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Abstract: The problem of determining the number of steps needed to find the greatest common divisor of two positive integers by 

Euclidean algorithm has been investigated in elementary number theory for decades. Different upper bounds have been found for this 

problem. Here, we provide a sharp upper bound for a function which has a direct relation to the numbers whom the greatest common 

divisor we are trying to calculate. We mainly use some features of Fibonacci numbers as our tools. 
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1. Introduction

 

Definition 1.1: The function λ: ℕ × ℕ →  ℕ ∪

  0  is defined by: 

λ(a, b) =  

0, a < 𝑏
the number of steps needed 

to find the greatest common a ≥  b
divisor of a and b,

  

For example λ(42, 15) = 3 since we have 

42 = 2 × 15 + 12 

15 = 1 × 12 + 3 

12 = 4 × 3 + 0 

Now let a and b be positive integers such that λ(a, b) 

= m ≥ 1 and 
𝑎

𝑏
≤  <a1, a2, …, an> where < >    

denotes continued fraction symbol. It can easily be 

verified that m = n. It has been proven that if a, b and  

N are positive integers with 1 ≤ b < a < 
1

 5
(

1+ 5

2
)𝑁  

then λ (a, b) ≤ N. Furthermore, λ (a, b) ≤ 1 + 2log2 𝑎  

for any integers a > b ≥ 1. For more details see     

Ref. [1]. 

Definition 1.2: Let f : ℕ →  ℕ  be defined via the 

rule f(n) = max{λ(n, m)| m ∈ ℕ}, for any n ∈ ℕ. 

According the above statement, f(n) ≤ N if n 
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<  
1

 5
(

1 +  5

2
)𝑁 . This theorem determines an upper 

bound for f which depends on the value of n. This  

result inspires us to find a lower bound for f. In what 

follows, we assert a property of the λ function using 

Fibonacci numbers. For example see the following 

theorem. 

Theorem 1.3: If λ(a, b) = n ≥1 then a ≥ un+2 and b ≥ 

un+1, where un+2 and un+1 denote (n+1)th and (n+2)th 

Fibonacci numbers, respectively [2]. 

Theorem 1.4: For any positive integer n, λ(un+1, un) 

= n − 1. For more results concerning the 

above-mentioned theorem see Ref. [2]. 

It seems we can approach the problem of finding 

lower bound for function f by using the some properties 

of Fibonacci numbers. In the next section, we will 

study the relations between two consecutive Fibonacci 

numbers to find a lower bound for f. 

Theorem 1.5: For any integer n > 6, f(n) ≥ 3. 

First it is necessary to mention that for any positive 

integer such as a and b, if 
𝑎

2
 > b then λ (a, b) = λ 

(a  − b, b). Moreover, this is easy to see that in 

Euclidean algorithm λ(a, b) = λ(a, a − b), where a and 

b are positive integers and  
𝑎

2
< 𝑏 ≤ 𝑎. 

Proof of Theorem 1.5: By using these two relations 

of the function λ, we can compute the value of λ(2n, 
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n+1): 

λ  2𝑛, 𝑛 + 1 =  λ  2𝑛, 𝑛 − 1 + 1  

=  λ  𝑛 + 1, 𝑛 − 1 + 1 

=  λ  𝑛 + 1, 2 + 2 

≥ 3. 

So, f(2n) ≥ 3 for n ≥ 2. Repeating a similar 

computation for λ (2n + 1, n + 1): 

 λ 2𝑛 + 1, 𝑛 + 1 =  λ 2𝑛 + 1, 𝑛 + 1 

=  λ 𝑛 + 1, 𝑛 + 1 

=  λ 𝑛 + 1,1 + 2 

≥ 3 

So, f(2n + 1) ≥ 3 for n ≥ 1 as claimed. 

Theorem 1.6: For any integer n > 15, f(n) ≥ 4. 

Proof: we can prove this theorem with the similar 

approach we used in the proof of Theorem 1.5 as 

following: 

λ(3n, 2n−1) ≥ 4, 

λ(3n + 1, 2n−1) ≥ 4 

λ(3n + 2, 2n) ≥ 4 for any n > 5. 

Therefore f(n) ≥ 4 for any n > 15. 

Theorem 1.7: For any integer n > 40, f(n) ≥ 5. 

Proof: Consider λ(5n, 3n + 1), λ(5n + 1, 3n + 1), 

λ(5n + 2, 3n + 2), λ(5n + 3, 3n + 3) and λ(5n + 4, 3n + 

4) for n > 8. One can check that these values are 

greater than 4. So, f(n) ≥ 5 for any n > 40. It seems we 

can prove that f(um-1n) ≥ m for n > um-1 um, where um-1 

and um denote (m−1)th and mth Fibonacci numbers. 

We will investigate this relation in the next section. 

See Table 1 to have a general outline of our main 

theorem. 

Table 1: Recurrence relation table 

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. . . u4n - u2 u5n+u1 u6n - u0 u7n = 21n 

. . . u3n + u2 u4n-u1 u5n + u0 u6n = 13n 

. . . u2n - u2 u3n+u1 u4n - u0 u5n = 8n 

. . . u1n + u2 u2n-u1 u3n + u0 u4n = 5n 

. . . u0n - u2 u1n + u1 u2n - u0 u3n = 3n 

. . . u2 = 2 u0n-u1 u1n + u0 u2n = 2n 

. . .  u1 = 1 u0n - u0 u1n = n 

. . .   u0 = 1 u0n = n 

. . .    u-1n = 0 

2. Main Result 

Theorem 2.1: For any positive integer m, f(n) ≥ m 

if n > um-1 um. 

Proof: By Euclidean algorithm and the features 

mentioned about the function λ, we can conclude that  

 λ(𝑢m−1n,  𝑢m−2 +  −1)𝑚−1 ≥ m     

therefore 𝑓  𝑢𝑚−1𝑛 ≥ 𝑚. 

On the other hand, we can prove that  

𝑓 𝑢𝑚−1𝑛 + 𝑖 ≥ 𝑚 for 1 ≤ 𝑖 ≤  𝑢𝑚−1 − 1 

by computation of the values. 

Theorem 2.2: For any positive integer m, we have  

f(n) ≥ m if n > um-1um. 

Proof: By Euclidean algorithm and the features 

mentioned about the function λ, we can conclude that  

λ(𝑢𝑚−1𝑛, 𝑢𝑚−2 +  −1)𝑚−1 ≥ 𝑚 

So 𝑓 𝑢𝑚−1𝑛 ≥ 𝑚. 

On the other hand, we can check that 𝑓 𝑢𝑚−1𝑛 +

𝑖≥𝑚. For 1≤𝑖≤ 𝑢𝑚−1−1 by computing the values of 

λ(𝑢m−1n + 1, 𝑢m−2 +  −1)𝑚−1 , 

λ(𝑢m−1n + 2, 𝑢m−2 +  −1)𝑚−1 + 1 ,…. 

and 

λ(𝑢m−1n + 𝑢m−1 − 1, 𝑢m−2 +  −1) + 𝑢m−1 − 2  

3. Conclusions 

Corollary 3.1: For any positive integer m, there 

exists a positive integer r such that f(n) ≥ m for any n > r. 

Corollary 3.2: For any positive integer m, there 

exists a positive integer r such that for any integer n > r 

there exists an integer s such that the length of the 

expression of 
𝑛

𝑠
 as a continued fraction is greater than 

m. 

Proof: It can be easily concluded from Theorem 2.2. 
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