
Journal of Geodesy and Geomatics Engineering 2 (2016) 1-7
doi: 10.17265/2332-8223/2016.02.001

OGRP — Open GNSS Receiver Protocol

Dirk Kowalewski1, Frank Heinen1, Bo Gustafson2, and Per Gustafson3

1. navXperience GmbH, Germany

2. Laboratory for Astrophysics, Department of Astronomy, University of Florida, USA

3. Institute for Housing and Urban Research, Uppsala University, Sweden

Abstract: In this document we describe the idea and the development of a new type of GNSS receiver. First, we have a new open
format for transporting GNSS created data and this developed oriented to an object format that greatly simplifies development and
allows more effective programming. The open LINUX OS allows the developer in that it can be programmed directly on the GNSS
board completely new perspectives. Nevertheless, this GNSS receiver is still small and easy to handle and with low power consumption
and is otherwise in accordance with the major manufacturers in nothing. He can receive and process all GNSS signals and has a very
fast and robust RTK algorithm. Furthermore, you also have the possibility of their own developments to install directly on the board.
This makes this product unique and gives the customer and the system integrator unprecedented freedoms and opportunities for
development.

Key words: GNSS, RTK, boards, receiver, OGRP, OSRP.

1. Motivation and Targets

1.1 Motivation

If you take a look at the manufactures of precise and

Multi-frequency receivers, you can find not more than

one dozen producers. You can buy complete integrated

systems for surveying or machine control, ready to use

and packed in boxes or you can buy a discrete receiver,

i.e., only the board (card). Most of the manufactures

give you the option to buy only GPS or pay more for

GPS and GLONASS. You can pay for single, double or

triple frequency receivers. It is possible to spend

money on an RTK engine and on many options.

Nobody gives you the chance to work with the original

raw data or to implement you own RTK engine or other

software, directly on the board and much less to

implement your own tracking loops or search routines.

Presently it is impossible to fully comprehend the

results of the RTK engine. The argument of the big

manufactures is that you do not need to understand, we

Corresponding author: Dirk Kowalewski, Dipl.-Ing. of

Geodesy, research fields: CAD software, total station from
zeiss and topcon. E-mail: dirk.kowalewski@navxperience.com.

do everything fine for you. That is only a part of the

truth. If we stay with the example RTK engine, many

applications require customized algorithms. In the

agricultural sector there are vehicles moving at less

than 5 km h. If you try this with a standard RTK engine

and map the movements of the vehicle exactly one will

notice that it does not work. There are many good

examples where the commercial RTK engines fail.

This was our motivation to develop an open GNSS

receiver with an open protocol. We call the open format

OGRP (Open GNSS Receiver Protocol) respectively

OSRP (Open Source Receiver Protocol). The receiver

named precisely what it is: an OSR — Open Source

Receiver.

1.2 Targets

The advantages and the scope are obvious. We want

to allow integrators and users to access all raw data,

develop and install their own applications directly on

the board. Thus, the developer can write his/her own

RTK engine tailored to his individual needs.

Nevertheless, it is not only the RTK software; there are

many other applications, which standard receiver and

standard software does not surpported. Maybe your

D
DAVID PUBLISHING

OGRP — Open GNSS Receiver Protocol

2

application is timing or a new use that now becomes

feasible. These freedoms and these opportunities are

not only science and the developers to Good. Finally,

you can benefit to a considerable extent of the end

customer that he gets a cut for him GNSS receiver.

2. State to the Science

A good starting point to evaluate the prior art is the

website of the “open source” GNSS receiver project

GPL GPS. The hardware platforms used there is based

on the Zarlink GP4020. The activities seem

unfortunately to end with a tutorial on GNSS Solutions

at the ION2006. A similar approach taken by the

“University of New South Wales” utilized a Namuru

V1 receiver used in the course of a project of DLR. In

addition, the Namuru-V1 receiver set up the Zarlink

GP4020. Disadvantage of this approach was that the

hardware built on an ASIC chipset, which could not be

sell in large quantities and its technology was obsolete

after some time in terms of hardware channels and

processor used. Zarlink, now named Microsemi, refer

on their website to a new development environment.

