
Contour Integration
or

what is still missing in Mathematica

Part 2 : Construction of sophisticated Contour Paths,
Location of Poles inside/outside Closed Contours,

 Special Functions Representations by Contour Integrals,
Transformation of Improper Integrals into Contour Integrals and

Investigation of Action Integrals.
Prof. Dr. Robert Kragler

Weingarten University of Applied Sciences
kragler@hs-weingarten.de

Abstract :

While the first part was devoted primarily to the main procedures calculateResidues and ContourIntegration applied
to a wide class of complex functions f(z) which are rational polynomials, products of rational and trigonometric/ hyperbolic
functions, rational functions consisting of trigonometric/hyperbolic functions. However, the investigations of the second part of
this paper are special topics which occur in the context of contour integration and are of interest in itselves. The issues
discussed in this paper are :

ContourIntegration_P2.nb

1

mailto:kragler@hs-weingarten.de

(1) introduction of a language for creation and visualization of non-trivial integration paths consisting of polylines and circular
arcs such as contours γ which exclude certain poles or branch cuts, or the sophisticated contour for Meijer G-functions
meandering around integer singularities but avoiding half-integral ones, or the Pochhammer double-loop contour for the
evaluation of the so-called Euler’s integral etc. ;

(2) criterium for the determination of poles inside/outside an arbitrary closed contour ;

(3) symbolic evaluation of the integral representation for special functions such as Meijer G-function or Euler's integral for Beta
function etc.

(4) transformation of improper integrals (along the real axis) into exotic contour integrals with the help of change of variables,

e.g. ∫ 0
+∞ 1

x3+1 x with variables z r ϕ where ϕ  2π
3 etc. ;

(5) evaluation of action integrals such as ∮ pr r =∮  + 2 ℬ
r - 

r2 r by mapping the complex plane  on the Riemann sphere ℛ ;

□ Initialization

In order to execute the subsequent Mathematica code with the examples given the Mathematica package ContourIntegration` must be loaded
first. It should be located in the same subdirectory from where the current notebook ContourIntegration_P2.nb is revoked.

Clear["Global`*"];
SetDirectory[NotebookDirectory[]]
Get["ContourIntegration`"]

C:\eMail_Attachment\ContourIntegration_final
The Mathematica package comprises all definitions, procedures, replacement rules etc. which are required to run the main procedure ContourInte-
gral etc. . After successful execution of the package the Mathematica version, date and time are shown.

ContourIntegration_P2.nb

2

VersionDateTime

Mathematica V10..14.1 for Microsoft Windows (64-bit) (April 11, 2016)
date= August 13, 2016; time= 15:21h

Special notations

For sake of better readability some special notations will be introduced and used throughout the notebook which are given here.

Numerical contour integrals ∮γ f (z) z and ∮a
b f (z) z ,

Notation γ_f_z_ ⟹ NIntegrate[f_, Evaluate[Join[{z_},γ_]]] ,WorkingForm  tF

Notation θ_a_θ_b_
f_z_z_ g_ ⟹ NIntegrateEvaluateSimplify f_ Dt[z_]/.z_g_

Dt[θ_] ,{θ_,a_,b_} ,WorkingForm  tF
Line integrals ∫ℒ (t) f (R (t)) · t[R]
Notation ℒ_,p_f_ . t[r_] ⟺ LineIntegral[f_ . Dt[r_],ℒ_,p_,r_] 

ContourIntegration_P2.nb

3

Symbolic contour integrals ∮selPol, polRange, onoff f (z) z

Notation 
selectPoles_ ,polesRange_ ,onoff_f_z_ ⟺ ContourIntegral[f_,z_,selectPoles_,polesRange_,onoff_] 

Replacement Rules and Shortcuts

This are substitution rules for {sin(θ), cos(θ) } and {sinh(θ), cosh(θ) } not included in the package ContourIntegration

z=. ;

trigRule:= Sin[θ_]  1
2 z - 1

z
, Cos[θ_]  1

2
z + 1

z
, Csc[θ_]  2

z - 1
z

, Sec[θ_]  2
z + 1

z

,

Tan[θ_]  - z - 1
z z + 1
z  , Cot[θ_]   z + 1

z z - 1
z  , θ_  1 z

z ; (* z =  θ *)
hypRule:= Sinh[θ_]  1

2
z - 1

z
, Cosh[θ_]  1

2
z + 1

z
, Csch[θ_]  2z - 1

z  , Sech[θ_]  2z + 1
z  ,

Tanh[θ_]  z - 1
z z + 1
z  , Coth[θ_]  z + 1

z z - 1
z  , θ_  1

z
z ; (* z = θ *)

ContourIntegration_P2.nb

4

In order to make the code more transparent some shortcuts will be used throughout this paper :
fl=Flatten, sf=Simplify, fs=FullSimplify, sF=StandardForm, tF=TraditionalForm, cF=ColumnForm, ce=ComplexExpand, hF=HoldForm,
th=AbsoluteThickness[2] and th1=AbsoluteThickness[1] and polyForm=PolynomialForm[#, TraditionalOrderTrue]& .

Some additional rules are defined :

AbsRule = Abs[x_ + y_]  x2 + y2  , reIm = {Re[#],Im[#]}& , ratChop[v_] := Rationalize[Chop[expr]] .

Global variables $<name> being used are : $κ, $sing, $branchCut, $rootObj, $poles, $polesType, $orderC, $i, $circ.

In Mathematica V10 there are three useful procedures in the package ComplexAnalysis :

The following definitions circumvent the context ComplexAnalysis`

{branchCuts, branchPoints, holomorphicQ} ={ComplexAnalysis`BranchCuts, ComplexAnalysis`BranchPoints, ComplexAnalysis`HolomorphicQ };
? ComplexAnalysis`BranchCuts ComplexAnalysis`BranchPoints ComplexAnalysis`HolomorphicQ

BranchCuts[f, z] gives the branch cuts of f with respect to the variable z. BranchCuts[f] returns the branch cuts of the pure function f.

BranchPoints[f, z] gives the branch points of f with respect to the variable z. BranchPoints[f] returns the branch points of the pure function f.

HolomorphicQ[f, z] returns True if f is a holomorphic function. HolomorphicQ works best if there are no symbolic parameters.

ContourIntegration_P2.nb

5

■ Prolog
Contour integration is a method in complex analysis for the calculation of integrals along a closed path γ in the complex plane  (see [1, 2]. In this sec-
ond part some more sophisticated applications will be demonstrated.

Topics listed in Abstract :

(1) introduction of a language for creation and visualization of non-trivial integration paths consisting of polylines and circular arcs such as contours γ
which exclude certain poles or branch cuts, or the sophisticated contour for Meijer G-functions meandering around integer singularities but avoiding
half-integral ones, or the Pochhammer double-loop contour for the evaluation of the so-called Euler’s integral etc. ;

(2) criterium for the determination of poles located inside/outside an arbitrary closed contour ;

(3) integral representations of Meijer G-functions Gp,q
m,n z

a1, …, ap
b1, …, bq

 ;

(4) transformation of improper integrals (along the real axis) into ‘exotic’ contour integrals with the help of change of variables. It will be shown that
due to a suitable change of integration variable certain types of improper integrals (along the real axis ) can be transformed into contour integrals
with a closed contour γ in .

(5) evaluation of action integrals such as ∮ pr r = ∮  + 2 ℬ
r - 

r2 r by mapping the complex plane  on the Riemann sphere ℛ ;

A detailed investigation of multi-valued functions f (z) with branch cuts and evaluation of corresponding contour integrals will be given in a subsequent
paper Part 3.

◼ Motivation for Symbolic Contour Integration

Contour integration is a method in complex analysis for the calculation of certain integrals along a path γ in the complex plane ; this method is closely
related to the calculus of residues as shown before. One use of contour integrals is the evaluation of integrals along the real axis that are not easily deter-
mined by using only methods with real variables. The main applications of contour integration are : direct integration of a complex- valued function f (z) along a curve γ in , application of Cauchy’s integral theorem, application of the residue theorem. 

ContourIntegration_P2.nb

6

 special functions often defined by contour integral representations

See, for example, the definition of the Γ-function in terms of Hankel’s contour integral as found on The Wolfram Functions Site [4] with URL :
http://functions.wolfram.com/ .

Γ(z) = 12 π  z - 1 ∫ℒ -t tz-1 t . The path of integration ℒ starts at ∞ +  0 above the real axis, goes to ρ +  0, encircles the origin in counter-clockwise

direction with radius ρ to the point ρ - 0 below the real axis, and returns to the point ∞ -  0.

