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Abstract: The goal of this paper is to present Finslerian mechanical systems on manifolds. In conclusion, some differential 
geometrical and physical results on the related mechanic systems have been given. 
 
Key words: Finsler metric, Finslerian manifold, Finslerian mechanical systems. 
 

1. Introduction 

                                                           
Corresponding author: Ibrahim Yousif Ibrahim Abad alrhman, 
E-mail: iyibrahimi@gmail.com.  

 

The present paper devoted to the Analytical 
Mechanics of the Finslerian Mechanical systems. 
These systems are defined by a triple ∑ =𝐹𝐹 (ℳ, F2,𝐹𝐹𝑒𝑒) 
where ℳ  is the configuration space, 𝐹𝐹(𝑥𝑥,𝑦𝑦) is the 
fundamental function of a semi definite Finsler space 
Fn = (ℳ,𝐹𝐹(𝑥𝑥,𝑦𝑦)) and Fe(x, y) are the external forces. 
Of course, F2 is the kinetic energy of the space. The 
fundamental equations are the Lagrange equations: 

𝐸𝐸𝑖𝑖(F2) =
𝑑𝑑
𝑑𝑑𝑑𝑑
�
∂F2

∂ẋi � −
∂F2

∂xi = 𝐹𝐹𝑖𝑖�𝑥𝑥, ẋi� 

2. Finsler Metrics and Finsler Spaces 

Definition 2.1[1] A Finsler metric on a smooth 
manifold ℳ  is given by a positive function 
𝐹𝐹 ∶  𝑇𝑇ℳ ⟶  ℝ  such that 

𝐹𝐹1 : 𝐹𝐹  is of 𝐶𝐶∞ — class on 𝑇𝑇ℳ�  and only 
continuous on the null section of the projection 
𝜋𝜋 ∶  𝑇𝑇ℳ ⟶  ℳ. 
𝐹𝐹2 : 𝐹𝐹  is positive homogeneous of order one with 

respect to the fibre coordinates �̇�𝑥𝑖𝑖 = 𝑦𝑦𝑖𝑖 , i.e., 
           𝐹𝐹(𝑥𝑥, 𝜆𝜆𝑦𝑦)  = 𝜆𝜆𝐹𝐹(𝑥𝑥,𝑦𝑦),∀𝜆𝜆 >  0. 
𝐹𝐹3 the fundamental tensor 𝑔𝑔𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) 
𝐹𝐹4 : For any (𝑥𝑥;  𝑦𝑦) ∈ 𝑇𝑇ℳ� the symmetric bilinear 

form 𝑔𝑔(𝑥𝑥 ;𝑦𝑦)  is nondegenerate and has constant 
signature, where 

𝑔𝑔(𝑥𝑥 ;𝑦𝑦)(𝑣𝑣,𝑤𝑤) =
1
2
𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝑑𝑑
[𝐹𝐹2(𝑥𝑥,𝑦𝑦 + 𝜕𝜕𝑣𝑣 + 𝑑𝑑𝑤𝑤)]𝜕𝜕=𝑑𝑑=0, 

𝑦𝑦, 𝑣𝑣,𝑤𝑤 ∈ 𝑇𝑇𝑥𝑥ℳ                           (1) 
Definition 2.2 [2] If 𝐹𝐹  is a Finsler metric on a 

manifold ℳ, the pair 𝐹𝐹𝑛𝑛 = (ℳ,𝐹𝐹)is called a Finsler 
space and the bilinear form 𝑔𝑔(𝑥𝑥;𝑦𝑦)is called the metric 
(or the fundamental) tensor of the Finsler space. Also 
𝐹𝐹  is called the fundamental function of the Finsler 
space  𝐹𝐹𝑛𝑛 . 

Theorem 2.3 [3] If the base manifold ℳ is Para 
compact, then there exist functions F: Tℳ→ℝ. which 
are the fundamental functions for Finsler spaces. 

