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Abstract : 

While the first part was devoted primarily  to the main  procedures calculateResidues  and ContourIntegration applied
to  a  wide  class  of  complex  functions  f(z)  which  are  rational  polynomials,  products  of  rational  and  trigonometric/  hyperbolic
functions, rational  functions consisting of trigonometric/hyperbolic  functions. However,  the investigations of the second part  of
this  paper  are  special  topics  which  occur  in  the  context  of  contour  integration  and  are  of  interest  in  itselves.  The  issues
discussed in this paper are :
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(1) introduction of a language for creation and visualization of non-trivial integration paths consisting of polylines and circular 
arcs such as contours γ which exclude certain poles or branch cuts, or the sophisticated contour for Meijer G-functions 
meandering around integer singularities but avoiding half-integral ones, or  the Pochhammer double-loop contour for the 
evaluation of  the so-called Euler’s integral etc. ;

(2) criterium for the determination of poles inside/outside an arbitrary closed contour ;

(3) symbolic evaluation of the integral representation for special functions such as Meijer G-function or Euler's integral for Beta 
function etc.

(4) transformation of improper integrals (along the real axis) into exotic contour integrals with the help of change of variables, 

e.g.  ∫ 0
+∞ 1

x3+1 x  with variables  z r ϕ  where ϕ  2π
3  etc. ;

(5) evaluation of action integrals such as ∮ pr r =∮  + 2 ℬ
r - 

r2 r by mapping the complex plane  on the Riemann sphere ℛ ;

□ Initialization

In  order  to  execute  the subsequent  Mathematica  code  with  the examples  given  the Mathematica  package  ContourIntegration`  must  be loaded
first. It should be located in the same subdirectory from where the current notebook ContourIntegration_P2.nb is revoked.

Clear["Global`*"];
SetDirectory[NotebookDirectory[]]
Get["ContourIntegration`"]

C:\eMail_Attachment\ContourIntegration_final
The Mathematica package comprises  all definitions,  procedures,  replacement  rules  etc.  which  are required  to run the main  procedure  ContourInte-
gral etc. .  After successful execution of the package the Mathematica version, date and time are shown. 
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VersionDateTime

Mathematica V10..14.1 for Microsoft Windows (64-bit) (April 11, 2016)
date= August 13, 2016; time= 15:21h

Special notations

For sake of better readability some special notations will be introduced and used throughout the notebook which are given here.

Numerical contour integrals ∮γ f (z) z and  ∮a
b f (z) z ,

Notation γ_f_z_ ⟹ NIntegrate[f_, Evaluate[Join[{z_},γ_]]] ,WorkingForm  tF

Notation θ_a_θ_b_
f_z_z_ g_ ⟹ NIntegrateEvaluateSimplify f_ Dt[z_]/.z_g_

Dt[θ_] ,{θ_,a_,b_} ,WorkingForm  tF
Line integrals ∫ℒ (t) f (R (t)) · t[R] 
Notation ℒ_,p_f_ . t[r_] ⟺ LineIntegral[f_ . Dt[r_],ℒ_,p_,r_] 
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Symbolic contour integrals ∮selPol, polRange, onoff f (z) z  

Notation 
selectPoles_ ,polesRange_ ,onoff_f_z_ ⟺ ContourIntegral[f_,z_,selectPoles_,polesRange_,onoff_] 

Replacement  Rules and Shortcuts

This are substitution rules for {sin(θ), cos(θ) } and {sinh(θ), cosh(θ) } not included in the package ContourIntegration

z=. ;

trigRule:= Sin[θ_]  1
2 z - 1

z
, Cos[θ_]  1

2
z + 1

z
, Csc[θ_]  2

z - 1
z

, Sec[θ_]  2
z + 1

z

,

Tan[θ_]  - z - 1
z z + 1
z  , Cot[θ_]   z + 1

z z - 1
z  , θ_  1 z

z ; (* z =  θ *)
hypRule:= Sinh[θ_]  1

2
z - 1

z
, Cosh[θ_]  1

2
z + 1

z
, Csch[θ_]  2z - 1

z  , Sech[θ_]  2z + 1
z  ,

Tanh[θ_]  z - 1
z z + 1
z  , Coth[θ_]  z + 1

z z - 1
z  , θ_  1

z
z ; (* z = θ *)
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In order to make the code more transparent some shortcuts will be used throughout this paper :
fl=Flatten, sf=Simplify,  fs=FullSimplify,  sF=StandardForm, tF=TraditionalForm, cF=ColumnForm,  ce=ComplexExpand, hF=HoldForm, 
th=AbsoluteThickness[2] and th1=AbsoluteThickness[1] and polyForm=PolynomialForm[#,  TraditionalOrderTrue]& . 

Some additional rules are defined : 

AbsRule = Abs[x_ + y_ ]  x2 + y2  ,  reIm = {Re[#],Im[#]}&  ,   ratChop[v_] := Rationalize[Chop[expr]]  .

Global variables $<name> being used are :  $κ,  $sing, $branchCut, $rootObj, $poles, $polesType, $orderC, $i, $circ.  

In Mathematica V10 there are three useful procedures  in the package ComplexAnalysis :

The following definitions circumvent  the context ComplexAnalysis`

{branchCuts, branchPoints, holomorphicQ} ={ComplexAnalysis`BranchCuts, ComplexAnalysis`BranchPoints, ComplexAnalysis`HolomorphicQ };
? ComplexAnalysis`BranchCuts ComplexAnalysis`BranchPoints ComplexAnalysis`HolomorphicQ   

BranchCuts[f, z] gives the branch cuts of f with respect to the variable z. BranchCuts[f] returns the branch cuts of the pure function f.

BranchPoints[f, z] gives the branch points of f with respect to the variable z. BranchPoints[f] returns the branch points of the pure function f.

HolomorphicQ[f, z] returns True if f is a holomorphic function. HolomorphicQ works best if there are no symbolic parameters.
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■ Prolog
Contour integration is a method in complex analysis for the calculation of integrals along a closed path γ in the complex plane  (see [1, 2].  In this sec-
ond part some more sophisticated applications will be demonstrated. 

Topics listed in Abstract : 

(1) introduction  of a language  for creation  and visualization  of non-trivial  integration  paths consisting of polylines  and circular  arcs such as contours  γ
which  exclude  certain  poles  or  branch  cuts,  or  the  sophisticated  contour  for  Meijer  G-functions  meandering  around  integer  singularities  but  avoiding
half-integral ones, or  the Pochhammer  double-loop contour for the evaluation of  the so-called Euler’s integral etc. ;

(2) criterium for the determination of poles located inside/outside an arbitrary closed contour ; 

(3) integral representations of Meijer G-functions Gp,q
m,n z

a1, …, ap
b1, …, bq

  ;

(4) transformation of improper  integrals  (along the real  axis) into ‘exotic’  contour  integrals  with the help  of change  of variables.  It  will  be shown  that
due to a suitable  change of integration variable  certain  types  of improper  integrals  (along the real  axis )   can  be transformed  into contour  integrals
with a closed contour γ in . 

(5) evaluation of action integrals such as ∮ pr r = ∮  + 2 ℬ
r - 

r2 r by mapping the complex plane  on the Riemann sphere ℛ ;

A detailed investigation of  multi-valued  functions f (z) with branch cuts and evaluation of corresponding contour integrals will be given in a subsequent 
paper Part 3.  

◼ Motivation for Symbolic Contour Integration

Contour integration is a method in complex analysis for the calculation of certain integrals along a path γ in the complex plane ; this method is closely
related to the calculus  of residues as shown before. One use of contour integrals is the evaluation of integrals along the real axis that are not easily deter-
mined by using only methods with real variables. The main applications of contour integration are : direct integration of a complex- valued function f (z) along a curve γ in , application of Cauchy’s integral theorem, application of the residue theorem.  
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 special functions often defined by contour integral representations 

See, for example, the definition of the Γ-function in terms of Hankel’s contour integral as found on The Wolfram Functions Site [4] with URL : 
http://functions.wolfram.com/  . 

Γ(z) = 12 π  z - 1 ∫ℒ -t tz-1 t .  The path of integration ℒ starts at ∞ +  0 above the real axis, goes to ρ +  0, encircles  the origin in counter-clockwise

direction with radius ρ to the point ρ - 0 below the real axis, and returns to the point ∞ -  0. 

Γ(z_) := 12 π  z-1 ContourIntegrate -t tz-1, {t, ℒ}
A Mathematica  procedure  ContourIntegrate[f[z,t],{t,ℒ}]  is suggested  for the (symbolic)  calculation  of the contour  integrals.   However,
this essential  procedure  is not yet  implemented  in Mathematica nor available elsewhere  which  is astonishing.  There are several  reason why  the imple-
mentation has not been done (Private communications  with M. Trott / WRI (2010) ).

This was  the motivation  for the author  to implement  a corresponding  procedure  which  covers  many  nontrivial  contour  integrals  but does  not  claim  to
cope with all possible cases and situations occuring in the context of contour integrations. 

Special notation for contour integrals 

∮selectPoles_,polesRange_,onoff_f_ z_ ⟺ ContourIntegral [f_, z_, selectPoles_ , polesRange_, onoff_]
? ContourIntegral 

ContourIntegral[f, z, selectPoles_All, polesRange_{ }, onoff_"On"] evaluates contour integrals symbolically in the complex
plane  by means of the residues for the poles selected. 'f' denotes the integrand f(z) of the contour integral where 'z' is
the integration variable z∈ . The parameter 'selectPoles'={ i, j, … } a subset of poles can be selected to be considered
for the residues; default value for 'selectPoles' is All. The sum of residues is evaluated using calculateResidues which
has the same parameter list as ContourIntegral. For the final result the sum of (selected) residues is only multiplied
by 2π and returned in the variable  for the contour integral. With "No" intermediate printout is complete suppressed.
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ContourIntegral 1z3 + 12 , z, {2, 3}, {}, "On"
The same result is obtained with the special notation with the symbol ∮  ...

 = {2,3},{},"No" 1z3 + 12 z
all residues: Σ

i
resΣ= - 2

9
; selectPoles= {2, 3}

Contour integral = ∮ 1
1 + z32 z = - 4  π9

- 4  π
9
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■ (1) Creation and Visualization of Contours

In order to evaluate real-valued integrals the integrand f(x) is continued to the complex plane  and the integration interval on the real axis (a,b) ∈  is 
extended to a closed curve γ by attaching in the simplest case a semi-circle  in the upper/lower half-plane +/- . Often the contribution of the semi-circle  
to the integral vanishes if the radius R  ∞ so that only the real-axis part of the integral remains.

□ Contour created by polylines with showPolygonalContour 

In  the simplest  case  a closed  contour  is  made  of  a list  γi  of  points  Pk = (xk +  yk) ∈    which  are connected  by polylines.  This  is  achieved  with  the
procedure

? showPolygonalContour

Rectangular and diamond-like shaped contours

Here, various contours (of rectangular and diamond-like  shape) are shown

z =. ;γ1 = {1 +  .5, -1 +  .5, -1 -  .5, 1 -  .5, 1 +  .5};γ2 = {1, , -1, -, 1};γ3 = {1 +  .5, , -1 +  .5, -1 -  .5, -, 1 -  .5, 1 +  .5};
showPolygonalContour[{{γ1}, {γ2}, {γ3}}]
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{1., 0.5 }{-1., 0.5 }

{-1., -0.5 } {1., -0.5 }

{1., 0.5 }
{1, 0}

{0, }

{-1, 0}

{0, -}

{1, 0}
{1., 0.5 }

{0, }
{-1., 0.5 }

{-1., -0.5 }
{0, -}

{1., -0.5 }

{1., 0.5 }

Polygonal contour  with vertex  coordinates

Furthermore, the coordinates of vertex points (defining the polygonal  contour) and additional points (such as roots, singularities etc.) given in the list cm-
plxPts can be displayed with  showPolygonalContour1  which is an improved version of the procedure above.

? showPolygonalContour1

showPolygonalContour[γlist:{{_}..}, range_:Full, cmplxPts_:Null] draws n (n=1|2|…) polygonal closed contours γ1,γ2,…γn within
the 'range'= {{x0,x1},{y0,y1}} (default is Full) where the coordinates of the vertex points Pi ϵ  are shown and the direction
of the contour path is indicated by arrows centered halfway on each of the connecting (poly)lines between subsequent
vertices Pi,Pi+1. 'cmplxPts' is the set of points (default is Null) enclosed by the contour with coordinates given in .