Γ(z_) := 12 π  z-1 ContourIntegrate -t tz-1, {t, ℒ}
A Mathematica procedure ContourIntegrate[f[z,t],{t,ℒ}] is suggested for the (symbolic) calculation of the contour integrals. However,
this essential procedure is not yet implemented in Mathematica nor available elsewhere which is astonishing. There are several reason why the imple-
mentation has not been done (Private communications with M. Trott / WRI (2010)).

This was the motivation for the author to implement a corresponding procedure which covers many nontrivial contour integrals but does not claim to
cope with all possible cases and situations occuring in the context of contour integrations.

Special notation for contour integrals

∮selectPoles_,polesRange_,onoff_f_ z_ ⟺ ContourIntegral [f_, z_, selectPoles_ , polesRange_, onoff_]
? ContourIntegral

ContourIntegral[f, z, selectPoles_All, polesRange_{ }, onoff_"On"] evaluates contour integrals symbolically in the complex
plane  by means of the residues for the poles selected. 'f' denotes the integrand f(z) of the contour integral where 'z' is
the integration variable z∈ . The parameter 'selectPoles'={ i, j, … } a subset of poles can be selected to be considered
for the residues; default value for 'selectPoles' is All. The sum of residues is evaluated using calculateResidues which
has the same parameter list as ContourIntegral. For the final result the sum of (selected) residues is only multiplied
by 2π and returned in the variable  for the contour integral. With "No" intermediate printout is complete suppressed.

ContourIntegration_P2.nb

7

http://functions.wolfram.com/

ContourIntegral 1z3 + 12 , z, {2, 3}, {}, "On"
The same result is obtained with the special notation with the symbol ∮ ...

 = {2,3},{},"No" 1z3 + 12 z
all residues: Σ

i
resΣ= - 2

9
; selectPoles= {2, 3}

Contour integral = ∮ 1
1 + z32 z = - 4  π9

- 4  π
9

ContourIntegration_P2.nb

8

■ (1) Creation and Visualization of Contours

In order to evaluate real-valued integrals the integrand f(x) is continued to the complex plane  and the integration interval on the real axis (a,b) ∈  is
extended to a closed curve γ by attaching in the simplest case a semi-circle in the upper/lower half-plane +/- . Often the contribution of the semi-circle
to the integral vanishes if the radius R  ∞ so that only the real-axis part of the integral remains.

□ Contour created by polylines with showPolygonalContour

In the simplest case a closed contour is made of a list γi of points Pk = (xk +  yk) ∈  which are connected by polylines. This is achieved with the
procedure

? showPolygonalContour

Rectangular and diamond-like shaped contours

Here, various contours (of rectangular and diamond-like shape) are shown

z =. ;γ1 = {1 +  .5, -1 +  .5, -1 -  .5, 1 -  .5, 1 +  .5};γ2 = {1, , -1, -, 1};γ3 = {1 +  .5, , -1 +  .5, -1 -  .5, -, 1 -  .5, 1 +  .5};
showPolygonalContour[{{γ1}, {γ2}, {γ3}}]

ContourIntegration_P2.nb

9

{1., 0.5 }{-1., 0.5 }

{-1., -0.5 } {1., -0.5 }

{1., 0.5 }
{1, 0}

{0, }

{-1, 0}

{0, -}

{1, 0}
{1., 0.5 }

{0, }
{-1., 0.5 }

{-1., -0.5 }
{0, -}

{1., -0.5 }

{1., 0.5 }

Polygonal contour with vertex coordinates

Furthermore, the coordinates of vertex points (defining the polygonal contour) and additional points (such as roots, singularities etc.) given in the list cm-
plxPts can be displayed with showPolygonalContour1 which is an improved version of the procedure above.

? showPolygonalContour1

showPolygonalContour[γlist:{{_}..}, range_:Full, cmplxPts_:Null] draws n (n=1|2|…) polygonal closed contours γ1,γ2,…γn within
the 'range'= {{x0,x1},{y0,y1}} (default is Full) where the coordinates of the vertex points Pi ϵ  are shown and the direction
of the contour path is indicated by arrows centered halfway on each of the connecting (poly)lines between subsequent
vertices Pi,Pi+1. 'cmplxPts' is the set of points (default is Null) enclosed by the contour with coordinates given in .

Here, for example the complex roots of the polynomial 5(z)  0 are displayed in addition :

ContourIntegration_P2.nb

10

[z_] := z5 - z3
2
- z2 + 1

2
;

ζ = z /. Solve[[z]  0, z];
cmplxRoots = (#〚1〛 +  #〚2〛) & /@ {Re[ζ], Im[ζ]}γ4 = 2 {1, , -1, -, 1};
showPolygonalContour1[{{γ4}}, {{-3.1, 3.1 }, {-3, 3}}, cmplxRoots]
1, - 12 -  3

2 , - 1
2 +  3

2 , - 1
2
, 1

2


1

(-1

2
-  3

2
)

(-1

2
+  3

2
)

- 1

2

1

2

{2, 0}

{0, 2 }

{-2, 0}

{0, -2 }

{2, 0}

ContourIntegration_P2.nb

11

Circular contour

Because a contour path γ consists of polylines and arcs the built-in routine Circle[{x,y},r,{theta1,theta2}] should internally be repre-
sented by a polyline. But this seems not to be the case so that instead a user-defined version circle[{x,y}…] was created with an internal poly-
line representation which admits further processing of closed contours in the context of the Point-In-Polygon problem.

? circle

The subsequent test shows various circles and ellipsoids (the internal representation of which are polylines) using several instances of the procedure
circle.

Procedure circle

In practice, contours in the complex plane  or in some half-planes +/- or l/r turn out to be more complicated if poles/singularities zi are to be en-
closed or excluded. Sometimes, in order to avoid branch cuts the contour encircling this discontinuity will be deformed into another equivalent contour.

□ Creation and visualization of contours more involved using contourPathGeneration and
contourPathGraphic

Thus, apart from trivial cases which are taken care by showPolygonalContour1 the construction of these contours could become quite involved

so that it is suitable to have procedures such as contourPathGeneration and contourPathGraphic for the generation and visualization γ

ContourIntegration_P2.nb

12

of more sophisticated contours γ .

? contourPathGeneration

"contourPathGeneration[pts,contour_:All,opts___] creates the contour in terms of polylines. 'pts' is the list of points (xk+ yk) defining the
contour in the complex plane . 'contour' is the index (connectivity) list numbering the sequence of points to give polylines and
circles. For default value 'All' the complete index list is interpreted as a single polyline line[{1,2,3,...}]; circular arcs are defined as
sublists {...,{i,j,k},...}. If an arc comprises more than 3 points, e.g. {i,j,k,l,m}  circ[{i,j,k,l,m}], then intermediate points (here k,l) are
dropped for the calculation of the corresponding arc; if the index order is inverted to guarantee correct orientation of an arc, e.g.
cir[{3,2,1}], then the coordinates of the resulting (circular) polyline will be reversed with adjacent duplicates of coordinate points
being removed. If the global variable $branchCut ≠ { }, e.g. {x1+ y1,...,xn+ yn}, then an additional contour is created encircling
the branch line spanned by P1 and Pn. Two lists, {coordsContour,coordsBranchCut} are returned (which may be further used
for the procedure PointInPolygonQ to determine which poles/singularities are inside the contour). 'coordsContour' describes
the list of coordinate pairs of the resulting contour whereas 'coordsBranchCut' describes the contour encircling the branch cut."

? contourPathGraphic

contourPathGraphic[pts,singPts,contour_:All,opts] shows a contour path which consists of arcs and polylines going through 'pts'. The list of points
'pts' which determines the blue contour are Pi=xi+· yi in the complex plane . The points 'pts' are shown as red dots. 'singPts'
denotes a list of singular points which could be included or excluded from the contour and are shown in black. Index list 'contour' (
e.g. contour={{1,2,3},3,4,{4,5,6},6,7}) defines the sequence of circular arcs and polylines constituting the contour path. The sublists{ ...,{i,j,k},l,m,n,...}  circle[{i,j,k}] specify arcs through 3 points { Pi,Pj,Pk }. Interlaced indices (besides these sublists for arcs), e.g.{...,l,m,n,...}  line[{...,l,m,n,...}], specify polylines. The default value for 'contour' is All for which a single polyline line[{1,2,3,...,n}]
results. For a closed contour the last point is equal to the first point : Pn== P1. There is an optional parameter opts___ which specifies
e.g. the coordinate range of the plot using PlotRange-> {{x0,x1},{y0,y1 }} respectively All. Moreover, with the global variable
$branchCut a branch cut can be drawn. Thus $branchCut={0+ 0,a+ 0} denotes a branch cut along the positive real axis from x=0 to a.