Sigtec navigation PTY Ltd. this split in 2004 and

became SigNav which is independent of Sigtec.

SigNavwas purchased in September 2011 by u-blox

and the open development platform is not available for

purchase from u-blox. All development kits of u-blox

are indeed configurable, but only provide a ready PVT

solution. The advancements of the Namuru receiver V2

and V3 are developments with FPGA solution

designed specifically for LEO-Input use, special

methods used to get a space-qualified,

radiation-hardened solution rather than a highly

accurate solution with the necessary computing power.

The Aquarius Firmware can control the new versions

of the Namuru receiver. In addition a wide range of

approaches to Software Defined Radio (SDR) are

found, but all have the disadvantage that although they

show near real-time performance under laboratory-like

circumstances, they are unsuitable for realistic real life

scenarios, due to their size, weight, energy

consumption etc. are.

3. OGRP and OSRP

3.1 OGRP

3.1.1 Open GNSS Receiver Protocol for Open

Source Receiver

(1) Background

During the attempt to develop an open source

receiver we needed a protocol for exchanging data

between the components of a GNSS Receiver or in

connection with external Hard or Software. The

protocols which were available when we start were

optimized for special cases or products, they were not

open nor complete. So we decided to create a new one

that may solve in almost any situation we/you need to

transport data.

(2) Preconditions

OGRP should be easy to learn, easy to read and easy

to handle. It should be extendible by own needs and it

should cover standard cases unambiguous.

(3) Early Decisions

We decided to use JSON as underlying format. To

get rid of ambiguous interpretation we decided to use

JSON Schema as definition format. The transport

mechanism of data is not part of the OGRP definition.

But the definition allows transportation with all

common mechanisms as TCP/IP, Socket or File.

(4) Details of the Format

JSON just define single Objects. For a continuous

stream of data, for example via plain TCP socket, a file,

a serial line with a wrapping wire protocol or similar

ways you just send the complete objects separated by a

new line.

The main messages are defined and some of them

can be extended by own properties. For the predefined

message types and message parts we use

JSON-Schema draft v4 as a format to describe the

properties. With such definitions it is easy to check

own or given data on OGRP conformance. Messages

which are not defined can easily defined on your own

fitting into the common scheme. Please create your

OGRP — Open GNSS Receiver Protocol

3

own JSON-Schema file to make the extension usable

by other groups.

(5) Create own extensions

Please always extend the given schema file or create

an own schema file: JSON Schema.

Create a test set of data and control the schema file

with a validator-tool.

When creating or extending follow these rules:

Each message type which is used as a single OGRP

object has at least 3 fields which are always needed.

“id” containing the unique message type name;

“version” in Version 1 this is always OGRP1;

“timestamp” that contains the time of sending the

message.

For building names and declarations try to use

common phrases, try to reuse phrases.

Try to get short names and declarations but they

have to be clear and readable. Details should be

described in the “description” part. You must use the

“description” fields in the schema file for all

documentation. Please think about all possible

properties and define theme. “type” and “description”

is a must have. Always think about “minimum”,

“required” and “additional Properties” and declare

them.

(6) Usage

To build or parse an OGRP Message you depend on

the message type which is declared in the “id”.

Depending on that you have to fill or read the rest of the

object.

Optional fields are allowed and have to be marked in

the schema. Writer don’t must fill optional fields.

The general “timestamp” holds the system time of

the sending tool. It is in seconds since 1.1.1970 0

O’clock. It can be a float value. Please have a look at

the Schemafiles.

Times based on GNSS Measurement are placed

within the special properties of the message.