Here, for example the complex roots of the polynomial  5(z)  0 are displayed in addition : 
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[z_] := z5 - z3
2
- z2 + 1

2
;

ζ = z /. Solve[[z]  0, z];
cmplxRoots = (#〚1〛 +  #〚2〛) & /@ {Re[ζ], Im[ζ]}γ4 = 2 {1, , -1, -, 1};
showPolygonalContour1[{{γ4}}, {{-3.1, 3.1 }, {-3, 3}}, cmplxRoots]
1, - 12 -  3

2 , - 1
2 +  3

2 , - 1
2
, 1

2


1

(-1

2
-  3

2
)

(-1

2
+  3

2
)

- 1

2

1

2

{2, 0}

{0, 2 }

{-2, 0}

{0, -2 }

{2, 0}
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Circular contour

Because a contour path γ consists of polylines  and arcs the built-in routine Circle[{x,y},r,{theta1,theta2}] should internally be repre-
sented by a polyline.  But this seems not to be the case so that instead a user-defined  version  circle[{x,y}…] was created with an internal poly-
line representation which admits further processing of closed contours in the context of the Point-In-Polygon problem. 

? circle

The subsequent test shows various circles  and ellipsoids (the internal representation of which are polylines) using several instances of the procedure 
circle.

Procedure circle

In practice, contours in the complex plane  or in some half-planes +/- or l/r  turn out to be more complicated if  poles/singularities  zi are to  be en-
closed or excluded.  Sometimes,  in order to avoid branch cuts the contour encircling  this discontinuity will be deformed into another equivalent  contour. 

□ Creation and visualization of contours more involved using contourPathGeneration and 
contourPathGraphic

Thus, apart from trivial cases which are taken care by showPolygonalContour1  the construction of these contours could become quite involved 

so that it is suitable to have procedures  such as contourPathGeneration and contourPathGraphic for the generation and visualization γ
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of more sophisticated contours γ .  

? contourPathGeneration 

"contourPathGeneration[pts,contour_:All,opts___ ] creates the contour in terms of polylines. 'pts' is the list of points (xk+ yk) defining the
contour in the complex plane . 'contour' is the index (connectivity ) list numbering the sequence of points to give polylines and
circles. For default value 'All' the complete index list is interpreted as a single polyline line[{1,2,3,...}]; circular arcs are defined as
sublists {...,{i,j,k},...}. If an arc comprises more than 3 points, e.g. {i,j,k,l,m}  circ[{i,j,k,l,m}], then intermediate points (here k,l) are
dropped for the calculation of the corresponding arc; if the index order is inverted to guarantee correct orientation of an arc, e.g.
cir[{3,2,1}], then the coordinates of the resulting (circular) polyline will be reversed with adjacent duplicates of coordinate points
being removed. If the global variable $branchCut ≠ { }, e.g. {x1+ y1,...,xn+ yn}, then an additional contour is created encircling
the branch line spanned by P1 and Pn. Two lists, {coordsContour,coordsBranchCut} are returned (which may be further used
for the procedure PointInPolygonQ to determine which poles/singularities are inside the contour). 'coordsContour' describes
the list of coordinate pairs of the resulting contour whereas 'coordsBranchCut' describes the contour encircling the branch cut."

? contourPathGraphic

contourPathGraphic[pts,singPts,contour_:All,opts] shows a contour path which consists of arcs and polylines going through 'pts'. The list of points
'pts' which determines the blue contour are Pi=xi+· yi in the complex plane . The points 'pts' are shown as red dots. 'singPts'
denotes a list of singular points which could be included or excluded from the contour and are shown in black. Index list 'contour' (
e.g. contour={{1,2,3},3,4,{4,5,6},6,7} ) defines the sequence of circular arcs and polylines constituting the contour path. The sublists{ ...,{i,j,k},l,m,n,...}  circle[{i,j,k}] specify arcs through 3 points { Pi,Pj,Pk }. Interlaced indices (besides these sublists for arcs), e.g.{...,l,m,n,...}  line[{...,l,m,n,...}], specify polylines. The default value for 'contour' is All for which a single polyline line[{1,2,3,...,n}]
results. For a closed contour the last point is equal to the first point : Pn== P1. There is an optional parameter opts___ which specifies
e.g. the coordinate range of the plot using PlotRange-> {{x0,x1},{y0,y1 }} respectively All. Moreover, with the global variable
$branchCut a branch cut can be drawn. Thus $branchCut={0+ 0,a+ 0} denotes a branch cut along the positive real axis from x=0 to a.
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For the description of an arbitrary contour γ which might be open or closed a proper language is provided as regards to the points P1, ... Pn  characteriz-
ing an arbitrary contour path : 

 the  vertex list  pts is a list of points {P1, P2, P3, ... } in the complex plane  which define the contour; 

 an index list  contour (e.g.  contour ={{1, 2, 3, 4}, 4, 5, {7, 6, 5}, 7, 8} ) defines a sequence of circular arcs and polylines which constitute the con-
tour path. The sublists {{1, 2, 3, 4}, ... , {7, 6, 5}, ... }  specify circular arcs, e.g.  circ[{1,2,3,4}] and circ[{7,6,5}], going through (at least) 3 points, for ex-
ample  {P7, P6, P5}; reverse ordering of points changes orientation for the circle from counter-clockwise  to clockwise  direction.  The interlaced indices 
such as {... ,4, 5, ... ,7, 8} specify polylines, i.e. line[{4,5}] and line[{7,8}]. With the help of this kind of index list even very complicated contours can eas-
ily be defined. 

 Branch cuts are taken into account through the global variable $branchCut which is a list of branch points {P1, P2, ... } in  .

In the following graph the contour is defined by the index list  contour={{5,3,1},5,6,{6,7,8},{8,9,10},10,11}  and the branch cut 
$branchCut is given by two branch points {(.35+0),(.85+0)}. The procedure contourPathGeneration generates polylines  with inter-
mediate points so that the arcs look smooth. The branch cut is given as a dashed black line which is encircled  by a green closed contour line running 
above and below the branch line.


-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

0.35 0.6 0.85

The first graph shows the result of contourPathGraphic[pts,singPts,contour], the second graph illustrates the auxiliary points 
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contourPathGraphic[pts,singPts,contour]
coordsContour being used for the contour and the third graph shows coordsBranchCut which displays the branch cut. These (auxiliary)   point 
lists are provided by {coordsContour, coordsBranchCut}= contourPathGeneration[pts,contour] . 

Branch cut  is taken care by the procedures

? branchCutContour showBranchCut 

branchCutContour[branchPts] creates a contour encircling a given branchcut which is defined by the global
variable $branchCut = {-a+b ,a+b }. A list of coordinate pairs 'bcPts' describing the branchcut contour is returned.

showBranchCut[branchPts] displays a branch cut spanned by
'branchPts'. It is shown as a dashed black line encircled clockwise by a green closed contour.

which create auxiliary points to define a smooth branch cut contour to be displayed as a green line encircling  the dashed black branch line spanned be-
tween given branch points. 

branchPts = {(.35 + 0 ), (.85 + 0 )};
bcPts = branchCutContour[branchPts]
Graphics[ showBranchCut[branchPts], ImageSize  150]
{{0.35, 0.04}, {0.321716, 0.0282843}, {0.31, 0.}, {0.321716, -0.0282843},{0.35, -0.04}, {0.35, -0.04}, {0.85, -0.04}, {0.85, -0.04}, {0.878284, -0.0282843},{0.89, 0.}, {0.878284, 0.0282843}, {0.85, 0.04}, {0.85, 0.04}, {0.35, 0.04}}

Auxiliary procedures  for the creation of circular arcs are available in the package ContourIntegration. 
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? ArcsAndLines Arc3 Arc circle

? vectAngles Orientation arrowList

Various types of contours

A selection of various types of contours is shown below : 

+ 
-2 -1 1 2 3 4

-2

-1

1

2 r

Closing a contour at infinity

In order to close a contour in  in most cases a semi-circle  or full circle is added which contribution to the integral vanishes in the limit R  ∞ so that 
only the real-axis part of the integral remains. But often there are situations encountered  (such as the graph meandering  around a number of points on the 
real axis) where the contour has to be closed either in the right or left half-plane r/l . To cope with this situation it is suitable to introduce an additional 
parameter close = {+1, -1, +, +} which indicates  that the contour is closed either in the right/left half-plane r/l  or in the upper/lower half-
plane ± of the complex plane  with a circular arc with radius R∞. 
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close = +1; (* right half-plane r : {z ∈  Re(z) > 0} *)
close = -1; (* left half-plane l : {z ∈  Re(z) < 0} *)
close = +; (* upper half-plane + : {z ∈  Im(z) > 0} *)
close = -; (* lower half-plane - : {z ∈  Im(z) < 0} *)
Likewise,  the parameter inf = {∞,-∞,∞,-∞} could be introduced  with the meaning  that the contour  γ will  be closed (at infinity)  by a circular
arc R∞ in the right/left half-plane r/l or in the upper/lower half-plane ±  of   .

inf = {∞, -∞,  ∞, - ∞}; (* r,l,+,- *)
Mathematica has implemented  two commands DirectedInfinity and ComplexInfinity for representing infinity. 

? DirectedInfinity ComplexInfinity

DirectedInfinity [] represents an infinite numerical quantity whose direction in the complex plane is unknown.
DirectedInfinity [z] represents an infinite numerical quantity that is a positive real multiple of the complex number z.  
ComplexInfinity represents a quantity with infinite magnitude, but undetermined complex phase.  

According  to Weisstein [5] complex  infinity is an infinite number in  whose complex  argument  is undefined.  In Mathematica this infinite number

is represented symbolically  by ComplexInfinity and the notation ∞  is used. 

{ DirectedInfinity[1], DirectedInfinity[-1], DirectedInfinity[], DirectedInfinity[-],
DirectedInfinity[ 1 + ], DirectedInfinity[1 -  ], DirectedInfinity[ ]} /. ComplexInfinity  ∞

∞, -∞,  ∞, (-) ∞, 1 + 
2

∞, 1 - 
2

∞, ∞
Examples below illustrate several contours which are created with contourPathGraphic :
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◼ Example 1: Path closed in + 

Here, a contour γ is created which lies in the upper half-plane + . The function f (z) = 1
1+z2+z4   possesses four poles in  : ∓ 1

2
-  3

2
, ∓ 1

2
+  3

2
 but 

only the poles  z3,4 = ± 1
2 +  3

2   are located in +. 



◼ Example 2: Path closed in + with/without inclusion of  pole in 0

The closed contour is (essentially) in + and includes/excludes  the pole z0 = 0 (by a small semi-circle  around the origin) but contains the pole z1 = 1
2   .

+ +
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◼ Example 3: Sectional contour in + 

Given are  three  poles  -1, 1
2 -  3

2 , 1
2 +  3

2    as  solution  of   z3 + 1  0  .   Only the pole  z3 =  1
2 +  3

2   is  located  inside  the sectional  contourγ = 1 + R + 2

1

2

R


◼ Example 4: Rectangular contour around branch cut {0,1}

The contour  γ avoids the branch cut {0,1} . The orientation of the (green) branch cut contour  is opposite to the orientation of the (blue) contour.  



◼ Example 5: “Keyhole contour” in  excluding branch cut {-∞, 0}

Here, the contour γ is constructed to avoid the branch cut on the negative real axis. Notice, the reverse ordering of points {7, 6, 5}, otherwise the circle is 
flipped. This type of contour avoiding either the negative or positive real axis and encircling  the origin is colloquially  called “keyhole contour”. 
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+ϵ
-ϵ r

R

branch cut



Obviously, the keyhole contour is equivalent  to the contour around the branch cut. 

◼ Example 6: “Keyhole contour” in  excluding branch cut {0,+∞}

Here the contour γ avoids the branch cut on the positive  real axis, i.e. extending from the origin {0,0}  to {0, R} (with R ∞). The origin is clockwise  
encircled by a small circular arc whereas  the orientation of the large circular arc is anti-clockwise.   



◼ Example 7: “Keyhole contour” in  excluding branch cut {r1, r2 }
Here, the (green) contour around the branch cut (between  r1  and r2) on the positive real axis is deformed (“blown up”) such that instead the singularity 
in z0 = 0 is encircled  counter-clockwise  by a small circular arc whereas the branch cut is encircled  clockwise  by a large circular arc with radius R∞ . 
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
r1 r2

◼ Example 8: “Double keyhole contour” in  excluding branch cut {r1, r2 } in favor of poles {r0, r∞ } 
Action integrals of type ∮ pr r =   + 2 ℬ

r
- 

r2
r can be casted into the form   1 - r1+r2

r + r1 r2
r2 r = ∮ 1

z (z - r1) (z - r2) z  with the 

transformation  {  1, ℬ  -(r1 + r2) / 2,   -r1 · r2} . There result a branch cut between  r1 < z < r2 and two singlular points at  r0 = 0 and  
r∞  ∞ . 