ContourIntegration_P2.nb

13

For the description of an arbitrary contour γ which might be open or closed a proper language is provided as regards to the points P1, ... Pn characteriz-
ing an arbitrary contour path :

 the vertex list pts is a list of points {P1, P2, P3, ... } in the complex plane  which define the contour;

 an index list contour (e.g. contour ={{1, 2, 3, 4}, 4, 5, {7, 6, 5}, 7, 8}) defines a sequence of circular arcs and polylines which constitute the con-
tour path. The sublists {{1, 2, 3, 4}, ... , {7, 6, 5}, ... } specify circular arcs, e.g. circ[{1,2,3,4}] and circ[{7,6,5}], going through (at least) 3 points, for ex-
ample {P7, P6, P5}; reverse ordering of points changes orientation for the circle from counter-clockwise to clockwise direction. The interlaced indices
such as {... ,4, 5, ... ,7, 8} specify polylines, i.e. line[{4,5}] and line[{7,8}]. With the help of this kind of index list even very complicated contours can eas-
ily be defined.

 Branch cuts are taken into account through the global variable $branchCut which is a list of branch points {P1, P2, ... } in .

In the following graph the contour is defined by the index list contour={{5,3,1},5,6,{6,7,8},{8,9,10},10,11} and the branch cut
$branchCut is given by two branch points {(.35+0),(.85+0)}. The procedure contourPathGeneration generates polylines with inter-
mediate points so that the arcs look smooth. The branch cut is given as a dashed black line which is encircled by a green closed contour line running
above and below the branch line.


-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

0.35 0.6 0.85

The first graph shows the result of contourPathGraphic[pts,singPts,contour], the second graph illustrates the auxiliary points

ContourIntegration_P2.nb

14

contourPathGraphic[pts,singPts,contour]
coordsContour being used for the contour and the third graph shows coordsBranchCut which displays the branch cut. These (auxiliary) point
lists are provided by {coordsContour, coordsBranchCut}= contourPathGeneration[pts,contour] .

Branch cut is taken care by the procedures

? branchCutContour showBranchCut

branchCutContour[branchPts] creates a contour encircling a given branchcut which is defined by the global
variable $branchCut = {-a+b ,a+b }. A list of coordinate pairs 'bcPts' describing the branchcut contour is returned.

showBranchCut[branchPts] displays a branch cut spanned by
'branchPts'. It is shown as a dashed black line encircled clockwise by a green closed contour.

which create auxiliary points to define a smooth branch cut contour to be displayed as a green line encircling the dashed black branch line spanned be-
tween given branch points.

branchPts = {(.35 + 0 ), (.85 + 0 )};
bcPts = branchCutContour[branchPts]
Graphics[showBranchCut[branchPts], ImageSize  150]
{{0.35, 0.04}, {0.321716, 0.0282843}, {0.31, 0.}, {0.321716, -0.0282843},{0.35, -0.04}, {0.35, -0.04}, {0.85, -0.04}, {0.85, -0.04}, {0.878284, -0.0282843},{0.89, 0.}, {0.878284, 0.0282843}, {0.85, 0.04}, {0.85, 0.04}, {0.35, 0.04}}

Auxiliary procedures for the creation of circular arcs are available in the package ContourIntegration.

ContourIntegration_P2.nb

15

? ArcsAndLines Arc3 Arc circle

? vectAngles Orientation arrowList

Various types of contours

A selection of various types of contours is shown below :

+ 
-2 -1 1 2 3 4

-2

-1

1

2 r

Closing a contour at infinity

In order to close a contour in  in most cases a semi-circle or full circle is added which contribution to the integral vanishes in the limit R  ∞ so that
only the real-axis part of the integral remains. But often there are situations encountered (such as the graph meandering around a number of points on the
real axis) where the contour has to be closed either in the right or left half-plane r/l . To cope with this situation it is suitable to introduce an additional
parameter close = {+1, -1, +, +} which indicates that the contour is closed either in the right/left half-plane r/l or in the upper/lower half-
plane ± of the complex plane  with a circular arc with radius R∞.

ContourIntegration_P2.nb

16

close = +1; (* right half-plane r : {z ∈  Re(z) > 0} *)
close = -1; (* left half-plane l : {z ∈  Re(z) < 0} *)
close = +; (* upper half-plane + : {z ∈  Im(z) > 0} *)
close = -; (* lower half-plane - : {z ∈  Im(z) < 0} *)
Likewise, the parameter inf = {∞,-∞,∞,-∞} could be introduced with the meaning that the contour γ will be closed (at infinity) by a circular
arc R∞ in the right/left half-plane r/l or in the upper/lower half-plane ± of  .

inf = {∞, -∞,  ∞, - ∞}; (* r,l,+,- *)
Mathematica has implemented two commands DirectedInfinity and ComplexInfinity for representing infinity.

? DirectedInfinity ComplexInfinity

DirectedInfinity [] represents an infinite numerical quantity whose direction in the complex plane is unknown.
DirectedInfinity [z] represents an infinite numerical quantity that is a positive real multiple of the complex number z. 
ComplexInfinity represents a quantity with infinite magnitude, but undetermined complex phase. 

According to Weisstein [5] complex infinity is an infinite number in  whose complex argument is undefined. In Mathematica this infinite number

is represented symbolically by ComplexInfinity and the notation ∞ is used.

{ DirectedInfinity[1], DirectedInfinity[-1], DirectedInfinity[], DirectedInfinity[-],
DirectedInfinity[1 + ], DirectedInfinity[1 - ], DirectedInfinity[]} /. ComplexInfinity  ∞

∞, -∞,  ∞, (-) ∞, 1 + 
2

∞, 1 - 
2

∞, ∞
Examples below illustrate several contours which are created with contourPathGraphic :

ContourIntegration_P2.nb

17

◼ Example 1: Path closed in +

Here, a contour γ is created which lies in the upper half-plane + . The function f (z) = 1
1+z2+z4 possesses four poles in  : ∓ 1

2
-  3

2
, ∓ 1

2
+  3

2
 but

only the poles z3,4 = ± 1
2 +  3

2 are located in +.



◼ Example 2: Path closed in + with/without inclusion of pole in 0

The closed contour is (essentially) in + and includes/excludes the pole z0 = 0 (by a small semi-circle around the origin) but contains the pole z1 = 1
2  .

+ +

ContourIntegration_P2.nb

18

◼ Example 3: Sectional contour in +

Given are three poles -1, 1
2 -  3

2 , 1
2 +  3

2  as solution of z3 + 1  0 . Only the pole z3 =  1
2 +  3

2  is located inside the sectional contourγ = 1 + R + 2

1

2

R


◼ Example 4: Rectangular contour around branch cut {0,1}

The contour γ avoids the branch cut {0,1} . The orientation of the (green) branch cut contour is opposite to the orientation of the (blue) contour.



◼ Example 5: “Keyhole contour” in  excluding branch cut {-∞, 0}

Here, the contour γ is constructed to avoid the branch cut on the negative real axis. Notice, the reverse ordering of points {7, 6, 5}, otherwise the circle is
flipped. This type of contour avoiding either the negative or positive real axis and encircling the origin is colloquially called “keyhole contour”.

ContourIntegration_P2.nb

19

+ϵ
-ϵ r

R

branch cut



Obviously, the keyhole contour is equivalent to the contour around the branch cut.

◼ Example 6: “Keyhole contour” in  excluding branch cut {0,+∞}

Here the contour γ avoids the branch cut on the positive real axis, i.e. extending from the origin {0,0} to {0, R} (with R ∞). The origin is clockwise
encircled by a small circular arc whereas the orientation of the large circular arc is anti-clockwise.



◼ Example 7: “Keyhole contour” in  excluding branch cut {r1, r2 }
Here, the (green) contour around the branch cut (between r1 and r2) on the positive real axis is deformed (“blown up”) such that instead the singularity
in z0 = 0 is encircled counter-clockwise by a small circular arc whereas the branch cut is encircled clockwise by a large circular arc with radius R∞ .

ContourIntegration_P2.nb

20


r1 r2

◼ Example 8: “Double keyhole contour” in  excluding branch cut {r1, r2 } in favor of poles {r0, r∞ }
Action integrals of type ∮ pr r =   + 2 ℬ

r
- 

r2
r can be casted into the form  1 - r1+r2

r + r1 r2
r2 r = ∮ 1

z (z - r1) (z - r2) z with the

transformation {  1, ℬ  -(r1 + r2) / 2,   -r1 · r2} . There result a branch cut between r1 < z < r2 and two singlular points at r0 = 0 and
r∞  ∞ .

The (green) contour around the branch cut can be “blown up” to a double keyhole contour to enclose the singPts = {r0, r∞} instead. Details for the
evaluation of the contour integral are discussed in Section 5, example 1.

