamy, S. P. 2015. “An Overview of 
State-of-the-Art Partial Discharge Analysis Techniques 
for Condition Monitoring.” IEEE Electrical Insulation 
Magazine 31 (6): 22-35. 

[9] Kranz, H. G. 2005. “PD Pulse Sequence Analysis and Its 
Relevance for On-Site PD Defect Identification and 
Evaluation.” IEEE Transactions on Dielectrics and 
Electrical Insulation 12 (2): 276-84. 

[10] Lapp, A., Kranz, H. G., Huecker, T., and Schichler, U. 
1999. “On-Site Application of an Advanced PD Defect 
Identification System for GIS.” Presented at 1999 
Eleventh International Symposium on High Voltage 
Engineering, London. 

[11] Sahoo, N. C., Salama, M. M. A., and Bartnikas, R. 2005. 
“Trends in Partial Discharge Pattern Classification: A 
Survey.” IEEE Transactions on Dielectrics and Electrical 
Insulation 12 (2): 248-64. 

[12] Hoof, M., and Patsch, R. 1995. “Pulse-Sequence Analysis: 
A New Method for Investigating the Physics of 
PD-Induced Ageing.” IEE Proceedings—Science, 
Measurement and Technology 142 (1): 95-101. 

[13] Lapp, A. 2000. Automatisierte Teilentladungsdiagnose 
mit Verfahren der phasenaufgelösten Impulssequenzanalyse 
für den Vor-Ort- und Prüffeldeinsatz. Aachen: Shaker. 

[14] Krivda, A. 1995. “Automated Recognition of Partial 
Discharges.” IEEE Transactions on Dielectrics and 
Electrical Insulation 2 (5): 796-821. 

[15] Cookson, A. H., and Farish, O. 1971. “Motion of 
Spherical Particles and AC Breakdown in Compressed 
SF6.” Presented at Conference on Electrical Insulation & 



AC and Lightning Breakdown Voltage Prediction Based on PD Measurements 

 

7 

Dielectric Phenomena, Williamsburg. 
[16] Runde, M., Aurud, T., Ljokelsoy, K., Lundgaard, L. E., 

Nokleby, J. E., and Skyberg, B. 1997. “Risk Assessment 
Basis of Moving Particles in Gas Insulated Substations.” 

IEEE Transactions on Power Delivery 12 (2). 
[17] Kohonen, T. 1995. Self-Organizing Maps. Berlin: 

Springer. 

 