The (green)  contour  around the branch cut  can be “blown up” to a double keyhole contour  to enclose  the  singPts = {r0, r∞}  instead.  Details  for the
evaluation of the contour integral are discussed in Section 5, example 1. 
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

r0 r∞r1 r2

◼ Example 9: Meandering contour avoiding half-integer poles  1
2 , 3

2 , 5
2 , ... 

In order to evaluate the integral representation of the Meijer G-function  G1,2
2,12 z 3, -3

1/2   a contour path has to be generated which includes only the   in-

teger poles {..., -2, -1, 0, 1, 2, 3} but avoids the half-integral poles  1
2 , 3

2 , 5
2  

 Generation of the set of data points pts9 defining the open contour path ℒ 

A list of data points circList for an alternating sequence of circular arcs is created automatically;  starting and end points for the polylines  are added. 

To the last point in circList, i.e. Pe =  13
4 + 0  ,   b is added : P17 =  13

4 + b   . 
Similarly, for the prepending points :  P1 = Pe + a  =  13

4 + a ,  P2 = Pe -  =  13
4 -  and P3 = Pa -  =  1

4 -  . 
In this way the list defining alternating semi-circles  is supplemented by two polylines  at Pa  and Pe . For a, b some arbitrary values (e.g. R = 5 ) are as-
sumed which could go to ∓∞ and it is assumed that the contour is closed on the left by an semi-circle  with radius R∞.
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The  integer poles {..., -4,-3,-2, -1, 0, 1, 2, 3} and half-integral poles  1
2 , 3

2 , 5
2  are given as singPts11 and singPts22 :

The contour ℒ goes from  13
4 -  ∞   to    13

4 +  ∞ and must be closed on the left side , i.e. in l  because only there the integrand will  vanish for z∞ .  Hence,  with  this  counter-clockwise  orientation  of  the  contour  ℒ  all  singularitites  with  integer value  (red  points)  from  -n , …, 0, 1, 2, 3,  are  in-
cluded, excludes are, however,  the singularities for half-integral values 1

2 , 3
2 , 5

2 , … (green points) : 

-2 2 4

-2

-1

1

2l

 Close contour path ℒclosed  in l  

In order to close the contour in the left half-plane l  an ancillary point P19 on the negative real axis is added to  pts10. Closing the contour ℒ by 
adding a circular arc (with radius R ∞) which is defined by {18, 19, 1} one obtains for  ℒclose  the following gray-shaded semi-circular  region which 
for radius R ∞  finally turns out to be the left half-plane l . All red dots, i.e. the integer poles {..., -2, -1, 0, 1, 2, 3} , will contribute to the evaluation 

of the contour integral of the Mejier G-function G1,2
2,12 z 3, -3

1/2  .
To display the domain inside a closed contour path ℒclosed  as a gray-shaded area the procedure generateClosedContourPath is used. 

? generateClosedContourPath
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generateClosedContourPath[pts,singPts,contour_:All,opts] generates a closed contour path and returns a pointlist defining the closed contour.

Finally, the closed contour ℒclosed is displayed by the procedure showPointsInContour; the interior is shown as a gray-shaded area, singular points
inside/outside the contour are colored in green/red as already before. 
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◼ Example 10: Pochhammer double-loop contour γPh for Euler’s Integral  

For the Euler integral   ∮γPh
t a-1(1 - t)b-1  t = -4  π (a+b) sin(π a) sin(π b) B(a, b) with a,b ∈   the  Pochhammer double-loop contour γPh starts 

from an arbitrary point ( P1 = (.1 - .173 ) ) in the interval {S0, S1} = { 0 , +1 } , encircles  S1 and then S0 clockwise, afterwards encircles  S1 and then S0 
anti-clockwise, and returns to P1. A short-hand notation for the Pochhammer  contour path is (S1 +, S0 +, S1 -, S0 -)  (see e.g. [6] ).
B(p, q) is the Beta function. 

(i) With the procedure contourPathGraphic the Pochhammer  double-loop contour path can be easily created.

(ii) Another  more  conventional  approach (using arcs, lines,  arrows  and dots) of the Pochhammer  contour  path is  given  by Forst & Hoffmann  [7] ;  the
original code was transcribed from Maple to Mathematica. Note, the contour path is symmetric with respect to {-1,1} instead of {0,1}.

(iii) An elegant representation of the Pochhammer  contour path is given by M. Trott  [8] in terms of a parametrized path. 


S0 S1P

-1 - 1
2

1
2

1

- 1
2

1
2

-1 0 1 2
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■ (2) Points inside/outside a closed Contour

For the evaluation of a contour integral it is important to know which singularities are enclosed by the contour γ. However,  in Mathematica there is no 
built-in procedure to decide which of the given singularities are inside and which are outside the closed contour. Therefore this section will deal with the 
so-called point-in-polygon problem which is not only of  interest for the evaluation of contour integrals (where the polygon is a closed path γ in the com-
plex plane  ) but was already investigated in computational geometry and in computer graphics. Hence,  the problem can be considered  as a geometrical  
one for which two commonly  used algorithms are available : one is the ray crossing algorithm, the other is the winding number algorithm  which will be 
discussed subsequently [9]. 

◼ Ray crossing algorithm

The idea of the ray crossing algorithm is to draw a horizontal line starting at a point P in question and extending to infinity. To find out whether point P 
is located inside or outside a polygon (which must not necessarily be convex) one tests how many times a ray, starting from point P and going in any 
fixed direction, intersects the edges of the closed polygon. If  P is not placed just on the boundary of the polygon, the number of crossings is even if P is 
outside, and odd if inside. Thus this algorithm is therefore also known as even-odd-rule algorithm [10,11]. The case of non-convex  polygons is a bit 
more intricate but can be handled using this algorithm too. Moreover, one can omit considerating horizontal edges as a fictitious horizontal ray will 
never cross them. Furthermore, one can also delete those edges which are entirely above or below the y-coordinate of the point  P = (x,y). 

A very effective  implementation  of the ray crossing algorithm is the procedure  given  by P. Wellin  [12] (which  was  slightly  improved  by the author  to
make sure that all points inside  the closed  polygon  are colored  green  whereas   points outside are colored  red), e.g.  see the procedure  PointInPoly-
gonQ . 

PointInPolygonQ[poly : {{_, _} ..}, pt : {x_, y_}, onoff_: "Off"] :=
   Module[{tri, e1, e2, e3, e4 , x1, y1, x2, y2},
(* ---- Ref : Paul Wellin "Programming with Mathematica, An Introduction" (2013), Chapt. 10.4 pp. 419ff ------  *) 
          TriangleArea[tri : {v1_, v2_, v3_}] := Det[Map[PadRight[#, 3, 1] &, tri]]/2;
          Clear[e1, e2, e3, e4];
                  
          e1 = Partition[poly, 2, 1, 1];
          e2 = DeleteCases[e1, {{x1_, y1_}, {x2_, y2_}} /; y1 == y2 ];            (* eliminate horizontal edges *)≥

ContourIntegration_P2.nb

26



          e3 = DeleteCases[e2, {{x1_, y1_}, {x2_, y2_}} /; (Min[ y1, y2 ] ≥ y || Max[ y1, y2 ] < y)];                       
                                                             (* delete edges entirely above/below y-coord of pt *)
          e4 = Map[Reverse @ SortBy[#, Last] &, e3 ];
          boole = OddQ[Count[TriangleArea[Join[#, {pt}]] & /@ e4, _?Positive]];
      print[onoff, " pt(x,y)= ", {x, y}, "  (T|F)= ", boole ];
                     Return[boole];
               ];

Here is a test for a rectangular contour γ and several test points

? PointInPolygonQ 

PointInPolygonQ [poly:{{_,_}..},pt:{x_,y_},onoff_:"Off"] tests whether points 'pt' are located inside or outside the closed polygonal contour 'poly'.
A list with boolean variables {True|False} is returned if the points lie inside (True) or outside respectively on the contour (False).

γ =  1, 1
2
, - 1, 1

2
, - 1, - 1

2
,  1, - 1

2
,  1, 1

2
; (* contour *)

PointInPolygonQ[γ, {0, .2}, "Off" ]
PointInPolygonQ[γ, # ] & /@ {0, .2}, {0, .6}, {-.5, -.3}, .5, .5 + 10-16
True

{True, False, True, True}
◼ Winding number algorithm

The underlying  idea of the winding number algorithm is to compute for point P its winding number w.r.t. the polygon [13]. If the winding number is 
non-zero, then P lies inside the polygon otherwise P is located outside or on the boundary of the closed polygon. One way computing the winding num-
ber is to sum up the angles extended by each side of the polygon. Denoting by Vi the set of N vertices defining the polygon one calculates  the following  
sum  = ∑i=1

N-1 (∠(Vi+1 - P, Vi - P) + ∠(VN - P, V1 - P) ) . If  ≠ 0 then P is inside the polygon. If  == 0 then P  is outside with angle ∠(a,b) return-
ing a value in the interval (-π, π]. 
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π π
An efficient  implementation of this approach is given by M. Trott [14]  with the procedure PointInPolygonQ2 . 

? PointInPolygonQ2

PointInPolygonQ2 [poly_, pt_, onoff_: "Off"] := insidePolygonQCF [poly][pt];
insidePolygonQCF [slist_] := insidePolygonQCF [slist] =

Module[{segmentList, segmentListLength },(* --------------------------- © Michael Trott (Oct. 2013) ----------------------------------- *)
segmentList = Partition[ If[Last[slist] === First[slist], slist, Append[slist, slist〚1〛 ] ], 2, 1];
segmentListLength = Length[segmentList];
Function[{segments, λ},

Compile[{{viewPoint, _Real, 1}},
Module[{sum = 0., px = viewPoint〚1〛, py = viewPoint〚2〛, q1x, q1y, q2x, q2y},

Do[ {{q1x, q1y}, {q2x, q2y}} = segments〚k〛;
sum = sum + ArcTan[(q1x - px) (q2x - px) + (q1y - py) (q2y - py),(q1y - py) (q2x - px) - (q1x - px) (q2y - py)], {k, λ}];

boole = Round[sum] =!= 0 ]]][segmentList, segmentListLength ]];
Again, here is a test for a rectangular contour with a list of points {{0, .2}, {0, .6}, {-.5, -.3}, {.5, .5}}; the second point lies outside, 
the forth point is slightly above the boundary. 
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γ =  1, 1
2
, - 1, 1

2
, - 1, - 1

2
,  1, - 1

2
,  1, 1

2
; (* contour *)

PointInPolygonQ2[γ, {0, .2}, "Off" ]
PointInPolygonQ2[γ, # ] & /@ {0, .2}, {0, .6}, {-.5, -.3}, .5, .5 + 10-16
True

{True, False, True, False}
See also the implementation  of the winding number approach by David Park [15] using the procedure WindingNumber which applies
SegmentCrossingIncrement. 

Another variant of the winding number algorithm is to compute the winding number by integrating 1/z (centered at point P : zp = xp +  yp )  along the 
polygonal contour γ in the complex plane. Applying Cauchy’s Residue Theorem [16] may not be very efficient  in comparison to other approaches given 
above but still this method is in the context of contour integration  n(zp , γ) = 1

2 π  ∮γ 1
z-zp

z  because complex (numerical)  integration is feasible in 

Mathematica. 

Another implementation  with PointInPolygonQ3 was suggested by T. Heidecke  [17] and similarly by R.Brambilla [18] following  an idea of 
Muskhelishvili.  

? PointInPolygonQ3

PointInPolygonQ3 [poly_, pt_, onoff_: "Off"] := InsidePolygonQ [poly, pt, onoff]
InsidePolygonQ [polygon_, point_, onoff_: "Off"] :=

Module[{ wn, boole },
wn = WindingNumber [polygon, point, onoff] ;
If[wn === 1, boole = True, boole = False];
Return[boole] ;];

WindingNumber [contour_, point_, onoff_: "Off"] :=
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Module{wn, zp},(* -------------- © Thies Heidecke, Mathematica Stack Exchange (Aug 2012) -------------- *)
zp = Complex @@ point;

Off[NIntegrate::ncvb, NIntegrate::slwcon];ζRange = Evaluate @ {ζ, Sequence @@ (Complex @@@ Append[#, #〚1〛 ] & [contour])};
print[onoff, " point zp= ", zp, "; zRange: ", ζRange ];

wn = Round @ Re @ Chop 1
2 π  NIntegrate 1ζ-zp , ζRange ;

On[NIntegrate::ncvb, NIntegrate::slwcon];
Return[wn];

contour =  1, 1
2
, - 1, 1

2
, - 1, - 1

2
,  1, - 1

2
,  1, 1

2
; (* contour *)

PointInPolygonQ3[contour, {0, .2}]
PointInPolygonQ3[contour, #, "Off"] & /@ {0, .2}, {0, .6}, {-.5, -.3}, .5, .5 + 10-11
True

{True, False, True, False}
Incorporated in the package ContourIntegration is the procedure

? PointInPolygonQ 

PointInPolygonQ [poly:{{_,_}..},pt:{x_,y_},onoff_:"Off"] tests whether points 'pt' are located inside or outside the closed polygonal contour 'poly'.
A list with boolean variables {True|False} is returned if the points lie inside (True) or outside respectively on the contour (False).