ContourIntegration_P2.nb

21



r0 r∞r1 r2

◼ Example 9: Meandering contour avoiding half-integer poles  1
2 , 3

2 , 5
2 , ...

In order to evaluate the integral representation of the Meijer G-function G1,2
2,12 z 3, -3

1/2  a contour path has to be generated which includes only the in-

teger poles {..., -2, -1, 0, 1, 2, 3} but avoids the half-integral poles  1
2 , 3

2 , 5
2 

 Generation of the set of data points pts9 defining the open contour path ℒ

A list of data points circList for an alternating sequence of circular arcs is created automatically; starting and end points for the polylines are added.

To the last point in circList, i.e. Pe =  13
4 + 0  ,  b is added : P17 =  13

4 + b   .
Similarly, for the prepending points : P1 = Pe + a  =  13

4 + a , P2 = Pe -  =  13
4 -  and P3 = Pa -  =  1

4 -  .
In this way the list defining alternating semi-circles is supplemented by two polylines at Pa and Pe . For a, b some arbitrary values (e.g. R = 5) are as-
sumed which could go to ∓∞ and it is assumed that the contour is closed on the left by an semi-circle with radius R∞.

ContourIntegration_P2.nb

22

The integer poles {..., -4,-3,-2, -1, 0, 1, 2, 3} and half-integral poles  1
2 , 3

2 , 5
2  are given as singPts11 and singPts22 :

The contour ℒ goes from  13
4 -  ∞  to  13

4 +  ∞ and must be closed on the left side , i.e. in l because only there the integrand will vanish for z∞ . Hence, with this counter-clockwise orientation of the contour ℒ all singularitites with integer value (red points) from -n , …, 0, 1, 2, 3, are in-
cluded, excludes are, however, the singularities for half-integral values 1

2 , 3
2 , 5

2 , … (green points) :

-2 2 4

-2

-1

1

2l

 Close contour path ℒclosed in l

In order to close the contour in the left half-plane l an ancillary point P19 on the negative real axis is added to pts10. Closing the contour ℒ by
adding a circular arc (with radius R ∞) which is defined by {18, 19, 1} one obtains for ℒclose the following gray-shaded semi-circular region which
for radius R ∞ finally turns out to be the left half-plane l . All red dots, i.e. the integer poles {..., -2, -1, 0, 1, 2, 3} , will contribute to the evaluation

of the contour integral of the Mejier G-function G1,2
2,12 z 3, -3

1/2  .
To display the domain inside a closed contour path ℒclosed as a gray-shaded area the procedure generateClosedContourPath is used.

? generateClosedContourPath

ContourIntegration_P2.nb

23

generateClosedContourPath[pts,singPts,contour_:All,opts] generates a closed contour path and returns a pointlist defining the closed contour.

Finally, the closed contour ℒclosed is displayed by the procedure showPointsInContour; the interior is shown as a gray-shaded area, singular points
inside/outside the contour are colored in green/red as already before.

ContourIntegration_P2.nb

24

◼ Example 10: Pochhammer double-loop contour γPh for Euler’s Integral

For the Euler integral ∮γPh
t a-1(1 - t)b-1  t = -4  π (a+b) sin(π a) sin(π b) B(a, b) with a,b ∈  the Pochhammer double-loop contour γPh starts

from an arbitrary point (P1 = (.1 - .173 )) in the interval {S0, S1} = { 0 , +1 } , encircles S1 and then S0 clockwise, afterwards encircles S1 and then S0
anti-clockwise, and returns to P1. A short-hand notation for the Pochhammer contour path is (S1 +, S0 +, S1 -, S0 -) (see e.g. [6]).
B(p, q) is the Beta function.

(i) With the procedure contourPathGraphic the Pochhammer double-loop contour path can be easily created.

(ii) Another more conventional approach (using arcs, lines, arrows and dots) of the Pochhammer contour path is given by Forst & Hoffmann [7] ; the
original code was transcribed from Maple to Mathematica. Note, the contour path is symmetric with respect to {-1,1} instead of {0,1}.

(iii) An elegant representation of the Pochhammer contour path is given by M. Trott [8] in terms of a parametrized path.


S0 S1P

-1 - 1
2

1
2

1

- 1
2

1
2

-1 0 1 2

ContourIntegration_P2.nb

25

■ (2) Points inside/outside a closed Contour

For the evaluation of a contour integral it is important to know which singularities are enclosed by the contour γ. However, in Mathematica there is no
built-in procedure to decide which of the given singularities are inside and which are outside the closed contour. Therefore this section will deal with the
so-called point-in-polygon problem which is not only of interest for the evaluation of contour integrals (where the polygon is a closed path γ in the com-
plex plane ) but was already investigated in computational geometry and in computer graphics. Hence, the problem can be considered as a geometrical
one for which two commonly used algorithms are available : one is the ray crossing algorithm, the other is the winding number algorithm which will be
discussed subsequently [9].

◼ Ray crossing algorithm

The idea of the ray crossing algorithm is to draw a horizontal line starting at a point P in question and extending to infinity. To find out whether point P
is located inside or outside a polygon (which must not necessarily be convex) one tests how many times a ray, starting from point P and going in any
fixed direction, intersects the edges of the closed polygon. If P is not placed just on the boundary of the polygon, the number of crossings is even if P is
outside, and odd if inside. Thus this algorithm is therefore also known as even-odd-rule algorithm [10,11]. The case of non-convex polygons is a bit
more intricate but can be handled using this algorithm too. Moreover, one can omit considerating horizontal edges as a fictitious horizontal ray will
never cross them. Furthermore, one can also delete those edges which are entirely above or below the y-coordinate of the point P = (x,y).

A very effective implementation of the ray crossing algorithm is the procedure given by P. Wellin [12] (which was slightly improved by the author to
make sure that all points inside the closed polygon are colored green whereas points outside are colored red), e.g. see the procedure PointInPoly-
gonQ .

PointInPolygonQ[poly : {{_, _} ..}, pt : {x_, y_}, onoff_: "Off"] :=
 Module[{tri, e1, e2, e3, e4 , x1, y1, x2, y2},
(* ---- Ref : Paul Wellin "Programming with Mathematica, An Introduction" (2013), Chapt. 10.4 pp. 419ff ------ *)
 TriangleArea[tri : {v1_, v2_, v3_}] := Det[Map[PadRight[#, 3, 1] &, tri]]/2;
 Clear[e1, e2, e3, e4];

 e1 = Partition[poly, 2, 1, 1];
 e2 = DeleteCases[e1, {{x1_, y1_}, {x2_, y2_}} /; y1 == y2]; (* eliminate horizontal edges *)≥

ContourIntegration_P2.nb

26

 e3 = DeleteCases[e2, {{x1_, y1_}, {x2_, y2_}} /; (Min[y1, y2] ≥ y || Max[y1, y2] < y)];
 (* delete edges entirely above/below y-coord of pt *)
 e4 = Map[Reverse @ SortBy[#, Last] &, e3];
 boole = OddQ[Count[TriangleArea[Join[#, {pt}]] & /@ e4, _?Positive]];
 print[onoff, " pt(x,y)= ", {x, y}, "  (T|F)= ", boole];
 Return[boole];
];

Here is a test for a rectangular contour γ and several test points

? PointInPolygonQ

PointInPolygonQ [poly:{{_,_}..},pt:{x_,y_},onoff_:"Off"] tests whether points 'pt' are located inside or outside the closed polygonal contour 'poly'.
A list with boolean variables {True|False} is returned if the points lie inside (True) or outside respectively on the contour (False).

γ =  1, 1
2
, - 1, 1

2
, - 1, - 1

2
,  1, - 1

2
,  1, 1

2
; (* contour *)

PointInPolygonQ[γ, {0, .2}, "Off"]
PointInPolygonQ[γ, #] & /@ {0, .2}, {0, .6}, {-.5, -.3}, .5, .5 + 10-16
True

{True, False, True, True}
◼ Winding number algorithm

The underlying idea of the winding number algorithm is to compute for point P its winding number w.r.t. the polygon [13]. If the winding number is
non-zero, then P lies inside the polygon otherwise P is located outside or on the boundary of the closed polygon. One way computing the winding num-
ber is to sum up the angles extended by each side of the polygon. Denoting by Vi the set of N vertices defining the polygon one calculates the following
sum  = ∑i=1

N-1 (∠(Vi+1 - P, Vi - P) + ∠(VN - P, V1 - P)) . If ≠ 0 then P is inside the polygon. If  == 0 then P is outside with angle ∠(a,b) return-
ing a value in the interval (-π, π].