Proposition 2.4 A Finsler space is reducible to a 
semi Riemannian space if and only if the fundamental 
function 𝐹𝐹 of the Finsler space satisfies the following 
parallelogram identity holds: 
𝐹𝐹2(𝑥𝑥;  𝑦𝑦 +  𝑣𝑣) + 𝐹𝐹2(𝑥𝑥;  𝑦𝑦 ¡  𝑣𝑣)

= 2𝐹𝐹2(𝑥𝑥;  𝑦𝑦) + 2𝐹𝐹2(𝑥𝑥;  𝑣𝑣); ∀ 𝑦𝑦;  𝑣𝑣
∈  𝑇𝑇𝑥𝑥ℳ 

Theorem 2.5 [4] For a Finsler space 𝐹𝐹𝑛𝑛  the 
following properties hold: 

1) The functions   

𝑝𝑝𝑖𝑖 = 1
2
𝜕𝜕𝐹𝐹2

𝜕𝜕𝑦𝑦𝑖𝑖
= 𝐹𝐹 𝜕𝜕𝐹𝐹

𝜕𝜕𝑦𝑦𝑖𝑖
             (2) 

are the components of a d-covector field on the 
manifold 𝑇𝑇ℳ� . 

2) The functions 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 1
4

𝜕𝜕2𝐹𝐹2

𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑖𝑖 𝜕𝜕𝑦𝑦𝑖𝑖
= 1

2
𝜕𝜕𝑔𝑔𝑖𝑖𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖

         (3) 

are the components of a (0;  3) − type completely 
symmetric d-tensor field on 𝑇𝑇ℳ� . This tensor field is 
called the Cartan tensor field of the Finsler space. 

3) The 1-form 

D 
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θ = pidxi = 1
2
∂F2

∂yi dxi = F ∂F
∂yi dxi = 1

2
J∗(dF2)   (4) 

is globally defined on the manifold 𝑇𝑇ℳ�  and it is 
called the Cartan 1-form of the Finsler space 𝐹𝐹𝑛𝑛 . Here 
J∗ is the cotangent structure (1.10). 

4) The 2-form 

𝜔𝜔 = 𝑑𝑑𝑑𝑑 = 𝑑𝑑pi⋀ dxi = 1
2

d(J∗(dF2))     (5) 

is globally defined on the manifold 𝑇𝑇ℳ� , it is a 
symplectic structure on 𝑇𝑇ℳ�  and it is called the Cartan 
2-form of the Finsler space 𝐹𝐹𝑛𝑛 . 

5) The tangent structure 𝐽𝐽  and the symplectic 
structure ! satisfy: 
𝜔𝜔(𝐽𝐽(𝑋𝑋),𝑌𝑌 ) +  𝜔𝜔�𝑋𝑋, 𝐽𝐽(𝑌𝑌 )� =  0   ;  ∀ 𝑋𝑋,𝑌𝑌 ∈  𝓍𝓍(𝑇𝑇ℳ) 

Proposition 2.6 [5] For a Finsler space Fn =
(ℳ;  𝐹𝐹(𝑥𝑥;  𝑦𝑦)) the following properties are true: 

1)    pi𝑦𝑦𝑖𝑖  =  𝐹𝐹2; 
2)    𝑦𝑦𝑖𝑖 =  𝑔𝑔𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖  = : 𝑔𝑔0𝑖𝑖 =  pi  (the subscript 0 

means contraction with y); 
3) 𝐶𝐶0𝑖𝑖ℎ ∶=  𝑦𝑦𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖  =  0; 𝐶𝐶𝑖𝑖0ℎ  =  𝐶𝐶𝑖𝑖0ℎ  =  0; 
4)  𝐹𝐹2(𝑥𝑥,𝑦𝑦) =  𝑔𝑔𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦)𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 ∶ 
Proposition 2.7  
(1)  For a Finsler space Fn , Cartan forms µ and ! are 

homogeneous of order one with respect to 𝑦𝑦 . 
Following properties are also true: 