◼ 2.1 Rectangular contour

The simplest test is a rectangular polygon for which points inside/outside are shown in green/red. 
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The graphics showing the points colored in green or red according  to the their location either inside or outside the closed contour is achieved  by the pro-
cedure  showPointsInContour 

? showPointsInContour

showPointsInContour [poly,ptsInOut,onoff_:"Off",opts___] draws for a given closed contour 'poly' (which is a polyline) and a number of points
'ptsInOut' a graphics which shows the contour (in blue). Those points located inside the contour are given in green; those points
outside or on the contour are shown in red. The decision whether points are inside or outside the closed contour is made using
PointInPolygonQ. The global variable $Pts = {inPts,outPts} contains two distinct sets of points being in/outside the contour.

◼ 2.2 Elliptical contour

The next example is an elliptical region  (which is represented as a polyline).

The necessary steps of the previous example can be combined into a single procedure showPointsInContour 

◼ 2.3 Circular arc contour
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Points in several circular arc contours

◼ 2.4 Closed contour for Meijer G-function

Closed contour for the Meijer G-function G1,2
2,12 z 3, -3

1/2  
Here, the task is to generate a contour which  meanders  around integer  poles at {-4,-3,-2,-1,0,1,2,3} and avoids half-integral  poles at  1

2 , 3
2 , 5

2 , ...  and is

closed in th left half-plane l . In order to close the contour  in l  an ancillary point P16  on the negative  real axis must be added to the point list given.
Thus the contour  ℒ is  supplemented  by a circular  arc (with  radius  R  ∞)  which  is defined  by {15, 16, 1}. Finally,  the resulting  closed  contour  ℒclose

will become the following  gray-shaded semi-circular  region which as R ∞  turns out to be the left half-plane l . In this way all green dots, i.e. the inte-

ger  poles  {...,  -  4,  -  3,  -  2,  -  1,  0,  1,  2,  3}  ,  will  contribute  to  the  contour  integral  determining  the  Mejier  G-function  G1,2
2,12 z 3, -3

1/2   .

The corresponding procedure for closing a given contour is 

? generateClosedContourPath

generateClosedContourPath[pts,singPts,contour_:All,opts] generates a closed contour path and returns a pointlist defining the closed contour.

The procedure generateClosedContourPath generates a closed contour in the form of a polyline.

The variable closedPolylinePts to be returned contains  a pointlist which  allows  further processing of the closed contour  such as gray-shading of
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closedPolylinePts
the interior domain etc. . 

Finally, the closed contour ℒclosed is displayed by the procedure showPointsInContour; the interior is shown as a gray-shaded area, singular points
inside/outside the contour are colored in green/red  as before. 
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■ (3) Integral representations of Meijer G-function : Gp,q
m,n z a1, …, ap

b1, …, bq

As already mentioned above many special functions are given in terms of integral representations which involve contour integrals. Below, as example 
for integral representations of special functions the Meijer G-function will be studied in detail.

As given e.g. in [4]  The Wolfram Functions Site  with URL  http://functions.wolfram.com/  the Meijer G-function can be defined by means of the follow-
ing contour integral 

Gp,q
m,n z

a1, …, an , an+1, … , ap
b1, … , bm , bm+1, …, bq

= 1
2 π  ∮ℒ ∏

j=1

m Γ(bj+s) ∏
j=1

n Γ(1-aj-s)
∏

j=n+1

p Γ (aj+s) ∏
j=m+1

q Γ (1-bj-s) z-s s /; {m, n, p, q} ∈  m ≤ q  n ≤ p

The Meijer G-function is given through the Mellin-Barnes  integral representation where the Γ's denote the usual Gamma functions. The contour ℒ sepa-
rates the poles of the products of  Γ-functions in the numerator,  such as Γ(b j + s)  with ( j = 1, … m) from those of  Γ(1 - a j - s)  with 
( j = 1,… n) in a sophisticated way. There are three possibilities for choosing the contour ℒ  (for details see Notations.nb of the Wolfram Functions 
Site [19] ). The Mathematica implementation  follows the definition suggested by Prudnikov et al. (1990)  [20] . 

? MeijerG

MeijerG[{{a1, …, an}, {an+1, …, ap}}, {{b1, …, bm}, {bm+1, …, bq}}, z] is the Meijer G function Gp q
m n z

a1, …, ap

b1, …, bq
.  

From the input form  MeijerG[{{a1, …, an}, {an+1, …, ap}}, {{b1, …, bm}, {bm+1, …, bq}}, z] the traditional form which is 

found in literature Gp,q
m,n z a1, …, ap

b1, …, bq
  is obtained e.g. 

MeijerG[{{a, b}, {c}}, {{d}, {e}}, z] // hF // tF
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G3,2
1,2z a, b, c

d, e 
Here, hF and tF are shortcuts for the procedures  HoldForm and TraditionalForm. 

□ 3 Examples of special functions’ representation in terms of MeijerG functions

In many cases Meijer  G-functions reduce  to simpler special functions.  A list where  Meijer  G-functions are reduced  to simpler special functions  is given
in Appendix 2 : Representation of special functions in terms of Meijer G-functions [19] .  Here three cases will be discussed in some detail. ,

◼ Example 3.1  G1,2
2,12 z 1 /2

3, -3
   ⟺  Bessel function K3(z)  ⟹  f2112 (z, s) = 2-s z-s Γ 1

2 - s Γ(s - 3) Γ(s + 3)
In this example the calculation  of the contour integral is done step by step in order to show the approach. Note that for given G1,2

2,1  the numerator  simpli-

fies to 1 due to the empty products  ∏j1=2p=1  sowie ∏j2=3q=2    (m=2, n=1) and the MeijerG function simplifies to the Bessel function K3(z) .
MeijerG 1

2
, {}, {{3, -3}, {}}, 2 z // tF

π (-z) K3(z)
Step 1 : Find and visualize the singularities for the integrand f2112 

The integrand is extracted by application of SlaterForm to the MeijerG function given. 

(f2112[z_, s_] = System`MeijerGDump S̀laterForm[ MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z], s ]) // tF

2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3)

With the help of procedure findSingularities4SpecFunc the integer-valued  singularities of f2112 are determined  in the range s = {-10,4}. 
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? findSingularities4SpecFct

findSingularities4SpecFct [specFct,s,polesRange,onoff_:"On"] determines the singularities for special functions f(s)='specFct'(such as MeijerG functions, which do not have an obvious denominator for poles). The range of the singularites is
confined by 'polesRange'; the singularities found are returned in the global variable '$poles' in order to be displayed in
contourPathGraphics. The global variable '$polesType' with values 'Integer|HalfInteger|All' selects the poles correspondingly.

$polesType = Integer; (* only integer poles are considered *)
$onoff = True;
findSingularities4SpecFct[f2112[z, s], s, {-10, 4}, "On"];
$poles ; (* poles determined by findSingularities *)

$polesType  Integer poles : {-10, -10, -9, -9, -8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -1, 0, 1, 2, 3}
Γ-functions product F(s)= Γ 1

2
- s Γ(s - 3) Γ(s + 3)

has poles : {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}
with multiplicity : {2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1}

In the first plot the singularities  are visualized for each Γ-function of the integrand separately; the second plot shows the superposition of  all singulari-
ties in the range s = {-8, 8}. Discarding the half-integer singularities (which originate from Γ 1

2 - s ) for the calculation of residues as regards to conver-

gence in the left-hand complex plane s ∈  it should be pointed out that for s ≤ -3 double poles occur whereas  the poles s = {-2, -1, 0, 1, 2, 3} are simple 
poles. 

z0 = 1 ;
VisualizeSingularities[f2112[z, s], z0, {-8, 8}]
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? VisualizeSingularities

VisualizeSingularities [specFctInt, z0, polesRange] displays the singularities of the integrand f(z,s)='specFctInt'

for a given special function which is defined as a contour integral
1

2π  ℒfmnpq (z, s)s. The first graph shows (with

different colors for each function component) the singularities given as Log[Abs[specFctList]] in the range 'polesRange'.
The second graph shows the superposition of all singularities of the special function investigated at given 'z0'.

Step 2 : Calculate residues for given singularities

The residues for given integer singularities  are evaluated taking into account  multiplicity of  poles. The result in terms of a truncated series is returned in 
the variable J2112

? calculateResidues4SpecFct
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calculateResidues4SpecFct[f, s, selectPoles_:None, polesRange_:{ }, onoff_:"Off"] evaluates the residues symbolically. 'f' denotes the
special function (e.g. MeijerG-function) f(s) with 's' as complex variable s∈ . The singularities of f(s) are determined by calling
findSingularities within the range given by 'polesRange'={a,b}; the list of lists {poles,μ,solK} is returned where 'poles' contains
the list of singularities, 'μ' is a list containing the multiplicity of every pole and solK = 0 is set. For special functions the parameter
'selectPoles'= None must be chosen. The global variable $polesType = Integer|HalfInteger|All selects the type of poles to be
considered. The sum of residues for the singularities selected is calculated and returned. With onoff= "No" printout is suppressed.

J2112 = calculateResidues4SpecFct[f2112[z, s], s, None, {-10, 4}, "Off"];
Γ-functions product F(s)= Γ 1

2
- s Γ(s - 3) Γ(s + 3)

has poles : {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}
with multiplicity : {2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1}
processing residue Res[2-s z-s Γ 1

2 - s Γ(s - 3) Γ(s + 3), {s,-10} ] for 2-fold pole(1)= -10
                                                      ⋮

processing residue Res[2-s z-s Γ 1
2 - s Γ(s - 3) Γ(s + 3), {s,-2} ] for 1-fold pole(9)= -2

                                                      ⋮
processing residue Res[2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3), {s,3} ] for 1-fold pole(14)= 3
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Residues : Σ
j
Res[2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3)]|s= sj =

- 323 π 72072 log(z) + 72072 ψ(0) 21
2
 + 72072 log(2) + 144144  - 416071 z10

1115882127360
- 221 π 5544 log(z) + 5544 ψ(0) 19

2
 + 5544 log(2) + 11088  - 30787 z9

12262440960
-

13 π 5544 log(z) + 5544 ψ(0) 17
2  + 5544 log(2) + 11088  - 29401 z8

170311680
- 143 π 2520 log(z) + 2520 ψ(0) 15

2  + 2520 log(2) + 5040  - 12631 z7
232243200

-
11 π 2520 log(z) + 2520 ψ(0) 13

2  + 2520 log(2) + 5040  - 11749 z6
5806080

- 3 π 280 log(z) + 280 ψ(0) 11
2  + 280 log(2) + 560  - 1181 z5
71680

-
π 140 log(z) + 140 ψ(0) 9

2 + 140 log(2) + 280  - 503 z4
6720

- 1
960

π 20 log(z) + 20 ψ(0) 7
2

+ 20 log(2) + 40  - 49 z3 -
π z2

40
+ π z

24
- π

3
- 3 π

z
- 8 π

z2
- 8 π

z3
for poles s= {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}

Step 3 : Numerical  comparison of the results          

Here, the approximate result obtained from the finite sum of residues will be compared with the exact result of the Meijer G-function. 
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serJ is the finite series of powers {z3, z4, … , z10}  (originating from the poles s = -3, ... ,-10 )

(serJ = (Level[(J2112 // tF // polyForm), 3, List] // Drop[#, 6] &) // Drop[#, - 5] &) // tF