(7) Example

{

"channel_measurements": [

{

"carrier_phase": 0.5525,

"channel_number": 3,

"doppler": -2662.27,

"gnss": "GPS",

"locktime": 42.1,

"pseudorange": 24985714.38,

"satellite_id": 11,

"signal_type": "L1CA",

"snr": 46

 },

 {

"carrier_phase": 0.783,

"channel_number": 3,

"doppler": -2662.245,

"gnss": "GPS",

"locktime": 16.8,

"pseudorange": 24985714.38,

"satellite_id": 11,

"signal_type": "P1",

"snr": 22.5

 }

],

"id": "channel_measurements",

"protocol": "OGRP1",

"timestamp": 1420066248

}

3.2 OSRP

3.2.1 Why Another Format

When working with OGRP we got problems with

ambiguous data in OGRP objects, also we found a lot

redundant information in it. We needed data formats

for settings, configuration and commands. OGRP

could only be used in linear systems. We wanted to

build a complex system.

3.2.2 New Preconditions

Instead of changing the “cld” format, we decided to

start for a new format but used what we learned while

working on and with OGRP.

OGRP — Open GNSS Receiver Protocol

4

So we did a new attempt in defining JSON-Schemas

for a data structure. The new attempt we call OSRP.

The Preconditions were the same, but added:

- avoid ambigious data

- avoid redundant data

- Data should be mergable, to allow complex

systems

3.2.3 Result

The result looks a lot alike, but in detail, there are

heavy differences.

The OSRP format get more hierarchical and contains

many details to manage all aspects of data around a

GNSS Receiver. OSRP could be used for building

complex data flows which OGRP couldn’t. The OSR

Board using OSRP for all data transports excluding

where explicit formats needed. OSRP is used to change

settings. Even the configuration files for the

components of the OSR board are handled via OSRP.

3.2.4 Example of an Configuration File:

{

"osrp":1,

"modul":"osrpsaver",

"timestamp":0,

"settings":[{

"name":"savedir","value":"/data/test/","type":"text"

 },{

"name":"Inputport","value":"5000","type":"integer","r

emark":"Portnumber to Stream"

 },{

"name":"Prefix","value":"SAVED_","type":"text",

"remark":"Prefix for filenames" },{

"name":"Savemodus",”value":"Record","type":"[Reco

rd,Dont record]" ,"remark":"Save when possible or

not"

 },{

 "name":"test", "value":"test", "type":"text"

 }

]}

4. OSR Hardware

The receiver is small with its 60×45 mm printed

circuit board. Yet OSR is a complete, programmable

receiver. A highly adaptable analogue front end is

teamed with a fully programmable system on a chip

consisting of a large FPGA with in-package dual ARM

processors.

Below we give an overview of the hardware design

with information about the extents of programmability

of the hardware.

4.1 Analogue Front End

An analogue front end consisting of signal

conditioning and four super-heterodyne receivers is at

the core of the Front End. Local Oscillator signals for

down conversion are synthesized from a common

16.368MHz Temperature Compensated Crystal

Oscillator (TCXO). Local Oscillator frequencies

covering down conversion of all GNSS navigation

signals can be synthesized with Phase Locked Loop

(PLL) counter values under programmatic control.

Each pair of mixers share one LO, so when down

converting for example NavStar L1 and Glonass G1 in

a signal pair sharing a common LO the G1 signal will

be available in the upper Side Band and L1 in the lower

Side Band. This scheme is possible thanks to image

rejection mixers. Intermediary Frequency (IF) filtering

is done in programmable, analogue Low Pass filters.

The output of each signal path is available for further

Digital Signal Processing as a 2-bit value. The

Analogue to Digital Converters are sampled

asynchronously.

The following functions are under programmatic

control in the Analogue Front End:

 LO frequency synthesizers

 RF and IF Gain

 IF Low Pass filter

 Either USB or LSB in each signal path

 power supply On/Off

OGRP — Open GNSS Receiver Protocol

5

4.3 Programmable Hardware

The output of the Analogue Front End consists of

four sets of 2-bit ADC signal pairs. These signals are

sampled by logics in a FPGA. We have chosen

Zynq7030 from Xilinx in order to keep choices for

receiver implementation wide open. Zynq7030 consist

of a Kintex 7 FPGA (125K Logic Cells, 400 DSP

Slices) grouped with two ARM Cortex-A9 processors

to form a SoC in a package.