ContourIntegration_P2.nb

27

π π
An efficient implementation of this approach is given by M. Trott [14] with the procedure PointInPolygonQ2 .

? PointInPolygonQ2

PointInPolygonQ2 [poly_, pt_, onoff_: "Off"] := insidePolygonQCF [poly][pt];
insidePolygonQCF [slist_] := insidePolygonQCF [slist] =

Module[{segmentList, segmentListLength },(* --------------------------- © Michael Trott (Oct. 2013) ----------------------------------- *)
segmentList = Partition[If[Last[slist] === First[slist], slist, Append[slist, slist〚1〛]], 2, 1];
segmentListLength = Length[segmentList];
Function[{segments, λ},

Compile[{{viewPoint, _Real, 1}},
Module[{sum = 0., px = viewPoint〚1〛, py = viewPoint〚2〛, q1x, q1y, q2x, q2y},

Do[{{q1x, q1y}, {q2x, q2y}} = segments〚k〛;
sum = sum + ArcTan[(q1x - px) (q2x - px) + (q1y - py) (q2y - py),(q1y - py) (q2x - px) - (q1x - px) (q2y - py)], {k, λ}];

boole = Round[sum] =!= 0]]][segmentList, segmentListLength]];
Again, here is a test for a rectangular contour with a list of points {{0, .2}, {0, .6}, {-.5, -.3}, {.5, .5}}; the second point lies outside,
the forth point is slightly above the boundary.

ContourIntegration_P2.nb

28

γ =  1, 1
2
, - 1, 1

2
, - 1, - 1

2
,  1, - 1

2
,  1, 1

2
; (* contour *)

PointInPolygonQ2[γ, {0, .2}, "Off"]
PointInPolygonQ2[γ, #] & /@ {0, .2}, {0, .6}, {-.5, -.3}, .5, .5 + 10-16
True

{True, False, True, False}
See also the implementation of the winding number approach by David Park [15] using the procedure WindingNumber which applies
SegmentCrossingIncrement.

Another variant of the winding number algorithm is to compute the winding number by integrating 1/z (centered at point P : zp = xp +  yp) along the
polygonal contour γ in the complex plane. Applying Cauchy’s Residue Theorem [16] may not be very efficient in comparison to other approaches given
above but still this method is in the context of contour integration n(zp , γ) = 1

2 π  ∮γ 1
z-zp

z because complex (numerical) integration is feasible in

Mathematica.

Another implementation with PointInPolygonQ3 was suggested by T. Heidecke [17] and similarly by R.Brambilla [18] following an idea of
Muskhelishvili.

? PointInPolygonQ3

PointInPolygonQ3 [poly_, pt_, onoff_: "Off"] := InsidePolygonQ [poly, pt, onoff]
InsidePolygonQ [polygon_, point_, onoff_: "Off"] :=

Module[{ wn, boole },
wn = WindingNumber [polygon, point, onoff] ;
If[wn === 1, boole = True, boole = False];
Return[boole] ;];

WindingNumber [contour_, point_, onoff_: "Off"] :=

ContourIntegration_P2.nb

29

Module{wn, zp},(* -------------- © Thies Heidecke, Mathematica Stack Exchange (Aug 2012) -------------- *)
zp = Complex @@ point;

Off[NIntegrate::ncvb, NIntegrate::slwcon];ζRange = Evaluate @ {ζ, Sequence @@ (Complex @@@ Append[#, #〚1〛] & [contour])};
print[onoff, " point zp= ", zp, "; zRange: ", ζRange];

wn = Round @ Re @ Chop 1
2 π  NIntegrate 1ζ-zp , ζRange ;

On[NIntegrate::ncvb, NIntegrate::slwcon];
Return[wn];

contour =  1, 1
2
, - 1, 1

2
, - 1, - 1

2
,  1, - 1

2
,  1, 1

2
; (* contour *)

PointInPolygonQ3[contour, {0, .2}]
PointInPolygonQ3[contour, #, "Off"] & /@ {0, .2}, {0, .6}, {-.5, -.3}, .5, .5 + 10-11
True

{True, False, True, False}
Incorporated in the package ContourIntegration is the procedure

? PointInPolygonQ

PointInPolygonQ [poly:{{_,_}..},pt:{x_,y_},onoff_:"Off"] tests whether points 'pt' are located inside or outside the closed polygonal contour 'poly'.
A list with boolean variables {True|False} is returned if the points lie inside (True) or outside respectively on the contour (False).

◼ 2.1 Rectangular contour

The simplest test is a rectangular polygon for which points inside/outside are shown in green/red.

ContourIntegration_P2.nb

30

The graphics showing the points colored in green or red according to the their location either inside or outside the closed contour is achieved by the pro-
cedure showPointsInContour

? showPointsInContour

showPointsInContour [poly,ptsInOut,onoff_:"Off",opts___] draws for a given closed contour 'poly' (which is a polyline) and a number of points
'ptsInOut' a graphics which shows the contour (in blue). Those points located inside the contour are given in green; those points
outside or on the contour are shown in red. The decision whether points are inside or outside the closed contour is made using
PointInPolygonQ. The global variable $Pts = {inPts,outPts} contains two distinct sets of points being in/outside the contour.

◼ 2.2 Elliptical contour

The next example is an elliptical region (which is represented as a polyline).

The necessary steps of the previous example can be combined into a single procedure showPointsInContour

◼ 2.3 Circular arc contour

ContourIntegration_P2.nb

31

Points in several circular arc contours

◼ 2.4 Closed contour for Meijer G-function

Closed contour for the Meijer G-function G1,2
2,12 z 3, -3

1/2 
Here, the task is to generate a contour which meanders around integer poles at {-4,-3,-2,-1,0,1,2,3} and avoids half-integral poles at  1

2 , 3
2 , 5

2 , ...  and is

closed in th left half-plane l . In order to close the contour in l an ancillary point P16 on the negative real axis must be added to the point list given.
Thus the contour ℒ is supplemented by a circular arc (with radius R ∞) which is defined by {15, 16, 1}. Finally, the resulting closed contour ℒclose

will become the following gray-shaded semi-circular region which as R ∞ turns out to be the left half-plane l . In this way all green dots, i.e. the inte-

ger poles {..., - 4, - 3, - 2, - 1, 0, 1, 2, 3} , will contribute to the contour integral determining the Mejier G-function G1,2
2,12 z 3, -3

1/2  .

The corresponding procedure for closing a given contour is

? generateClosedContourPath

generateClosedContourPath[pts,singPts,contour_:All,opts] generates a closed contour path and returns a pointlist defining the closed contour.

The procedure generateClosedContourPath generates a closed contour in the form of a polyline.

The variable closedPolylinePts to be returned contains a pointlist which allows further processing of the closed contour such as gray-shading of

ContourIntegration_P2.nb

32

closedPolylinePts
the interior domain etc. .

Finally, the closed contour ℒclosed is displayed by the procedure showPointsInContour; the interior is shown as a gray-shaded area, singular points
inside/outside the contour are colored in green/red as before.

ContourIntegration_P2.nb

33

■ (3) Integral representations of Meijer G-function : Gp,q
m,n z a1, …, ap

b1, …, bq

As already mentioned above many special functions are given in terms of integral representations which involve contour integrals. Below, as example
for integral representations of special functions the Meijer G-function will be studied in detail.

As given e.g. in [4] The Wolfram Functions Site with URL http://functions.wolfram.com/ the Meijer G-function can be defined by means of the follow-
ing contour integral

Gp,q
m,n z

a1, …, an , an+1, … , ap
b1, … , bm , bm+1, …, bq

= 1
2 π  ∮ℒ ∏

j=1

m Γ(bj+s) ∏
j=1

n Γ(1-aj-s)
∏

j=n+1

p Γ (aj+s) ∏
j=m+1

q Γ (1-bj-s) z-s s /; {m, n, p, q} ∈  m ≤ q  n ≤ p

The Meijer G-function is given through the Mellin-Barnes integral representation where the Γ's denote the usual Gamma functions. The contour ℒ sepa-
rates the poles of the products of Γ-functions in the numerator, such as Γ(b j + s) with (j = 1, … m) from those of Γ(1 - a j - s) with
(j = 1,… n) in a sophisticated way. There are three possibilities for choosing the contour ℒ (for details see Notations.nb of the Wolfram Functions
Site [19]). The Mathematica implementation follows the definition suggested by Prudnikov et al. (1990) [20] .

? MeijerG

MeijerG[{{a1, …, an}, {an+1, …, ap}}, {{b1, …, bm}, {bm+1, …, bq}}, z] is the Meijer G function Gp q
m n z

a1, …, ap

b1, …, bq
. 