- 1

960
π z3 20 log(z) + 40  - 49 + 20 log(2) + 20 ψ(0) 7

2
,

- π z4 140 log(z) + 280  - 503 + 140 log(2) + 140 ψ(0) 9
2


6720
, - 3 π z5 280 log(z) + 560  - 1181 + 280 log(2) + 280 ψ(0) 11

2


71 680
,

- 11 π z6 2520 log(z) + 5040  - 11 749 + 2520 log(2) + 2520 ψ(0) 13
2


5 806 080
, - 143 π z7 2520 log(z) + 5040  - 12 631 + 2520 log(2) + 2520ψ(0) 15

2


232 243 200
,

- 13 π z8 5544 log(z) + 11 088  - 29 401 + 5544 log(2) + 5544ψ(0) 17
2


170 311 680
, - 221 π z9 5544 log(z) + 11 088  - 30 787 + 5544 log(2) + 5544 ψ(0) 19

2


12 262 440 960
,

- 323 π z10 72 072 log(z) + 144 144  - 416 071 + 72 072 log(2) + 72 072ψ(0) 21
2


1 115 882 127 360


Similarly, the corresponding terms from the exact series expansion of Meijer G-function are 

serM1 =  Level SeriesMeijerG 1
2
, {}, {{3, -3}, {}}, 2 z, {z, 0, 10} // fs // Normal, 1, List //

Drop[#, 1] & // Drop[#, 5] &  // Reverse ; (* z3,...z10 *)
c8 = serM1〚5〛; c7 = serM1〚6〛; (* interchange terms 5 and 6 *)(serM = serM1 /. {serM1〚5〛  c7, serM1〚6〛  c8 }) // tF
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- π z3 (60 log(z) + 60  + 37 - 60 log(2))
2880

,
π z4 (-420 log(z) - 420  + 101 + 420 log(2))

20 160
,

π z5 (-2520 log(z) - 2520  + 1621 + 2520 log(2))
215 040

,
π z6 (-27 720 log(z) - 27 720  + 25 111 + 27 720 log(2))

5 806 080
,

π z7 (-360 360 log(z) - 360 360  + 397 129 + 360 360 log(2))
232 243 200

,
π z8 (-360 360 log(z) - 360 360  + 453 913 + 360 360 log(2))

851 558 400
,

π z9 (-6 126 120 log(z) - 6 126 120  + 8 527 331 + 6 126 120 log(2))
61 312 204 800

,
π z10 (-16 628 040 log(z) - 16 628 040 + 25 049 807 + 16 628 040 log(2))

797 058 662 400


Comparison of individual  terms (as regards to powers z3 ... z10 ) from the series expansion of π (-z) K3(z) with the corresponding terms of the sum 
of residues J2112 shows numerical  agreement  e.g. for z = 2.  :

Table[ {serJ〚i〛, serM〚i〛} /. {z  2.}, {i, 1, 8}] // cF

{-0.352684, -0.352684}{-0.198952, -0.198952}{0.0438937, 0.0438937}{0.177999, 0.177999}{0.184751, 0.184751}{0.13103, 0.13103}{0.0738765, 0.0738765}{0.0351856, 0.0351856}
Step 4 : Plotting the results          

These are the plots of the real and imaginary part of  the exact Meijer G-function G1,2
2,12 z 1 / 2

3, -3
 and the approximate evaluation of the contour integral

∮ (2 z)-s Γ(1 /2-s) Γ(s-3) Γ(s+3)z  for poles  from  s = {-10, ...  , 3} considered.  Obviously,  there  is good agreement  in the range from z = { -2, 3} ; taking

into account more (integer) poles s < -10  will increase the accuracy of the approximation. 
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-6 -4 -2 2 4

-400

-200

200

400

Re [ G1,2
2,1(2z| 1 / 2

3, -3
) ] , Re [ ∮ (2z)-s Γ(1 /2 - s) Γ(s - 3) Γ(s + 3)z ]

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Im [ G1,2
2,1(2z| 1 / 2

3, -3
) ] , Im [ ∮ (2z)-s Γ(1 /2 - s) Γ(s - 3) Γ(s + 3)z ]

The contour plots of the real and imaginary part of  the exact Meijer G-function G1,2
2,12 z 1 / 2

3, -3
 and the approximate evaluation of the contour integral 

∮ (2 z)-s Γ(1 /2-s) Γ(s-3) Γ(s+3)z  for poles from  s = {-10, ... , 3} show qualitative agreement  in the range -2 < x, y < 2 . Note, that the  branch cut on the 

negative real axis for the Meijer G-function is missing for the approximate function. 
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◼ Example 3.2  G2,2
1,2 z 1 , 1

1 , 1
     ⟺  Rational function z

z+1    ⟹  f1222(z, s) = z-s Γ(-s) Γ(s + 1)
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The second example demonstrates that this particular Meijer G-function reduces to a simple rational function :

MeijerG[{{1, 1}, {}}, {{1}, {1}}, z]
z

1 + z
The corresponding integrand is given as f1222 

(f1222[z_, s_] = System`MeijerGDump`SlaterForm[ MeijerG[{{1, 1}, {}}, {{1}, {1}}, z], s ]) // tF

z-s Γ(-s) Γ(s + 1)
Because of the Γ-functions Γ(-s)Γ(s+1) there occur integer poles only in the range s = {-8, 8} with multiplicity μ=1 . 

Instead of doing a stepwise approach the procedure ContourIntegral (with the variable selectPoles= SpecFct ) will calculate the contour in-
tegral directly.   
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Note, that in ContourIntegral the sum of residues is multiplied by the factor (2π ) ; hence,  in order to compare the results obtained with the those
from calculateResidues4SpecFct division by (2 π )-1 is required.

(J1222 = ContourIntegral[f1222[z, s], s, SpecFct, {-9, 9}, "No"] / (2 π ));
Contour integral = ∮ z-s Γ(-s) Γ(s + 1)s = 2  π z9 - z8 + z7 - z6 + z5 - z4 + z3 - z2 + z - 1 + 1

z
- 1
z2

+ 1
z3

- 1
z4

+ 1
z5

- 1
z6

+ 1
z7

- 1
z8

+ 1
z9

for 'Integer' poles in the range s = {-9, 9}
Reconstruction of the infinite series from the truncated series expansion. 

The evaluation of the contour integration (where only a finite number of poles is taken into account) leads to a truncated alternating series which agrees

with the series expansion of  z
1+z

  for z0 = 0 . 

Series z
1 + z , {z, z0 = 0, 9} // Normal

z - z2 + z3 - z4 + z5 - z6 + z7 - z8 + z9
By means of the Mathematica  procedure FindSequenceFunction the infinite series can formally be reconstructed :

( J1222 // polyForm);
res = Table[-(-z)n, {n, -9, 9}]
c1222 = FindSequenceFunction[res /. {z  1}, k]
 1
z9

, - 1
z8

, 1
z7

, - 1
z6

, 1
z5

, - 1
z4

, 1
z3

, - 1
z2

, 1
z
, -1, z, -z2, z3, -z4, z5, -z6, z7, -z8, z9

(-1)1+k
Finally, deduction of the infinite series ∞(z) is in agreement  with the result following  from  MeijerG[{{1,1},{}},{{1},{1}},z] .

[n_, z_] := 
k=1
n
c1222 zk ; [∞, z]
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z
1 + z

◼ Example 3.3   G0,1
1,0 (z 1 - a)    ⟺  Exponential & power function  e-z z1-a  ⟹  f1001(z, s) = z-s Γ(s - 1)  with a = 2     

Regarding the third example, the Meijer G-function reduces to  -z · z1-a  :

MeijerG[{{}, {}}, {{1 - a}, {}}, z] // tF

-z z1-a

The integrand f1001 consists of one Γ-function only; for the parameter a = 2 is chosen.  For s ≤ 1 there occur integer poles with multiplicity  μ=1 .

(f1001[z_, s_] = System`MeijerGDump`SlaterForm[ MeijerG[{{}, {}}, {{-1}, {}}, z], s ]) // tF

z-s Γ(s - 1)

(J1001 = ContourIntegral[f1001[z, s], s, SpecFct, {-9, 2}, "No"] / (2 π ));
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Contour integral = ∮ z-s Γ(s - 1)s =
2  π z9

3628800
- z8

362880
+ z7

40320
- z6

5040
+ z5

720
- z4

120
+ z3

24
- z2

6
+ z

2
- 1 + 1

z
for 'Integer' poles in the range s = {-9, 2}

Reconstruction of  the infinite series from the truncated series expansion

The evaluation of the contour integration leads again to a truncated alternating series which agrees with the series expansion of  -z z-1 

Series-z z-1, {z, 0, 9} // Normal // polyForm

z9
3 628 800

- z8
362 880

+ z7
40 320

- z6
5040

+ z5
720

- z4
120

+ z3
24

- z2
6

+ z
2
- 1 + 1

z

From the 11 terms of the truncated series the associated infinite series can be reconstructed :

series = (z * J1001 // Expand) /. {Plus  List} /. {z  1}(c1001 = FindSequenceFunction[series, k]) // tF

1, -1, 1
2
, - 1

6
, 1
24

, - 1
120

, 1
720

, - 1
5040

, 1
40 320

, - 1
362 880

, 1
3 628 800


(-1)k+1(1)k-1

The prefactor z is introduced in order to obtain a modified series which enables FindSequenceFunction to find the series coefficient  c1001 in 
closed form. Hence, the resulting infinite series 1001(z) is in agreement  with the direct result from MeijerG[{{},{}},{{1-a},{}},z] .

1001[n_, z_] := 1
z 

k=1
n
c1001 zk-1 ; 1001[∞, z]

-z
z
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■ (4) Improper integrals transformed into contour integrals through change of variables 

There are further types of contour integrals which do not fit into the categories  of definite integrals given in Part 1. However,  extending the original inte-
gration path along the real axis  into the complex plane  and closing the contour γ  the integral can be evaluated in terms of a contour integral. 

For examples improper integrals (with integration originally along the real axis ) can be casted into contour integrals and evaluated in   by means of 
some tricky transformation which involves  change of (integration) variable. 

In MathGroup several approaches to this problem are found. See for example [21], the sequel of  discussions in MathGroup by Alex Krasnov,  Alexan-
der Elkins and others. In addition, there exist some Mathematica packages [22], one provided by David Park as part of his Presentations package, i.e. 
Presentations`StudentsIntegral, and another one,  SymbolicComputing which supports much more than change of integration vari-
ables only. 

◼ Change of variables using changeVariable4Integral

Due to private communication  with M. Trott [23] the procedure changeVariable4Integral is implemented  in the ContourIntegration 
package. 

? changeVariable4Integral 

changeVariable4Integral[ 
za_
zb_

fz_z_, { ζ_, z2ζ_, ζ2z_ } ] calculates the definite integral
za

zb

f (z)z with a change of variables for the integral

ζa

ζb

g(ζ )ζ . Here 'fz' is the integrand f(z) and 'z' the differential. 'z' is the old and 'ζ ' the new variable. 'z2ζ ' is the transform

from z ⟹ ζ (e.g. ζ = r and z2ζ = r· ϕ), 'ζ2z' is the inverse function (e.g. ζ2z = z·- ϕ, ϕ=const ). {'za', 'zb'} are the
lower/upper limits of the integral which must be transformed too, i.e. {za, zb} ⟹ {ζa, ζb} = { ζ2z/.{z za},ζ2z/.{z zb}}.
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◼ Evaluation using contour integration with tricky contours

The following  two examples taken from S. Hassani [24] illustrate how improper integrals  (with integration originally along the real axis ) can be 
casted into contour integrals which are evaluated in the complex plane   by some tricky transformation. The following  examples are found in [24] 
Chapt. 10.3.9  pp. 284 -285. 

Example 4.1 : ∫ 0
+∞ 1

x3+1 x = 2 π
3 3

   

Consider the integral along the positive real axis :

 ℐ1 = ∫ 0
∞ 1

x3+1 x . 

Since the integrand f (x) = 1
x3+1  is an odd function the lower limit of the integral cannot be extended to -∞. But with a trick the contour can be closed as 

a 120° sector in  + .

The underlying  idea  is to perform a contour integration and apply a suitable change of the integration variable to evaluate some line integral.

(1) Investigating the singularities  of the integrand f (z) which are simply the roots of  the denominator  : z3 + 1 = 0 with solutions z(k) = (2 k-1)  π/3  
for (k = 1,2,3) gives a hint how to close the contour in . 

sorted roots {z1,z2,z3}= -1, 1
2 -  3

2 , 1
2 +  3

2 
Hence, if the roots are sorted with respect to their imaginary parts then the root in the 1st quadrant is given as  z3 =   π

3 = 1 +  3
2  

(2) Instead of integration along the real axis from [0,+∞) a closed contour γ is chosen as a  120° segment including the pole  z3 =  π/3 =  1+ 3
2  

γ γ
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∞ γ ° =  π/ =  
located in the first quadrant.  The three roots as well as the contour γ that only has z3 as an interior point are shown below. The closed contour γ is speci-

fied by the following points in the complex plane  : 0, R, R · - 3
4 +  3 3

4 , 0  . For consistency the interval [0, R] is denoted by 1, the arc seg-

ment from R, R · - 3
4 +  3 3

4  is  R and the interval R · - 3
4 +  3 3

4  , 0 is denoted as 2 where R∞. Hence, the closed contour  

γ = 1 + R + 2  comprises a segment  of 120° encircling  the pole z3 = 1+ 3
2 . 