The FPGA is used for digital signal processing such

as further filtering, frequency conversion,

I/Q-demodulation, PRN correlation and all the bits an

pieces of observables measurement.

The ARM processors would usually run a Linux

Operating System and be host for RTK and general

user applications. The SoC is complemented with

Flash and RAM memory.

The FPGA and ARM processors are fully

programmable.

4.4 Connector Interface

The receiver’s connectivity to a system motherboard

consists of a 80-pole connector. The interfaces include:

 Antenna supply

 SDIO interface (pending developer’s

implementation in FPGA)

 Ethernet (pending developer’s implementation

in FPGA , magnetics on mother board)

 Reference frequency signals (pending

developer’s implementation in FPGA)

 Shut Down

 Reset

 PPS (pending developer’s implementation in

FPGA)

 UART#1 & #2, 3.3V, 10 mA (pending

developer's implementation in FPGA)

 JTAG

 USB#1 & #2 (pending developer’s

implementation in FPGA)

 VBAT (for on-board RTC)

 VDC

4.5 Design Considerations for Openness

An open source GNSS receiver must be highly

configurable and adaptable. For openness,

development tools must be easily accessible and have a

long life expectancy. Else the receiver will fall in

obsolescence as support tools disappear. There is

currently no viable open source development

environment we know of for the programmable

hardware we have chosen. The manufacturer XILINX

allows free access to a design environment to use with

some components, including the Zynq7030. The dual

core ARM processors on board the FPGA run Linux

with open source options for program development.

5. OSR Boards Codes

The digitized signal from each analogue frequency

path in the Open Source Receiver feeds into a Field

Programmable Gate Array (FPGA) where the signal

can be compared with reference signals, further

segregated into components, interpreted and analyzed.

The FPGA is equipped with a set of internal processors

and is also able to pass on tasks to an external Real

Time Computer (that can operate under Linux) and can

access non-volatile Flash memory as well as VRAM

that can be accessed by multiple processes

simultaneously. The hardware can therefore be

programmed and the tasks distributed with great

flexibility.

Parts of the Flash memory may hold code to run the

FPGA and the processors and can be made to load as

the OSR powers up. Users can write their own codes or

may use codes supplied either by the OSR team or by

third parties. These codes typically find and separate

out signals from the various satellites, decode

navigation messages and correlate ranging signals as

well as carrier signals to extract code and carrier raw

GNSS data. Modules will be available for the GPS

civilian signals L1 C/A and L2C, as well as a high

performance semi-codeless module to use the restricted

L2 signal. There will be SBAS modules for WAAS,

EGNOS etc.. GLONASS G1 and G2 signal modules as

OGRP — Open GNSS Receiver Protocol

6

well as Galileo E1 signals will be similarly available

with more modules expected to be released over time.

Users are encouraged to develop and market third party

modules.

5.1 RTK Engine

The raw GNSS data may be fed to a Real Time

Kinematic (RTK-) engine to generate NMEA messages.

Like with the modules mentioned above, the user may

develop their own code, they may elect to use a

solution provided by the OSR team or any third party

that may offer solutions. Our RTK engine uses GPS L1

and L2 in its entry level configuration and can be

upgraded to run in combination with any or all of the

signals supported in our tracking modules. This RTK

engine has many options, it can be configured to be

tolerant to base data latency and can be equipped with a

VRS-module to dial and use Virtual Reference Station

networks. It can also use advanced features to handle

difficult conditions with frequent tracking slips and has

a slip tolerant on the fly ambiguity resolution mode.