From the input form MeijerG[{{a1, …, an}, {an+1, …, ap}}, {{b1, …, bm}, {bm+1, …, bq}}, z] the traditional form which is

found in literature Gp,q
m,n z a1, …, ap

b1, …, bq
 is obtained e.g.

MeijerG[{{a, b}, {c}}, {{d}, {e}}, z] // hF // tF

ContourIntegration_P2.nb

34

http://functions.wolfram.com/

G3,2
1,2z a, b, c

d, e 
Here, hF and tF are shortcuts for the procedures HoldForm and TraditionalForm.

□ 3 Examples of special functions’ representation in terms of MeijerG functions

In many cases Meijer G-functions reduce to simpler special functions. A list where Meijer G-functions are reduced to simpler special functions is given
in Appendix 2 : Representation of special functions in terms of Meijer G-functions [19] . Here three cases will be discussed in some detail. ,

◼ Example 3.1 G1,2
2,12 z 1 /2

3, -3
 ⟺ Bessel function K3(z) ⟹ f2112 (z, s) = 2-s z-s Γ 1

2 - s Γ(s - 3) Γ(s + 3)
In this example the calculation of the contour integral is done step by step in order to show the approach. Note that for given G1,2

2,1 the numerator simpli-

fies to 1 due to the empty products ∏j1=2p=1 sowie ∏j2=3q=2 (m=2, n=1) and the MeijerG function simplifies to the Bessel function K3(z) .
MeijerG 1

2
, {}, {{3, -3}, {}}, 2 z // tF

π (-z) K3(z)
Step 1 : Find and visualize the singularities for the integrand f2112

The integrand is extracted by application of SlaterForm to the MeijerG function given.

(f2112[z_, s_] = System`MeijerGDump S̀laterForm[MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z], s]) // tF

2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3)

With the help of procedure findSingularities4SpecFunc the integer-valued singularities of f2112 are determined in the range s = {-10,4}.

ContourIntegration_P2.nb

35

? findSingularities4SpecFct

findSingularities4SpecFct [specFct,s,polesRange,onoff_:"On"] determines the singularities for special functions f(s)='specFct'(such as MeijerG functions, which do not have an obvious denominator for poles). The range of the singularites is
confined by 'polesRange'; the singularities found are returned in the global variable '$poles' in order to be displayed in
contourPathGraphics. The global variable '$polesType' with values 'Integer|HalfInteger|All' selects the poles correspondingly.

$polesType = Integer; (* only integer poles are considered *)
$onoff = True;
findSingularities4SpecFct[f2112[z, s], s, {-10, 4}, "On"];
$poles ; (* poles determined by findSingularities *)

$polesType  Integer poles : {-10, -10, -9, -9, -8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -1, 0, 1, 2, 3}
Γ-functions product F(s)= Γ 1

2
- s Γ(s - 3) Γ(s + 3)

has poles : {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}
with multiplicity : {2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1}

In the first plot the singularities are visualized for each Γ-function of the integrand separately; the second plot shows the superposition of all singulari-
ties in the range s = {-8, 8}. Discarding the half-integer singularities (which originate from Γ 1

2 - s) for the calculation of residues as regards to conver-

gence in the left-hand complex plane s ∈  it should be pointed out that for s ≤ -3 double poles occur whereas the poles s = {-2, -1, 0, 1, 2, 3} are simple
poles.

z0 = 1 ;
VisualizeSingularities[f2112[z, s], z0, {-8, 8}]

ContourIntegration_P2.nb

36

? VisualizeSingularities

VisualizeSingularities [specFctInt, z0, polesRange] displays the singularities of the integrand f(z,s)='specFctInt'

for a given special function which is defined as a contour integral
1

2π  ℒfmnpq (z, s)s. The first graph shows (with

different colors for each function component) the singularities given as Log[Abs[specFctList]] in the range 'polesRange'.
The second graph shows the superposition of all singularities of the special function investigated at given 'z0'.

Step 2 : Calculate residues for given singularities

The residues for given integer singularities are evaluated taking into account multiplicity of poles. The result in terms of a truncated series is returned in
the variable J2112

? calculateResidues4SpecFct

ContourIntegration_P2.nb

37

calculateResidues4SpecFct[f, s, selectPoles_:None, polesRange_:{ }, onoff_:"Off"] evaluates the residues symbolically. 'f' denotes the
special function (e.g. MeijerG-function) f(s) with 's' as complex variable s∈ . The singularities of f(s) are determined by calling
findSingularities within the range given by 'polesRange'={a,b}; the list of lists {poles,μ,solK} is returned where 'poles' contains
the list of singularities, 'μ' is a list containing the multiplicity of every pole and solK = 0 is set. For special functions the parameter
'selectPoles'= None must be chosen. The global variable $polesType = Integer|HalfInteger|All selects the type of poles to be
considered. The sum of residues for the singularities selected is calculated and returned. With onoff= "No" printout is suppressed.

J2112 = calculateResidues4SpecFct[f2112[z, s], s, None, {-10, 4}, "Off"];
Γ-functions product F(s)= Γ 1

2
- s Γ(s - 3) Γ(s + 3)

has poles : {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}
with multiplicity : {2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1}
processing residue Res[2-s z-s Γ 1

2 - s Γ(s - 3) Γ(s + 3), {s,-10}] for 2-fold pole(1)= -10
 ⋮

processing residue Res[2-s z-s Γ 1
2 - s Γ(s - 3) Γ(s + 3), {s,-2}] for 1-fold pole(9)= -2

 ⋮
processing residue Res[2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3), {s,3}] for 1-fold pole(14)= 3

ContourIntegration_P2.nb

38

Residues : Σ
j
Res[2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3)]|s= sj =

- 323 π 72072 log(z) + 72072 ψ(0) 21
2
 + 72072 log(2) + 144144  - 416071 z10

1115882127360
- 221 π 5544 log(z) + 5544 ψ(0) 19

2
 + 5544 log(2) + 11088  - 30787 z9

12262440960
-

13 π 5544 log(z) + 5544 ψ(0) 17
2  + 5544 log(2) + 11088  - 29401 z8

170311680
- 143 π 2520 log(z) + 2520 ψ(0) 15

2  + 2520 log(2) + 5040  - 12631 z7
232243200

-
11 π 2520 log(z) + 2520 ψ(0) 13

2  + 2520 log(2) + 5040  - 11749 z6
5806080

- 3 π 280 log(z) + 280 ψ(0) 11
2  + 280 log(2) + 560  - 1181 z5
71680

-
π 140 log(z) + 140 ψ(0) 9

2 + 140 log(2) + 280  - 503 z4
6720

- 1
960

π 20 log(z) + 20 ψ(0) 7
2

+ 20 log(2) + 40  - 49 z3 -
π z2

40
+ π z

24
- π

3
- 3 π

z
- 8 π

z2
- 8 π

z3
for poles s= {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}

Step 3 : Numerical comparison of the results

Here, the approximate result obtained from the finite sum of residues will be compared with the exact result of the Meijer G-function.

ContourIntegration_P2.nb

39

serJ is the finite series of powers {z3, z4, … , z10} (originating from the poles s = -3, ... ,-10)

(serJ = (Level[(J2112 // tF // polyForm), 3, List] // Drop[#, 6] &) // Drop[#, - 5] &) // tF

- 1

960
π z3 20 log(z) + 40  - 49 + 20 log(2) + 20 ψ(0) 7

2
,

- π z4 140 log(z) + 280  - 503 + 140 log(2) + 140 ψ(0) 9
2


6720
, - 3 π z5 280 log(z) + 560  - 1181 + 280 log(2) + 280 ψ(0) 11

2


71 680
,

- 11 π z6 2520 log(z) + 5040  - 11 749 + 2520 log(2) + 2520 ψ(0) 13
2


5 806 080
, - 143 π z7 2520 log(z) + 5040  - 12 631 + 2520 log(2) + 2520ψ(0) 15

2


232 243 200
,

- 13 π z8 5544 log(z) + 11 088  - 29 401 + 5544 log(2) + 5544ψ(0) 17
2


170 311 680
, - 221 π z9 5544 log(z) + 11 088  - 30 787 + 5544 log(2) + 5544 ψ(0) 19

2


12 262 440 960
,

- 323 π z10 72 072 log(z) + 144 144  - 416 071 + 72 072 log(2) + 72 072ψ(0) 21
2


1 115 882 127 360


Similarly, the corresponding terms from the exact series expansion of Meijer G-function are

serM1 =  Level SeriesMeijerG 1
2
, {}, {{3, -3}, {}}, 2 z, {z, 0, 10} // fs // Normal, 1, List //