1

2

R z3

(3) The contour integral consists of three parts γ = ℐ1 +R +ℐ2  which are evaluated separately. 

The contour integral γ can be split into three parts:γ = ℐ1 +R +ℐ2 = ∫ 0
+∞ 1

x3+1 x + ∫ R

1
z 3+1 z + ∫ 2

1
z 3+1 z = 2 π  Res f (z) z=z3   

thus the original integral to be calculated is ℐ1 = γ - ℐ2 -R . The following steps are performed :

 First, the contour integral γ (taking into account only the pole z3 = 1 +  3
2  ) can be calculated straightforwardly

γ = ContourIntegral 1
z3 + 1 , z, {3}, {}, "No" // ce

Contour integral = ∮ 1
z3 + 1 z = 1

3  3 -  π
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-  π
3

+ π
3

Appling the residue theorem  gives the same result. 

 Second, the integral R along the circular arc R vanishes for R ∞ , as usual. 

 Third, calculation of integral ℐ2 along 2 

Thus, in order to evaluate the line integral ℐ2 along 2 (which runs from R · - 3
4

+  3 3
4

 to  0 with R∞ ) one changes the integration variable  from  

z  ζ  ϕ. The integral over ζ turns out simple if ϕ = 2 π / 3 is chosen : ℐ2 = ∫2

1
z 3+1 z = ∫∞0 2π/3

ζ 2π33+1
ζ = -2π/3 ∫ 0

∞ 1ζ 3+1 ζ = -2π/3ℐ1 . 

The integration can be done directly with the help of procedure changeVariable4Integral with the transformation of variables are  z2ζ :   

z  ζ  2 π
3  and its reverse ζ2z :  ζ  z - 2 π

3  ,

or explicity by changing the integration variable from z to ζ where the integration boundaries must be transformed correspondingly.  

In both cases the result is 2 π
3 3

 .

(4) Finally, the original integral ℐ1 = ∫ 0
∞ 1

x3+1 x (along the positive real axis or 1=[0,∞) ) is obtained from   γ = ℐ1 + ℐ2 = (1 - 2 π/3 ) ℐ1  where the 

contour integrals is γ =  π
3

-  π
3   Res 3 . Solving for ℐ1 there is: ℐ1 = 2 π

3 3
.

Solve1 -  2 π/3 ℐ1 == γ, ℐ1〚1, 1, 2〛
2 π

3 3

Example 4.2 : ∫-∞+∞ α x -β x2 x = π/ β -α24 β.  
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Consider the Gaussian integral 

 ℐ = ∫ -∞+∞ α x -β x2 x     where α, β ∈  ,  β > 0 

(Side note : with Mathematica V9 at least this integral can be calculated directly.)

With a trick this integral can again be calculated in terms of a contour integral γ. 

The underlying  idea is to change the variable of integration from  x  z +  α
2 β , then evaluate the contour integral for the analytic function -β z2 on a 

closed contour γ = 1 + 2 + 3 + 4   with the corresponding line integrals ℐi .

(1) Completing squares in the exponent of   α x -β x 2  one obtains a simpler line integral but its path is shifted by  - α
2 β  :

(2) The contour γ = 1 + 2 + 3 + 4 is closed as shown below. 

Because -β z2  is an analytic function the contour integral γ = ∮γ -β z2 z   vanishes. (Cauchy-Goursat theorem) . 

Contour integral = ∮ β (-z2)z = 0

(3) The contour integral γ = 0 can be split into four line integrals ℐi along i  ( i =1,...4 ) :

 γ = ∮γ -β z2 z = 0 = ∑i=1
4 ℐi = ∫1

 -β z2 z + ∫2
 -β z2 z + ∫3

-β z2 z + ∫4
-β z2 z = 

                  = lim
R∞∫ +R

-R  -β x2 x + lim
R∞∫ -R

-R- α/(2 β)  -β z2 z + lim
R∞∫ -R- α/(2 β)+R- α/(2 β)  -β z2  z + lim

R∞∫ R- α/(2 β)R  -β z2 z =
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                  = -∫ -∞+∞  -β x2 x + 0 + lim
R ∞ ∫ -R- α/(2 β)+R- α/(2 β)  -β z2 z + 0 =ℐ1 +ℐ3

γ = 0

ℐ1= --∞
∞ -β x2x

ℐ20

ℐ3= lim
R∞-R- α/(2β)

+R- α/(2β)-β z2z

ℐ40

-ℛ
(-ℛ- α

2 β )
+ℛ

(+ℛ- α
2 β )

The contour integral γ over the closed contour γ is zero :

In the limit R ∞ the integral boundaries go to infinity.  Along 2 (from -R to  -R -  α/2β ) and 4  (from  R -  α/2β  to R ) the following  substitutions
z = - (R+ y) respectively z = (R+ y) are made which give rise to a vanishing prefactor lim

R∞ -β R2  so that the integrals ℐ2,4 tend to zero. 

With Mathematica the integrals ℐi ( i =1,...4 ) are calculated as - πβ , 0, πβ , 0 )

The only non-zero integrals ℐ1,3  are familiar Gaussian integrals. Obviously, the sum of all line integrals ℐi ( i = 1,...4 ) vanishes as does the contour inte-
gral γ = 0 = ℐ1 + ℐ3  .

(4) Finally, the result for the original integral ℐ is  ∫-∞+∞ α x -β x2 x = - α2

4 β · ℐ3 = - α2

4 β π / β  

An alternative treatment is to use straightforwardly the procedure changeVariable4Integral with the transformation x  z +  α
2 β .
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■ (5) Action integrals in the context of Bohr-Sommerfeld theory 

Already in the year 1919 Arnold Sommerfeld [25], [26] had presented an interesting approach for the evaluation of certain types of action integrals 
(occurring in Hamilton-Jacobi theory) using the technique of contour integration and the residue theorem. 

◼ (1) Action integral of type  r = ∮ pr r =   + 2 ℬ
r - 

r2 r

 Theory and derivation of the action integral of type  A + 2 B
r

- C
r2

r  is discussed in some detail here. 

 Branch cut and pole structure of  A + 2 B
r

- C
r2

r 

However,  we are only interested in the evaluation of the following contour integral  A + 2 B
r

- C
r2

r  which has a branch cut originating from the 

square root. The branch points  {r1, r2} are obtained as solution of the equation  A + 2 B
r - C

r2  0  w.r.t.  r  :

The coefficients  of the radicant can be expressed in terms of {r1, r2} :

{r1 r2, (r1 + r2)} // fs

-  , - 2 ℬ 
The movement  (represented by the action integral) is constricted between  r1 = - B+ B2+A C

A ,  r2 = - B- B2+A C
A with r1 < r2 (and A = 2 mE < 0). A 

complete r-cycle runs from r1 to r2 and back to r1. Along the path r1  r2 the momentum  pr > 0 so that the positive sign of the square root must be 
taken  (+  );  on the way back, i.e. r2  r1 , holds pr < 0 and the negative sign of the square root has to be selected - . Thus, the integration is ex-

tended over both sheets of the two-valued function f (r) = ± A + 2 B
r

- C
r2

; the branch points r1 and r2 define a branch cut  between r1 and r2 on the 

real axis. 
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For better  imagination  it  is  appropriate to map  the  complex  r-plane    on the  Riemann  sphere  2 =  ⋃ {∞}  ;  the  origin  r0 = 0  becomes  the  “South
pole” and  r∞  ∞ the “North pole” (here ∞ is called a ComplexInfinity in Mathematica). Any closed contour path on the Riemann sphere sepa-
rates two complementary  regions (the inner and outer region which depend on the orientation of the contour path). The (blue) contour path is unique and
encloses the two singularities at  r0 = 0 and r∞ = ∞ . 

The Re(r)-axis projected on the Riemann sphere is a meridian through the South pole and the North pole. The positive Re(r)-axis which  extends from 0
to ∞ is the  0° meridian;  similarly  the negative  Re(r)-axis extending  from 0 to -∞ is the 180° meridian.  The branch cut between  r1  and r2  is located  on
the positive Re(r)-axis and is encircled  counter-clockwise  there. However,  mapping this path on the Riemann sphere will reverse its orientation to clock-
wise. 

Now,  the (green)  contour  path encircling  the branch cut  between  r1  and r2  can be stretched  (like  a rubber band) over  the Riemann  sphere and is  stuck
only at the two singularities  r0 = 0 ("South pole") and r∞ = ∞ ("North pole"); obviously,  on the Riemann sphere both poles are encircled  counter-clock -°
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0 = ∞ = ∞
wise.  Contributions  from the path (blue lines/semi-circles  in opposite directions)  on the 180° meridian  compensate  each other  so that only the residues
for r0 and r∞ remain.  

 Residues of  f (r) = A + 2 B
r

- C
r2

The sign of the square root ( f (r) = ±  ) is negative for r < r1 and positive for r > r2  as shown by closer investigation of the behaviour of the func-

tion f (r) . Thus, the residue ℛ0 for a 1st order pole at z = r0 = 0 with f (z) = - A + 2 B

z - C

z2    becomes 

f0[z_] := -  + 2 ℬ
z
- 
z2ℛ0 = Residue[f0[z], {z, 0}]

- -
Next, as z∞ the residue for r∞  is calculated.  Above r2 the positive sign of the square root must be chosen f (z) = +  + 2 ℬ

z
- 

z2
. Substitution of 

w = 1
z  maps the singularity at r∞ to 0. There occurs a 2nd order pole as is obvious from f (z) z = - 1

w2 f  1
w  w . The residue ℛ∞ becomes 

w =. ;
f∞[w_] := -f0[z] * D 1w , w /. z  1

w


f∞[w]ℛ∞ = Residue[f∞[w], {w, 0}]
-  + 2 w ℬ - w2 

w2

- ℬ
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Finally,  due to change of orientation (the branch cut contour  is counter-clockwise  whereas  the poles r0 and r∞   are encircled  clockwise)  the value of the
action integral r  is -2 π · (ℛ0 + ℛ∞)
r = -2 π  (ℛ0 + ℛ∞) // sf

2  π ℬ + -
Evaluation with r1 and r2   with F0(r) = 1

r (r - r1) (r - r2)  and F∞(ρ) = - 1ρ  1ρ - r1  1ρ - r2   leads to the same result. 

Finally, the result for r is  

r =  A + 2 B
r

+ C
r2

r = 2 π   ℬ + - 
 “Double keyhole”  contour 

The contour around the branch cut can be “blown up” to a “double keyhole”  contour shown below which encloses the singular points {r0, r∞}. As 
regards to a graphical representation numerical  values must be chosen for {r1, r2} = {1 / 2, 3 / 2} and for the singular points {r0, r∞} = {0, 2} .
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

R

-

+r0
r1 r2 r∞∞

Because  the (green)  contour  path encircles  the branch cut  counter-clockwise  the method  of  residues  cannot  be applied directly.  However,  this  contour
path can also be interpreted  such as encircling  the outer  region  of the complex  r-plane (blue contour).  In  this outside region  the integrand  is unique  so
that there is no restriction to apply the residue theorem.  In the limit r∞ only two singularities  {r0, r∞} are essential and the (blue) contour can be con-
tracted such that only the singularities are encircled  clockwise. 

 Plots of  + 2
ℬ
r

- 
r2    with parameters arbitrarily set to { , ℬ,  } = {1, -15, 200} are displayed below.  

In order to visualize the function f0(r) =  +2 ℬ
r - 

r2 = 1
r2 (r - r1) (r - r2)  in the complex  r-plane suitable values for {r1, r2, r∞} should be taken 

which are large enough to emphasize the branch cut between (r1, r2) . Contour and 3d plots give an impression about the behavior of  f0(r) .
Assuming for {r1, r2, r∞} = {10, 20, 50}, thus the corresponding values for  {, ℬ, } = {1, -15, -200}  are found.

 Here is the plot of f0(z) along the real axis which clearly shows the gap, i.e. the branch cut, between 10 and 20.
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-10 0 10 20 30
r

2

4

6

8

10

f0(z)= 1- 30

z
+ 200

z2

 The procedure complexFctContourPlot will display the function f0(z)  as a contour plot where possible branch cuts are shown as green lines. 