𝑖𝑖𝐶𝐶𝑑𝑑 =  0 ;  𝑖𝑖𝐶𝐶𝜔𝜔 = 0         (7) 
(2) For a Finsler space Fn , the angular metric has 

rank (𝑛𝑛 − 1) so it is degenerate. The angular metric 
and the metric tensor of a Finsler space are related by 
the following formula: 

𝑔𝑔𝑖𝑖𝑖𝑖  =  ℎ𝑖𝑖𝑖𝑖  +  𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖             (8) 

3. Finslerian Mechanical Systems 

For a manifold M, that is the configuration space of a 
Finslerian dynamical system, we consider the tangent 
bundle 𝑇𝑇ℳ to which we shall refer to as the phase 
space. Suppose that there is a Finsler function F on 
𝑇𝑇ℳ and 𝐹𝐹𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑖𝑖  is a globally defined d-covector 
field on the phase space. 

A Finslerian mechanical — which is a natural 
extension of the Riemannian one presented in the 

previous section — is defined by a 
triple  ∑ =  (ℳ;𝐸𝐸F2  ,𝐹𝐹𝑖𝑖). Here  𝐸𝐸F2  is the energy of 
the Finsler space Fn =  (ℳ;  𝐹𝐹), that is 

  𝐸𝐸F2 = 𝑦𝑦𝑖𝑖 ∂F2

∂yi − F2           (9) 

Since the fundamental function F of the Finsler 
space is homogeneous of order one with respect to 𝑦𝑦, 
we have that F2 is homogeneous of order two, while 
the metric tensor 𝑔𝑔𝑖𝑖𝑖𝑖  is zero homogeneous. 
Consequently, we have that the energy   𝐸𝐸F2  coincides 
with F2, that is 

  𝐸𝐸F2 (𝑥𝑥,𝑦𝑦) = F2(x, y) = 𝑔𝑔𝑖𝑖𝑖𝑖 (𝑥𝑥. 𝑦𝑦) 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖    (10) 
Exactly, as for the Riemannian case, the Lagrange 

equations of the Finslerian mechanical system ∑  
are given by 

𝑑𝑑
𝑑𝑑𝑑𝑑
�∂F2

∂yi � −
∂F2

∂xi = 𝐹𝐹𝑖𝑖(𝑥𝑥,𝑦𝑦), 𝑦𝑦𝑖𝑖 = 𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
     (11) 

Using expression (11), one can write an equivalent 
form of the Lagrange equations (10) as a system of 
second order differential equations, given by 

𝑑𝑑2𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑2 + 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑥𝑥
𝑖𝑖

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
= 1

2
Fi(x, y),   𝑦𝑦𝑖𝑖 = 𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
 (12) 

Where  
Fi(x, y)  = 𝑔𝑔𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦)𝐹𝐹𝑖𝑖 (𝑥𝑥,𝑦𝑦)     (13) 

Here 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) are the Christoffel symbols of the 
metric tensor 𝑔𝑔𝑖𝑖𝑖𝑖 (𝑥𝑥.𝑦𝑦) , given by expression (10). 
Equation (11) are called the equations of evolution of 
the Finslerian mechanical system ∑ . Solution 
curves 𝑐𝑐(𝑑𝑑)  =  (𝑥𝑥𝑖𝑖(𝑑𝑑)) of Lagrange equations (11) or 
(12) are called evolution curves. 