Drop[#, 1] & // Drop[#, 5] &  // Reverse ; (* z3,...z10 *)
c8 = serM1〚5〛; c7 = serM1〚6〛; (* interchange terms 5 and 6 *)(serM = serM1 /. {serM1〚5〛  c7, serM1〚6〛  c8 }) // tF

ContourIntegration_P2.nb

40

- π z3 (60 log(z) + 60  + 37 - 60 log(2))
2880

,
π z4 (-420 log(z) - 420  + 101 + 420 log(2))

20 160
,

π z5 (-2520 log(z) - 2520  + 1621 + 2520 log(2))
215 040

,
π z6 (-27 720 log(z) - 27 720  + 25 111 + 27 720 log(2))

5 806 080
,

π z7 (-360 360 log(z) - 360 360  + 397 129 + 360 360 log(2))
232 243 200

,
π z8 (-360 360 log(z) - 360 360  + 453 913 + 360 360 log(2))

851 558 400
,

π z9 (-6 126 120 log(z) - 6 126 120  + 8 527 331 + 6 126 120 log(2))
61 312 204 800

,
π z10 (-16 628 040 log(z) - 16 628 040 + 25 049 807 + 16 628 040 log(2))

797 058 662 400


Comparison of individual terms (as regards to powers z3 ... z10) from the series expansion of π (-z) K3(z) with the corresponding terms of the sum
of residues J2112 shows numerical agreement e.g. for z = 2. :

Table[{serJ〚i〛, serM〚i〛} /. {z  2.}, {i, 1, 8}] // cF

{-0.352684, -0.352684}{-0.198952, -0.198952}{0.0438937, 0.0438937}{0.177999, 0.177999}{0.184751, 0.184751}{0.13103, 0.13103}{0.0738765, 0.0738765}{0.0351856, 0.0351856}
Step 4 : Plotting the results

These are the plots of the real and imaginary part of the exact Meijer G-function G1,2
2,12 z 1 / 2

3, -3
 and the approximate evaluation of the contour integral

∮ (2 z)-s Γ(1 /2-s) Γ(s-3) Γ(s+3)z for poles from s = {-10, ... , 3} considered. Obviously, there is good agreement in the range from z = { -2, 3} ; taking

into account more (integer) poles s < -10 will increase the accuracy of the approximation.

ContourIntegration_P2.nb

41

-6 -4 -2 2 4

-400

-200

200

400

Re [G1,2
2,1(2z| 1 / 2

3, -3
)] , Re [∮ (2z)-s Γ(1 /2 - s) Γ(s - 3) Γ(s + 3)z]

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Im [G1,2
2,1(2z| 1 / 2

3, -3
)] , Im [∮ (2z)-s Γ(1 /2 - s) Γ(s - 3) Γ(s + 3)z]

The contour plots of the real and imaginary part of the exact Meijer G-function G1,2
2,12 z 1 / 2

3, -3
 and the approximate evaluation of the contour integral

∮ (2 z)-s Γ(1 /2-s) Γ(s-3) Γ(s+3)z for poles from s = {-10, ... , 3} show qualitative agreement in the range -2 < x, y < 2 . Note, that the branch cut on the

negative real axis for the Meijer G-function is missing for the approximate function.

ContourIntegration_P2.nb

42

◼ Example 3.2 G2,2
1,2 z 1 , 1

1 , 1
 ⟺ Rational function z

z+1 ⟹ f1222(z, s) = z-s Γ(-s) Γ(s + 1)

ContourIntegration_P2.nb

43

The second example demonstrates that this particular Meijer G-function reduces to a simple rational function :

MeijerG[{{1, 1}, {}}, {{1}, {1}}, z]
z

1 + z
The corresponding integrand is given as f1222

(f1222[z_, s_] = System`MeijerGDump`SlaterForm[MeijerG[{{1, 1}, {}}, {{1}, {1}}, z], s]) // tF

z-s Γ(-s) Γ(s + 1)
Because of the Γ-functions Γ(-s)Γ(s+1) there occur integer poles only in the range s = {-8, 8} with multiplicity μ=1 .

Instead of doing a stepwise approach the procedure ContourIntegral (with the variable selectPoles= SpecFct) will calculate the contour in-
tegral directly.

ContourIntegration_P2.nb

44

Note, that in ContourIntegral the sum of residues is multiplied by the factor (2π ) ; hence, in order to compare the results obtained with the those
from calculateResidues4SpecFct division by (2 π )-1 is required.

(J1222 = ContourIntegral[f1222[z, s], s, SpecFct, {-9, 9}, "No"] / (2 π ));
Contour integral = ∮ z-s Γ(-s) Γ(s + 1)s = 2  π z9 - z8 + z7 - z6 + z5 - z4 + z3 - z2 + z - 1 + 1

z
- 1
z2

+ 1
z3

- 1
z4

+ 1
z5

- 1
z6

+ 1
z7

- 1
z8

+ 1
z9

for 'Integer' poles in the range s = {-9, 9}
Reconstruction of the infinite series from the truncated series expansion.

The evaluation of the contour integration (where only a finite number of poles is taken into account) leads to a truncated alternating series which agrees

with the series expansion of z
1+z

 for z0 = 0 .

Series z
1 + z , {z, z0 = 0, 9} // Normal

z - z2 + z3 - z4 + z5 - z6 + z7 - z8 + z9
By means of the Mathematica procedure FindSequenceFunction the infinite series can formally be reconstructed :

(J1222 // polyForm);
res = Table[-(-z)n, {n, -9, 9}]
c1222 = FindSequenceFunction[res /. {z  1}, k]
 1
z9

, - 1
z8

, 1
z7

, - 1
z6

, 1
z5

, - 1
z4

, 1
z3

, - 1
z2

, 1
z
, -1, z, -z2, z3, -z4, z5, -z6, z7, -z8, z9

(-1)1+k
Finally, deduction of the infinite series ∞(z) is in agreement with the result following from MeijerG[{{1,1},{}},{{1},{1}},z] .

[n_, z_] := 
k=1
n
c1222 zk ; [∞, z]

ContourIntegration_P2.nb

45

z
1 + z

◼ Example 3.3 G0,1
1,0 (z 1 - a) ⟺ Exponential & power function e-z z1-a ⟹ f1001(z, s) = z-s Γ(s - 1) with a = 2

Regarding the third example, the Meijer G-function reduces to -z · z1-a :

MeijerG[{{}, {}}, {{1 - a}, {}}, z] // tF

-z z1-a

The integrand f1001 consists of one Γ-function only; for the parameter a = 2 is chosen. For s ≤ 1 there occur integer poles with multiplicity μ=1 .

(f1001[z_, s_] = System`MeijerGDump`SlaterForm[MeijerG[{{}, {}}, {{-1}, {}}, z], s]) // tF

z-s Γ(s - 1)

(J1001 = ContourIntegral[f1001[z, s], s, SpecFct, {-9, 2}, "No"] / (2 π ));

ContourIntegration_P2.nb

46

Contour integral = ∮ z-s Γ(s - 1)s =
2  π z9

3628800
- z8

362880
+ z7

40320
- z6

5040
+ z5

720
- z4

120
+ z3

24
- z2

6
+ z

2
- 1 + 1

z
for 'Integer' poles in the range s = {-9, 2}

Reconstruction of the infinite series from the truncated series expansion

The evaluation of the contour integration leads again to a truncated alternating series which agrees with the series expansion of -z z-1

Series-z z-1, {z, 0, 9} // Normal // polyForm

z9
3 628 800

- z8
362 880

+ z7
40 320

- z6
5040

+ z5
720

- z4
120

+ z3
24

- z2
6

+ z
2
- 1 + 1

z

From the 11 terms of the truncated series the associated infinite series can be reconstructed :

series = (z * J1001 // Expand) /. {Plus  List} /. {z  1}(c1001 = FindSequenceFunction[series, k]) // tF

1, -1, 1
2
, - 1

6
, 1
24

, - 1
120

, 1
720

, - 1
5040

, 1
40 320

, - 1
362 880

, 1
3 628 800


(-1)k+1(1)k-1

The prefactor z is introduced in order to obtain a modified series which enables FindSequenceFunction to find the series coefficient c1001 in
closed form. Hence, the resulting infinite series 1001(z) is in agreement with the direct result from MeijerG[{{},{}},{{1-a},{}},z] .

1001[n_, z_] := 1
z 

k=1
n
c1001 zk-1 ; 1001[∞, z]

-z
z

ContourIntegration_P2.nb

47

■ (4) Improper integrals transformed into contour integrals through change of variables

There are further types of contour integrals which do not fit into the categories of definite integrals given in Part 1. However, extending the original inte-
gration path along the real axis  into the complex plane  and closing the contour γ the integral can be evaluated in terms of a contour integral.