? complexFctContourPlot

Obviously, in addition to the linear branch cut extending from r1 = 10 to r2 = 20 there is a circular branch cut through the origin with radius R = 20
3 .
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(ComplexAnalysis`BranchCuts[fz, z] /. {Re[z]  x, Im[z]  y}) // sf

(y  0 && 10 < x < 20) || 0 < x < 40
3

&& y  - -x (-40 + 3 x)
3

|| y  -x (-40 + 3 x)
3

Here are the corresponding 3d plots using complexFctPlot3D for the function f0(z) in terms of its absolute, real and imaginary values. 

 In order to take further correction terms into account  the reader is referred to the original work of A. Sommerfeld [25] pp. 656 - 659.  Modified con-
tour integrals are investigated below. 

(i) From physical point of view the introduction of an additional correction term D0 r  is relevant  for the investigation of the theory of the Stark effect.

(i) 1 =  A + 2 B
r - C

r2 +D0 r r = r + 1
2 D0 1 - 1

8 D0
2 2  

The integral can be solved by a series expansion of the square root in terms of powers of  D0.  For the calculation only the pole r∞  together with the sub-

stitution r = 1
z

 has to be taken into account. For r0 = 0 the integrand behaves regular. The type of integrals involved are : 

     1 = - 1

A
 1

z3
1

1 + 2 B
A

z - C
A z2

z      and   2 = - 1
A3/2  1

z4
1

1 + 2 B
A

z - C
A z2

3/2 z

        so that    1 = 2 π    B

A
+ -C  + D0

4 A3/2  3 B2

A + C + 5
16

B D0
2

A7/2  7 B2

A + 3 C 
(ii) As regards to the theory of  hydrogen-unlike spectra an additional term D1 / r3 is introduced.  

(ii) 2 =  A + 2 B
r - C

r2 + D1

r3 r = r + 1
2 D1 3          

Again, the integrand is expanded in a power series with respect to D1 so that :
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1

3 = - z

A + 2 B z - Cz2
z    

so that        2 = 2 π    B

A
+ -C  + B

2 (-C)3/2 D1                               
(iii) Adding a second correction term D2 / r4  (where D2 is of the order of D1

2) the contour integral to be investigated turns out to be

(iii) 3 =  A + 2 B
r - C

r2 + D1

r3 + D2

r4 r = r + 1
2 D1 3 + 1

2 D2 4 - 1
8 D1

2 5

Again,  the square root  is expanded  with respect  to the correction  terms D2  and D3  where  terms with  powers  higher  than  D2
n  (n >2) and D3

m   (m >1)
will be neglected.  

4 =  1
r4

1

A+ 2 B
r

- C
r2

r      and     5 =  1
r6

1

A + 2 B
r

- C
r2

3/2 r

                                           so that      3 = 2 π    B

A
+ -C  + 1

2
B

C3/2 D1 + 3
2

B
C D2 + 15

8
B
c2 D1

2 + 1
4

A(-C)3/2 D2 + 3
4

1
C D1

2
                                  

◼ (2) Action integral of type θ = ∮ pθ θ =  C - D2

sin2 (θ) θ
 Theory and derivation of the contour integral type  C - D2

sin2 (θ) θ  is discussed in some detail here. 

Assuming for the coefficient  C = D2

sin2(θ0)  the integrand is simplified to 

g[θ_] :=  Sin[θ0]-2 - Sin[θ]-2
The integration path in the complex θ-plane encircles  the branch cut between the angles {θ0, π - θ0} and gives rise to the geometry shown in the figure be-θ
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θ θ0 π θ0

low on the lhs. Due to the periodicity  of the integrand g(θ)  the contour path can be continuously  deformed  to the border line for the (periodic)  strip be-
tween 0 and π with the singularities 0 and π excluded.   

0

i
+i

-i

0 0

As regards to periodicity  the strip in the complex θ-plane between [0, π) can be folded into an infinite tube by stitching together left and right border. If, 
in addition, both ends of the tube at + ∞ and - ∞ are joined there results a torus as shown in the figure on the rhs. Again, the integration path can be de-
formed such that only the singularity at  θ = 0 is encircled.  This corresponds to the geometric operation of folding the semi-circle  at  θ = π with the one π π
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θ = θ = π
at  θ = 0. In addition, only the integration path of  2π at infinity remains since the circumference  of the torus is just π (which is the period of the inte-
grand). 

The residue (for the single pole) at  θ = 0  is 

ℛ0 = Residue[g[θ], {θ, 0}]
 
Similarly, the asymptotic contribution of the integral for θ  ∞  becomes ∮ pθ θ ≃ limθ∞ ∮ g(θ) θ = 2 π D

sin(θ0)   where D
sin2(θ0) = C  .

∞ = 2 π Limit[g[  θ], θ  ∞] /.  (v_)2  v /.  Csc[θ0]   
2 π 
Hence,  the final result of the contour integral turns out to be 

θ = (2 π  ℛ0 + ∞) // Expand // sf // polyForm

2 π   - 
  θ =  C - D2

sin2 (θ) θ = 2 π   - 
Note, that C = L and D = Lz are the angular momentum and the z-component.  ( In the framework of the Bohr-Sommerfeld  theory the evaluation of ac-
tion integrals leads  to quasi-classical quantization.) 
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■ Conclusions

In conclusion  the author is convinced  that the package ContourIntegration.m will be a useful extension of the built-in procedure Integrate in
Mathematica. It is the author’s expectation that Mathematica users will  find the main procedure  ContourIntegral and additional  routines  for find-
ing poles, evaluating the corresponding residues, designing intricate contour paths and visualizing various views of complex functions useful. 

■ Appendix

◼ (1) Representation of special functions in terms of Meijer G-functions

In several cases Meijer G-functions reduce to simpler special functions; a selection given by E.W. Weisstein and M. Trott [19] is listed below :

 G1,2
2,12 z 1 /2

3, -3
  ⟺   Bessel function K3(z)  ⟹ f2112(2 z, s) = 2-s z-s Γ 1

2 - s Γ(s - 3) Γ(s + 3)  ( Example 1)

Note that for given G1,2
2,1 the numerator simplifies to 1 due to the empty products  ∏j1=2p=1  sowie ∏j2=3q=2    (m=2, n=1) 

 MeijerG1
2
, {}, {{3, -3}, {}}, 2 z // hF // tF (* G1,2

2,12 z 1/2
3,-3 *) ,

res = MeijerG1
2
, {}, {{3, -3}, {}}, 2 z, res // tF  // cF

G1,22,1 2 z
1
2

3, -3-z π BesselK[3, z]π (-z) K3(z)
 G0,2

1,0(z u, -u)    ⟺    Bessel function J22 z   ⟹ f1002(z, s) = z-s Γ(s+u)Γ(-s+u+1)
  G2,2

1,2z 1 /2, 1 /2
0, 0

  ⟺ Elliptic function 2 K(-z)  ⟹  f1222(z, s) = z-s Γ 1
2 -s2 Γ(s)Γ(1-s)
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  G1,2
2,12 z a

c, b
  ⟺  Hypergeometric  function U(α, β, z)   ⟹  f2112(2 z, s) = 2-s z-s Γ(-a - s + 1) Γ(b + s) Γ(c + s)    

  G3,3
1,3-z 1 /2, 1 /2, 1 /2

0, -3 /2, -3 /2
  ⟺  Generalized hypergeometric  function pFq (α; β; z)   ⟹  f1333(-z, s) = (-z)-s Γ 1

2 -s3 Γ(s)
Γ 5

2 -s2

  G2,2
1,2 z 1, 1

1, 0
 ⟺  Logarithmic function log(z + 1)   ⟹  f1222(z, s) = z-s Γ(-s)2 Γ(s+1)Γ(1-s)

  G2,2
1,2 z 1, 1

1, 1
 ⟺  Rational function z

z+1    ⟹ f1222(z, s) = z-s Γ(-s) Γ(s + 1)  ( Example 2)

  G0,2
1,0  z

2 0, 1 / 2 ⟺ Cosine function 
cos  2 z π    ⟹   f1002(z, s) = 2s z-s Γ(s)Γ 1

2 -s
  G0,2

1,0  z
2 , 1 /2 0, 1 / 2 ⟺ Cosine function cos (z)π     ⟹  f1002(z, s) = 2s-1 z-s Γ s

2 Γ 1
2 - s

2   

 G0,2
1,0 z 0

0, 1 /2
  ⟺ Imaginary error function erfi z     ⟹  f1002(z, s) = z-s Γ(1-s) Γ(s)Γ 1

2 -s
 G1,0

0,1 (z 1 - a)  ⟺ Exponential function  e-1/z z-a ⟹ f0110(z, s) = z-s Γ(s) Γ(a-s)Γ(1-s)
 G0,1

1,0(z 1 - a)  ⟺ Exponential function   e-z z1-a   ⟹  f1001(z, s) = z-s Γ(s - 1)  with a = -2  ( Example 3)

 G1,1
1,1 z 1 - a

b  ⟺   z-b(z + 1)-a-b Γ(a + b)  ⟹  f1111(z, s) = z-s Γ(a - s) Γ(b + s) 
 G2,0

0,2(z a, b) ⟺   π z a-b
2 +b-1 csc(π (b - a)) Ia-b 2

z
 + z

b-a
2 +a-1 csc(π (a - b)) Ib-a 2

z
 ⟹ f0220(z, s) = z-s Γ(-a - s + 1) Γ(-b - s + 1)

 G1,2
1,1z a

b, c ⟺   zb Γ (-a + b + 1) 1F


1(-a + b + 1; b - c + 1; -z)  ⟹ f1112(z, s) = z-s Γ(-a-s+1) Γ(b+s)Γ(-c-s+1)
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   ⟺ ⟹
 G3,2

1,1z a1, a2, a3
b1, b2  ⟺  

za1-1 Γ(-a1+b1+1) 2F


2-a1+b1+1,-a1+b2+1;-a1+a2+1,-a1+a3+1; 1
z
Γ(a1-b2)   ⟹ f1132 (z, s) = z-s Γ(-a1-s+1) Γ(b1+s)Γ(a2+s) Γ(a3+s) Γ(-b2-s+1)

 G2,4
2,1z a1, a2

b1, b2, b3, b4 ⟺   π zb2 Γ(-a1+b2+1) csc(π b1-π b2) 2F3(-a1+b2+1,-a2+b2+1;-b1+b2+1,b2-b3+1,b2-b4+1;-z)Γ(a2-b2) Γ(-b1+b2+1) Γ(b2-b3+1) Γ(b2-b4+1) +
π zb1 Γ(-a1+b1+1) csc(π (b2-b1)) 2F3(-a1+b1+1,-a2+b1+1;b1-b2+1,b1-b3+1,b1-b4+1;-z)Γ(a2-b1) Γ(b1-b2+1) Γ(b1-b3+1) Γ(b1-b4+1)⟹ f2124 (z, s) = z-s Γ(-a1-s+1) Γ(b1+s) Γ(b2+s)Γ(a2+s) Γ(-b3-s+1) Γ(-b4-s+1)

◼ (2) Useful functions in the context  System`MeijerGDump`

Due to private correspondence  with O. Marichev (June 2016) there are additional functions available in the context System`MeijerGDump` which 
are useful for a closer investigation/understanding  of the evaluation of Meijer G-functions. 

◼ MeijerGInfo

This function extracts from the Meijer G-function the index list {m,n,p,q} :

System`MeijerGDump M̀eijerGInfo[ MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z] ]
{m,n,p,q} = {2, 1, 1, 2}
MeijerG is entire function defined by sums over its LEFT poles in powers of variable

Attributes[MeijerGInfo] = {HoldAll}
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HoldPattern[ MeijerGInfo[MeijerG[{a_List, b_List}, {c_List, d_List}, x_, r_: 1]] ] :=
Module[{m, n, p, q}, {m, n, p, q} = {Length[c], Length[a], Length[Join[a, b]], Length[Join[c, d]]};

Print["{m,n,p,q} = ", {m, n, p, q}];
If[ 2 (m + n) ≤ p + q, Print["Integral via L(*∞) contour in definition of MeijerG does not exist"] ];
If[ p < q, Print["MeijerG is entire function defined by sums over its LEFT poles in powers of variable"]; ];
If[ p > q, Print["MeijerG is entire function defined by sums over its RIGHT poles in powers of 1/variable"]; ];

If[ p  q, Print["MeijerG is defined by sum over LEFT poles INSIDE unit circle and by sum over RIGHT poles OUTSIDE of it" ];
If[ m + n > p, Print["There exists analyticity cone inside which both definition are equivalent."];

If[ NumericQ[x], If[ Abs[Arg[x]] < π r ( m + n - p), Print[ x, " is inside of it"],
Print[ x, " is outside of it"]], Print["Cone is defined by ", Abs[Arg[x]] < π r (m + n - p)];]];

If[m + n p, Print["There exists NO analyticity cone. MeijerG is piecewise analytic."]; ];
If[m + n < p, Print["special case. MeijerG is not defined by L(*∞) contour"] ]]];

◼ SlaterForm

This function constructs from the input form of Meijer G-function the integrand for the contour integral consisting of Γ-functions e.g. 