The system of equation (12) locally determine a 
dynamical system on the phase space 𝑇𝑇ℳ . If the 
external force field 𝐹𝐹𝑖𝑖(𝑥𝑥, 𝑦𝑦)  is globally defined on 
𝑇𝑇ℳ, we shall prove that there exists a globally defined 
vector field S on 𝑇𝑇ℳ� , whose integral curves are given 
by the equations of evolution (12) of the dynamical 
system. In order to do this, we consider the following 
functions defined on domains of induced local charts of 
𝑇𝑇ℳ� : 

2𝐺𝐺𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖 − 1
2

Fi(x, y)  (14) 
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Under a change of coordinates (11) on 𝑇𝑇ℳ , 
functions 𝐺𝐺𝑖𝑖 transform according to (1), which means 
that they are local coefficients of a semispray: 

𝑆𝑆 = 𝑦𝑦𝑖𝑖 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

− 2𝐺𝐺𝑖𝑖(𝑥𝑥,𝑦𝑦) 𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

        (15) 

The equations of evolution (12) are the equations for 
the integral curves of the semispray 𝑆𝑆 . As the 
semispray 𝑆𝑆 is determined by the mechanical system 
∑  only, we shall refer to 𝑆𝑆  as the evolution 
semispray . 

Theorem 3.2  The variation of the kinetic energy 
  𝐸𝐸F2 = F2  along the evolution curves (12) of the 
mechanical system ∑  is given by  

𝑑𝑑   𝐸𝐸F2

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
Fi              (16) 

Proof. we obtain 

𝑑𝑑F2

𝑑𝑑𝑑𝑑
=
𝜕𝜕F2

𝜕𝜕𝑥𝑥𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
𝜕𝜕F2

𝜕𝜕𝑥𝑥𝑖𝑖
𝑑𝑑𝑦𝑦𝑖𝑖

𝑑𝑑𝑑𝑑

= �
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕F2

𝜕𝜕𝑦𝑦𝑖𝑖
� − Fi�

𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
+
𝜕𝜕F2

𝜕𝜕𝑥𝑥𝑖𝑖
𝑑𝑑𝑦𝑦𝑖𝑖

𝑑𝑑𝑑𝑑
 

=
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕F2

𝜕𝜕𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖� − Fi

𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
= 2

𝑑𝑑F2

𝑑𝑑𝑑𝑑
− Fi

𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
 

𝑑𝑑F2

𝑑𝑑𝑑𝑑
= 2

𝑑𝑑F2

𝑑𝑑𝑑𝑑
− Fi

𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
   

𝑑𝑑F2

𝑑𝑑𝑑𝑑
= Fi

𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
=
𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑
Fi  

Examples3.3 of Finslerian Mechanical Systems 

1) The systems ∑ =𝐹𝐹 (ℳ,   𝐸𝐸F2 ,𝐹𝐹𝑒𝑒)  given by 
𝐹𝐹𝑛𝑛 = (ℳ,𝛼𝛼 + 𝛽𝛽 ) as a Randers space and 𝐹𝐹𝑒𝑒 = 𝛽𝛽ℂ =

𝛽𝛽𝑦𝑦𝑖𝑖 𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

. Evidently 𝐹𝐹𝑒𝑒  is 2-homogeneous with respect 

to 𝑦𝑦𝑖𝑖 . 

2) ∑𝐹𝐹  determined by 𝐹𝐹𝑛𝑛  = (ℳ,𝛼𝛼 + 𝛽𝛽 )  and 
𝐹𝐹𝑒𝑒 = 𝛼𝛼ℂ. 

3) ∑𝐹𝐹  with 𝐹𝐹𝑛𝑛  = (ℳ,𝛼𝛼 + 𝛽𝛽 ) and 𝐹𝐹𝑛𝑛  = (𝛼𝛼 +
𝛽𝛽 )ℂ. 

4) ∑𝐹𝐹  defined by a Finsler space 𝐹𝐹𝑛𝑛 = (ℳ,𝐹𝐹) 

and 𝐹𝐹𝑒𝑒 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖
𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

,𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥)  being a symmetric 

tensor on the configuration space M. 

4. Conclusions 

The geometry of the Finslerian mechanical system 
∑  is determined by the geometry of the Lagrange 
space 𝐿𝐿𝑛𝑛  = (𝑀𝑀;  F2(𝑥𝑥;  𝑦𝑦))  endowed with the 
evolution semispray S. 
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