5.2 Other Raw GNSS Processing Engines

A large number of engines besides RTK are

conceivable. We offer ready modules to generate base

station reference data streams in RTCM or other

formats. Other engines can output Receiver

Independent Exchange Format (RINEX-) data streams

or store the data onboard the OSR for post-processing.

We anticipate the release of optimized timing and other

specialty engines.

5.3 navXWeb

(1) Motivation

To avoid the necessarity of a build in display we

decided to implement a WEB-Interface that should be

able to handle all kind of user interaction. That

contains:

- Install Plugins and Extensions

- configure the system with all its components

- handle software updates

- configure settings like tracking, loging etc.

- the classical outputs like Skyplot, filehandling etc.

We also wanted the navXweb able to upload third

party-plugins

(2) Realization

The Core WEB Server is a simple WEB Server that

handles CGI calls.

For developers of plugins there are documentations,

tutorials and libraries to generate all what is necessary

to create a navXweb compliant plugin. Up to creating

an archive that can be uploaded by using the navXweb

on a concrete OSR board.

When such a plugin is uploaded the navXweb

automatically generates sites for the settings.

The internal parts of the OSR-Board uses the same

mechanism as the plugins.

NavXweb uses state of the art HTML5 and CSS3

technologie to give a good user experience and to make

it possible to run it on all devices from mobile to

big-screen.

The navXweb don’t use much resources of the

OSR-Board. It just creates the representation of data.

To avoid heavy resource-using in the OSR it uses

HTML5 technique to let the browser render

complexergrafic data. For example when displaying

the Skymap.

The navXweb has a build-in user management and a

build in filexplorer for a defined part of the internal File

system.

6. Conclusion

There is a high risk for all parties involved to

develop this new receiver platform. Is it from the

market ever wanted an open interface on a GNSS

receiver to have? Does the hardware and development

platform really wish from the Users? These questions

remain open and can be answer only by the users and

our customers.

As already Alexander Graham Bell said, “Don’t

keep forever on the public road, going only where

others have gone, and following one after the other like

OGRP — Open GNSS Receiver Protocol

7

a flock of sheep. Leave the beaten track occasionally

and dive into the woods. Every time you do so you will

be certain to find something that you have never seen

before. Of course, it will be a little thing, but do not

ignore it. Follow it up, explore all around it; one

discovery will lead to another, and before you know it,

you will have something worth thinking about to

occupy your mind. All really big discoveries are the

results of thought.”

Datagrid, Gutec and navXperience are sure they do

the right thing and the market needs the OSR — Open

Source Receiver and the new Protocol OSRP.

References

[1] Pany, T. 2010. Navigation Signal Processing for GNSS
Software Receivers. Artech House.

[2] Dötterböck, D., Ko, S., and Eissfeller, B. 2011.
“Multi-Constellation RTK with a Software Receiver.” In:

Proceedings of the ION GNSS 2011, Portland, Oregon,
USA, 2011.

[3] “Network Time Protocol.” Wikipedia, 5 March 2014.
Available online at: http://en.wikipedia.org/wiki/
Network_Time_Protocol.

[4] Hahn, J., and Powers, E. 2007. “A Report on GPS and
Galileo Time Offset Coordination Efforts.” In:
Proceedings of TimeNav'07, Geneva, Switzerland.

[5] Henkel, P., Giger, K., and Günther, C. 2009.
“Multi-Carrier Vector Phase Locked Loop.” In: IEEE
Signal Processing Society, München.

[6] Eissfeller, B., Tiberius, C., Pany, T., and Heinrichs, G.
2002. “Real-Time Kinematic in the Light of GPS
Modernization and Galileo.” Galileo’s World, pp. 28-34.

[7] Avila-Rodriguez, J., Hein, G. W.,Wallner, S., Issler, J. L.,
Ries, L., Lestarquit, L. and de Latour, A. 2007. “The
MBOC Modulation: The Final Touch to the Galileo
Frequency and Signal Plan.” In: Proceedings of ION GNSS
2007, Fort Worth, Texas, USA.

