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Abstract: The goal of this paper is to present Finslerian mechanical systems on manifolds. In conclusion, some differential
geometrical and physical results on the related mechanic systems have been given.
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1. Introduction

The present paper devoted to the Analytical
Mechanics of the Finslerian Mechanical systems.
These systems are defined by a triple ¥ = (M, F%,E,)
where M is the configuration space, F(x,y) is the
fundamental function of a semi definite Finsler space

F'" = (M, F(x,y)) and Fe(x, y) are the external forces.

Of course, F? is the kinetic energy of the space. The
fundamental equations are the Lagrange equations:

d (0F?\ OF? .

2. Finsler Metrics and Finsler Spaces

Definition 2.1[1] A Finsler metric on a smooth
manifold M is given by a positive function
F: TM — R such that

F,: F is of C* — class on TM and only
continuous on the null section of the projection
m: TM — M.

F,: F is positive homogeneous of order one with
respect to the fibre coordinates x' =y’ , i.e,

F(x,y) = AF(x,y),vA > 0.

F5 the fundamental tensor g;; (x,y)

F,: For any (x; y) € TMthe symmetric bilinear
form g, Iis nondegenerate and has constant

signature, where
2

10
g(x;y)(v‘ W) = E@ [Fz(x,y + sv + tW)]S:tIO'
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y,v,w € TM @

Definition 2.2 [2] If F is a Finsler metric on a
manifold M, the pair F™* = (M, F)is called a Finsler
space and the bilinear form g,.,is called the metric
(or the fundamental) tensor of the Finsler space. Also
F is called the fundamental function of the Finsler
space F™.

Theorem 2.3 [3] If the base manifold M is Para
compact, then there exist functions 7 T/=R. which
are the fundamental functions for Finsler spaces.

Proposition 2.4 A Finsler space is reducible to a
semi Riemannian space if and only if the fundamental
function F of the Finsler space satisfies the following
parallelogram identity holds:

Fi(x; y + v) + F%(x; y i v)
=2F%(x; y) + 2F%(x; v); Vy; v
€ T, M

Theorem 2.5 [4] For a Finsler space F™ the
following properties hold:

1) The functions

2
pi=gor=F o @
are the components of a d-covector field on the
manifold TM.

2) The functions

22 .
are the components of a (0; 3) —type completely
symmetric d-tensor field on TM . This tensor field is
called the Cartan tensor field of the Finsler space.

3) The 1-form
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_ ._1@1:2 P O_F '—l* 2
0 = p;dx’ _Ea_yidxl = Fayi dx' = >J (dFs)  (4)

is globally defined on the manifold TM and it is
called the Cartan 1-form of the Finsler space F™. Here
J* is the cotangent structure (1.10).

4) The 2-form

® = df = dp,A dx' =3d("(dF?)) (5)

is globally defined on the manifold TM, it is a
symplectic structure on TM and it is called the Cartan
2-form of the Finsler space F™.

5) The tangent structure J and the symplectic
structure ! satisfy:
w(JX),Y)+ o(X,J(Y))=0 ; VX, Y € x(TM)

Proposition 2.6 [5] For a Finsler space F" =
(M; F(x; y)) the following properties are true:

1) py' = F%

2) y = gjiyj =:1Y40i = Pi
means contraction with y);

3) Coin := ¥'Cyj = 0; Ciop = Gon = 0;

4) F2(x,y) = gy, y)y'y

Proposition 2.7

(1) ForaFinsler space F", Cartan forms pand ! are
homogeneous of order one with respect to y .
Following properties are also true:

ic0 =0;icw =0 @)

(2) For a Finsler space F", the angular metric has
rank (n — 1) so it is degenerate. The angular metric
and the metric tensor of a Finsler space are related by
the following formula:

9y = hy + L 8

(the subscript 0

3. Finslerian Mechanical Systems

For a manifold M, that is the configuration space of a
Finslerian dynamical system, we consider the tangent
bundle TM to which we shall refer to as the phase
space. Suppose that there is a Finsler function F on
TM and F;(x,y)dx' is a globally defined d-covector
field on the phase space.

A Finslerian mechanical — which is a natural
extension of the Riemannian one presented in the

previous  section — is defined by a
triple ), = (M;Ep2,F;). Here Epz is the energy of
the Finsler space F" = (M; F), that is

; OF2
Epe=y' S5~ F? ©)

Since the fundamental function F of the Finsler
space is homogeneous of order one with respect to y,
we have that F? is homogeneous of order two, while
the metric tensor g; s zero homogeneous.
Consequently, we have that the energy Epz coincides
with F2, that is

Ep2(x,y) = F2(x,y) = g; (x.») ¥’y (10)

Exactly, as for the Riemannian case, the Lagrange
equations of the Finslerian mechanical system )
are given by

dxt

d [0F? AF? .
T - =RG, Y = @y

Using expression (11), one can write an equivalent
form of the Lagrange equations (10) as a system of
second order differential equations, given by

d?xt i dx/ dxk 1 ; dxt
Ty ————=sF&y), y'=—-(12)
Where

Fi(xy) = g¥ (x,)F (x,y) (13)

Here yj"k (x,y) are the Christoffel symbols of the
metric tensor g;; (x.y), given by expression (10).
Equation (11) are called the equations of evolution of
the Finslerian mechanical system Y . Solution
curves c(t) = (x!(t)) of Lagrange equations (11) or
(12) are called evolution curves.

The system of equation (12) locally determine a
dynamical system on the phase space TM . If the
external force field F;(x,y) is globally defined on
TM, we shall prove that there exists a globally defined
vector field S on TV, whose integral curves are given
by the equations of evolution (12) of the dynamical
system. In order to do this, we consider the following
functions defined on domains of induced local charts of
TM:

26'(0Y) = v (L) ¥ y* —SF(xy) (14)
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Under a change of coordinates (11) on TM ,
functions G'transform according to (1), which means
that they are local coefficients of a semispray:

.9 . )
Szylﬁ_ZGl(x’y)a_yi (15)

The equations of evolution (12) are the equations for
the integral curves of the semispray S. As the
semispray S is determined by the mechanical system
Y. only, we shall refer to S as the evolution
semispray .

Theorem 3.2 The variation of the kinetic energy
Ep2 = F? along the evolution curves (12) of the

mechanical system Y. s given by
=R (16)
Proof. we obtain
dF?  JF*dx' 0F* dy'
dt  0x' dt dx' dt
B ETL AR
dt \ dy! dt  oxt dt

dt

d (0F* FdXi—Zsz Fdxi
ayiY )T a4 T fTar T Var

dF? B dF? dxt

dt - “dt tdt

dF? . dx' dxiF

dt ~ 'dt  dt !
Examples3.3 of Finslerian Mechanical Systems

1) The systems Y= (M, Egpz,F,) given by
F" = (M,a+ ) as aRanders space and F, = fC =

By % Evidently F, is 2-homogeneous with respect

i

to y'.

2) Y  determined by F* = (M,a+ ) and
F, = aC.

3) Xr Wwith F" = (M,a+p) and F* = (a +
B)C.

4) ¥r defined by a Finsler space F* = (M, F)

2 ai (x) being a symmetric

— ol Aiak
and F, = apy'y" 75,9

tensor on the configuration space M.
4. Conclusions

The geometry of the Finslerian mechanical system
Y. is determined by the geometry of the Lagrange
space L* = (M; F?(x; y)) endowed with the
evolution semispray S.
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