System`MeijerGDump S̀laterForm[ MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z], s ] // tF

2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3)
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Attributes[SlaterForm] = {HoldAll} ;
SlaterForm[ MeijerG[{a_List, b_List}, {c_List, d_List}, z_, r_: 1], s_] :=
Module{coeff, ap, am, bp, bm},{coeff, ap, am, bp, bm} = Simplify System`MeijerGDump` sortG [c, 1 - a, b, 1 - d];(r coeff z-s Times @@ Gamma[ap + r s] Times @@ Gamma[am - r s]) /(Times @@ Gamma[bp + r s] Times @@ Gamma[bm - r s]) /; NumericQ[r] && (Positive[r] || Negative[r])

The auxiliary  function  sortG  extracts  from the input  form of  Meijer  G-function  the index  lists {coeff, ap, am, bp , bm} used  for evaluation  of prod-
ucts of Γ-functions.

coeffList = {a  {1 / 2}, b  {}, c  {3, -3}, d  {} } ;{coeff, ap, am, bp, bm} = Simplify[ System`MeijerGDump`sortG[c, 1 - a, b, 1 - d] /. coeffList ]
1, {-3, 3},  1

2
, {}, {}

◼ MeijerGToSums

The  function  MeijerGToSums  shows  the  summands  of  the  infinite  sums  (of  left  poles)  which  are  not  evaluated  due  to  Hold.  Applying  
ReleaseHold  evaluates the sums.

expr1 = System`MeijerGDump M̀eijerGToSums[ MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z], s ]
expr2 = expr1 // ReleaseHold
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Hold[Sum] (-1)s 2-3+s z-3+s Gamma[6 - s] Gamma- 5
2 + s

Gamma[1 + s] , {s, 0, 5} +
Hold[Sum] 23+s z3+s Gamma 7

2
+ s -Log[2 z] + PolyGamma[0, 1 + s] - PolyGamma0, 7

2
+ s + PolyGamma[0, 7 + s] 

(Gamma[1 + s] Gamma[7 + s]), {s, 0, ∞}
- π

3
- 8 π

z3
- 8 π

z2
- 3 π

z
+ π z

24
- π z2

40
-

1
240 z3

π -1920 - 1920 z - 720 z2 - 80 z3 + 10 z4 - 6 z5 + 240 z z3 BesselI[3, z] Log[2 z] +
240 z z3 BesselI[3, z] PolyGamma0, 7

2
 - 16 Hypergeometric1F1Regularized(0,1,0)- 5

2
, -5, 2 z +

3600 z6 Hypergeometric1F1Regularized(0,1,0) 7
2
, 7, 2 z + 5 z6 Hypergeometric1F1(1,0,0) 7

2
, 7, 2 z

With the rule Hold[Sum][X_, range_]  Σrange @ X  the sums together with their index range are rewritten in a more comprehensive  form. 
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Attributes[MeijerGToSums] = {HoldAll}
HoldPattern[MeijerGToSums [MeijerG[{a_List, b_List}, {c_List, d_List}, x_, r_: 1], k_Symbol]] :=
System`MeijerGDump` TideUpSummand 

Module{res1, res2, Sum1, var},
Catch HypergeometricLogDump` MeijerGAMain ;

BlockHypergeometricLogDump` $HypPFQRegularized = PFQRegularizedFormalSum [k, Sum1],
var = Hold[Sum];
res1 = Block HypergeometricLogDump` $HeadToReplaceSumAWith = Sum1,

$SumLeftPoles = True,
SumLeftPoles[{a, b}, {c, d}, x, r] ;

IfLength[a] + Length[b]  Length[c] + Length[d],
res2 = Block  HypergeometricLogDump` $HeadToReplaceSumAWith = Sum1,

$SumLeftPoles = False,
SumLeftPoles{1 - c, 1 - d}, {1 - a, 1 - b}, 1

x , r /.Log 1
x   -Log[x],  1

x w_  x-w ;
Refine[ Piecewise[{{res1, Abs[x] ≤ 1}, {res2, Abs[x] > 1}} ] /. {Sum1  var} ],
Throw[res1 /. {Sum1  var} ]   /. { Hold[Sum][body_, {it_, par___}]  Hold[Sum][body /. {it  k}, {k, par}] }, k /; ! InexactNumberQ [x] && NumericQ[r] && Positive[r]

Auxiliary functions needed in MeijerGToSums are TideUpSummand and SumLeftPoles; from the context HypergeometricLogDump` 
there are MeijerGAMain, $HypPFQRegularized and  $HeadToReplaceSumAWith
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◼ (3) Change of integration variables methods

(1) Change of variables using changeVariable4Integral

The change of variables  z ζ (= z2ζ ) (and its inverse ζ  z  (= ζ2z )  can be applied to the following  type of integral ∫za

zb f (z) z ; of course one must 

transform the integrand f (z) taking into account the Jacobian corresponding to the change of variables, the differential z  and the lower and upper lim-
its of the integral {za, zb}  e.g. {0,∞} . This is achieved  with the procedure changeVariable4Integral

Clear[fz, z, za, zb, z2ζ, ζ2z, ζ];
SetAttributes[changeVariable4Integral, HoldFirst];
changeVariable4Integral ∫za_zb_ fz_ z_, {ζ_, z2ζ_, ζ2z_} :=

Integrate[ (fz /. {z  z2ζ})* D[z2ζ, ζ], {ζ, ζ2z /. {z  za}, ζ2z /. {z  zb} }];
implemented in the package Contour Integration. [23].

? changeVariable4Integral 

For example, with the replacement  rules z2ζ :   z  ζ +  α
2 β  and  ζ2z :  ζ  z -  α

2 β  the integral becomes :

Clear[z, z, α, β];
$Assumptions = {α ∈ Reals, β ∈ Reals, β > 0};
changeVariable4Integral -∞∞ α z -β z2 z, ζ, ζ +  α

2 β , z -  α
2 β  // fs

- α2
4 β πβ
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similarly, with z2ζ :   x  r  2 π
3  and its reverse ζ2z :  r  x- 2 π

3  the integral is :

changeVariable4Integral
0

∞ 1
1 + x3 x, r, r  2 π

3 , x - 2 π
3 

2 π
3 3

(2) Change of variables using SC package  SymbolicComputing

An alternative approach makes use of the package SymbolicComputing.mx  from Youngjoo Chung [22] which is available for Mathematica 
V9.0.1 and higher. It can be downloaded  from the following URL 

(* ToExpression[URLFetch["http://symbcomp.gist.ac.kr/downloads/InstallSymbCompPersonal.m"]] *)(* installs package SymbolicComputing.mx in ...\AppData\Roaming\Mathematica\Applications *)
This powerful  package (with more than 800 routines) can do much more than performing change of variables only.  In order to avoid some infinite loop
the SC package should be loaded first, thus remove the package ContourIntegration` then load package SymbolicComputing` :

removePackage["ContourIntegration "̀]; (* remove ContourIntegration package temporarily *)
removePackage["Notation`"];
Unprotect["Global`*"];
Remove["Global`*" ];
$ContextPath = $ContextPath /. {"Notation`"  Sequence[] , "ContourIntegration "̀  Sequence[] }
Then the SC package can be loaded without any problem. 

In  order  to  avoid  conflicts  with  code  contained  in  the  main  package  ContourIntegration`  the  package  SymbolicComputing` must  be
loaded first if procedures  from the SC packages will be executed. 
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DefaultOperators:={OverHat[_],OverHat[_][__],Subscript[OverHat[_],__],Subscript[OverHat[_],__][__]};
Get["SymbolicComputing`"]//Timing (* ~ 2 sec : loading successful *)
$SCVersion (* "Beta 3.1 (January 7, 2016)" *)

{2.69882, Null}
Beta 3.1 (January 7, 2016)
If the packages are loaded in reverse order then loading of the SC package will need up to 6 min. and additional warnings will occur. 

Names["SC*"] // Length
$ContextPath;

814

The essential  procedure  SCMAF[integral_,transInt_, replVar_List, evalInt, opts___:{} ]  together  with  two  more  SC-rou-
tines  SCTransInt  and SCEvalInt  performs  the  transformation of variables and  does  a  stepwise  calculation  of  the  integral.  (Private  communica -
tions with Youngjoo Chung 9/2013 ). For further details use the Help Browser for AddOns :  see SymbolicComputing  > Function Analysis > SCMAF

? SCMAF SCTransInt SCEvalInt

SCMAF[expr, f 1, {x11, x12, ...}, f 2, {x21 , x22, ...}, ...] makes multiple
replacements x11  f 1[x11, x12 , ...], x21  f 2[x21, x22, ...], etc. See the help browser for more details.

SCTransInt[expr] transforms integrals.
SCTransInt[expr, rules] transforms integrals by applying rules.
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SCEvalInt[expr] evaluates integrals expressed with SCIntegrate.
SCEvalInt[expr, var1, var2, ...] evaluates integrals expressed with SCIntegrate for the variables vari.

Clear[fz, z, za, zb, ζ, ϕ];
SCMAF∫za_zb_ fz_ z_, SCTransInt, {All, TransVar  {z, ζ, z  f[ζ]}}, SCEvalInt, All, RA,

Comment  "Upper/lower limits will be changed" 
With the help of the procedure SCMAF the evaluation of the integrals requiring change of integration variable can be performed : 

The setting of the parameter ϕ can be explicitly given in terms of a replacement  rule with RA  ϕ  2 π
3

$Assumptions = { ϕ ∈ Reals && ϕ > 0};
SCMAF

0

∞ 1
1 + z3 z, SCTransInt, All, TransVar  z, r, z  r  ϕ , SCEvalInt, All, RA  ϕ  2 π

3



0

- Re[ϕ] ∞  ϕ
1 + 3  ϕ r3 r

2 π
3 3

and 

$Assumptions = { {α, β} ∈ Reals && β > 0};
SCMAF-∞∞ α z -β z2 z, SCTransInt, All, TransVar  z, ζ, z  ζ +  α

2 β , SCEvalInt, All 
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-∞∞ α   α
2 β+ζ-β   α

2 β+ζ2 ζ
- α2

4 β πβ
The SC package’s own interpreter for 2d forms of derivatives, integrals etc. 

SCMAF  (x + x0)mx , SCEvalDeriv, All, Hold  x0
m (x + x0)-1+m
SCMAF

0

∞
Sinz3 z , SCTransInt, {All}, SCEvalInt, All 


0

∞
Sinz3 z

1
6
Gamma 1

3


but the usual 2d form of an integral will not be ignored (in the context of the SC package).


0

∞
Sinz3 z


0

∞
Sinz3 z

In order to avoid any conflict  with subscripted variables used in the packages SymbolicComputing` and ContourIntegration` the procedure 
SCEnableNotation[False] will remove all symbols associated with the SC package and the 2d interpreter of the SC package is disabled so that 
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SCEnableNotation[False]
the usual 2d notation of the Mathematica FrontEnd is supported and the calculation with the Mathematica kernel done again. 

? SCEnableNotation 

SCEnableNotation[enable] sets whether to enable the package's own interpretation
of the 2-D form of integrals, products, sums, partial derivatives (∂x f ), intersections (⋂) and unions (⋃).

SCEnableNotation[False];

0

∞
Sinz3 z

1
6
Gamma 1

3


Thus, if one wants to make use of the package ContourIntegration` again the SC package must be removed in order not to interfer with the pack-
age ContourIntegration` :

removePackage["SymbolicComputing "̀]
$ContextPath = $ContextPath /. "SymbolicComputing`"  Sequence[]
SymbolicComputing` * ; SymbolicComputing`Private` *
package SymbolicComputing` was removed

{ContourIntegration`, Notation`, Units`, CCompilerDriver`, ResourceLocator`,
StreamingLoader`, IconizeLoader`, CloudObjectLoader ,̀ PacletManager`, System`, Global`}

Reload the package ContourIntegration`  (after removal of the SC package) :
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Clear["Global`*"];
SetDirectory[NotebookDirectory[]];
Get["ContourIntegration`"]
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