For examples improper integrals (with integration originally along the real axis ) can be casted into contour integrals and evaluated in  by means of
some tricky transformation which involves change of (integration) variable.

In MathGroup several approaches to this problem are found. See for example [21], the sequel of discussions in MathGroup by Alex Krasnov, Alexan-
der Elkins and others. In addition, there exist some Mathematica packages [22], one provided by David Park as part of his Presentations package, i.e.
Presentations`StudentsIntegral, and another one, SymbolicComputing which supports much more than change of integration vari-
ables only.

◼ Change of variables using changeVariable4Integral

Due to private communication with M. Trott [23] the procedure changeVariable4Integral is implemented in the ContourIntegration
package.

? changeVariable4Integral

changeVariable4Integral[
za_
zb_

fz_z_, { ζ_, z2ζ_, ζ2z_ }] calculates the definite integral
za

zb

f (z)z with a change of variables for the integral

ζa

ζb

g(ζ)ζ . Here 'fz' is the integrand f(z) and 'z' the differential. 'z' is the old and 'ζ ' the new variable. 'z2ζ ' is the transform

from z ⟹ ζ (e.g. ζ = r and z2ζ = r· ϕ), 'ζ2z' is the inverse function (e.g. ζ2z = z·- ϕ, ϕ=const). {'za', 'zb'} are the
lower/upper limits of the integral which must be transformed too, i.e. {za, zb} ⟹ {ζa, ζb} = { ζ2z/.{z za},ζ2z/.{z zb}}.

ContourIntegration_P2.nb

48

◼ Evaluation using contour integration with tricky contours

The following two examples taken from S. Hassani [24] illustrate how improper integrals (with integration originally along the real axis ) can be
casted into contour integrals which are evaluated in the complex plane  by some tricky transformation. The following examples are found in [24]
Chapt. 10.3.9 pp. 284 -285.

Example 4.1 : ∫ 0
+∞ 1

x3+1 x = 2 π
3 3

Consider the integral along the positive real axis :

 ℐ1 = ∫ 0
∞ 1

x3+1 x .

Since the integrand f (x) = 1
x3+1 is an odd function the lower limit of the integral cannot be extended to -∞. But with a trick the contour can be closed as

a 120° sector in + .

The underlying idea is to perform a contour integration and apply a suitable change of the integration variable to evaluate some line integral.

(1) Investigating the singularities of the integrand f (z) which are simply the roots of the denominator : z3 + 1 = 0 with solutions z(k) = (2 k-1)  π/3
for (k = 1,2,3) gives a hint how to close the contour in .

sorted roots {z1,z2,z3}= -1, 1
2 -  3

2 , 1
2 +  3

2 
Hence, if the roots are sorted with respect to their imaginary parts then the root in the 1st quadrant is given as z3 =   π

3 = 1 +  3
2

(2) Instead of integration along the real axis from [0,+∞) a closed contour γ is chosen as a 120° segment including the pole z3 =  π/3 =  1+ 3
2 

γ γ

ContourIntegration_P2.nb

49

∞ γ ° =  π/ =  
located in the first quadrant. The three roots as well as the contour γ that only has z3 as an interior point are shown below. The closed contour γ is speci-

fied by the following points in the complex plane  : 0, R, R · - 3
4 +  3 3

4 , 0  . For consistency the interval [0, R] is denoted by 1, the arc seg-

ment from R, R · - 3
4 +  3 3

4  is R and the interval R · - 3
4 +  3 3

4  , 0 is denoted as 2 where R∞. Hence, the closed contour

γ = 1 + R + 2 comprises a segment of 120° encircling the pole z3 = 1+ 3
2 .

1

2

R z3

(3) The contour integral consists of three parts γ = ℐ1 +R +ℐ2 which are evaluated separately.

The contour integral γ can be split into three parts:γ = ℐ1 +R +ℐ2 = ∫ 0
+∞ 1

x3+1 x + ∫ R

1
z 3+1 z + ∫ 2

1
z 3+1 z = 2 π  Res f (z) z=z3

thus the original integral to be calculated is ℐ1 = γ - ℐ2 -R . The following steps are performed :

 First, the contour integral γ (taking into account only the pole z3 = 1 +  3
2) can be calculated straightforwardly

γ = ContourIntegral 1
z3 + 1 , z, {3}, {}, "No" // ce

Contour integral = ∮ 1
z3 + 1 z = 1

3  3 -  π

ContourIntegration_P2.nb

50

-  π
3

+ π
3

Appling the residue theorem gives the same result.

 Second, the integral R along the circular arc R vanishes for R ∞ , as usual.

 Third, calculation of integral ℐ2 along 2

Thus, in order to evaluate the line integral ℐ2 along 2 (which runs from R · - 3
4

+  3 3
4

 to 0 with R∞) one changes the integration variable from

z  ζ  ϕ. The integral over ζ turns out simple if ϕ = 2 π / 3 is chosen : ℐ2 = ∫2

1
z 3+1 z = ∫∞0 2π/3

ζ 2π33+1
ζ = -2π/3 ∫ 0

∞ 1ζ 3+1 ζ = -2π/3ℐ1 .

The integration can be done directly with the help of procedure changeVariable4Integral with the transformation of variables are z2ζ :

z  ζ  2 π
3 and its reverse ζ2z : ζ  z - 2 π

3 ,

or explicity by changing the integration variable from z to ζ where the integration boundaries must be transformed correspondingly.

In both cases the result is 2 π
3 3

 .

(4) Finally, the original integral ℐ1 = ∫ 0
∞ 1

x3+1 x (along the positive real axis or 1=[0,∞)) is obtained from γ = ℐ1 + ℐ2 = (1 - 2 π/3) ℐ1 where the

contour integrals is γ =  π
3

-  π
3   Res 3 . Solving for ℐ1 there is: ℐ1 = 2 π

3 3
.

Solve1 -  2 π/3 ℐ1 == γ, ℐ1〚1, 1, 2〛
2 π

3 3

Example 4.2 : ∫-∞+∞ α x -β x2 x = π/ β -α24 β.

ContourIntegration_P2.nb

51

Consider the Gaussian integral

 ℐ = ∫ -∞+∞ α x -β x2 x where α, β ∈  , β > 0

(Side note : with Mathematica V9 at least this integral can be calculated directly.)

With a trick this integral can again be calculated in terms of a contour integral γ.

The underlying idea is to change the variable of integration from x  z +  α
2 β , then evaluate the contour integral for the analytic function -β z2 on a

closed contour γ = 1 + 2 + 3 + 4 with the corresponding line integrals ℐi .

(1) Completing squares in the exponent of  α x -β x 2 one obtains a simpler line integral but its path is shifted by - α
2 β :

(2) The contour γ = 1 + 2 + 3 + 4 is closed as shown below.

Because -β z2 is an analytic function the contour integral γ = ∮γ -β z2 z vanishes. (Cauchy-Goursat theorem) .

Contour integral = ∮ β (-z2)z = 0

(3) The contour integral γ = 0 can be split into four line integrals ℐi along i (i =1,...4) :

 γ = ∮γ -β z2 z = 0 = ∑i=1
4 ℐi = ∫1

 -β z2 z + ∫2
 -β z2 z + ∫3

-β z2 z + ∫4
-β z2 z =

 = lim
R∞∫ +R

-R  -β x2 x + lim
R∞∫ -R

-R- α/(2 β)  -β z2 z + lim
R∞∫ -R- α/(2 β)+R- α/(2 β)  -β z2  z + lim

R∞∫ R- α/(2 β)R  -β z2 z =

ContourIntegration_P2.nb

52

 = -∫ -∞+∞  -β x2 x + 0 + lim
R ∞ ∫ -R- α/(2 β)+R- α/(2 β)  -β z2 z + 0 =ℐ1 +ℐ3

γ = 0

ℐ1= --∞
∞ -β x2x

ℐ20

ℐ3= lim
R∞-R- α/(2β)

+R- α/(2β)-β z2z

ℐ40

-ℛ
(-ℛ- α

2 β)
+ℛ

(+ℛ- α
2 β)

The contour integral γ over the closed contour γ is zero :

In the limit R ∞ the integral boundaries go to infinity. Along 2 (from -R to -R -  α/2β) and 4 (from R -  α/2β to R) the following substitutions
z = - (R+ y) respectively z = (R+ y) are made which give rise to a vanishing prefactor lim

R∞ -β R2 so that the integrals ℐ2,4 tend to zero.

With Mathematica the integrals ℐi (i =1,...4) are calculated as - πβ , 0, πβ , 0)

The only non-zero integrals ℐ1,3 are familiar Gaussian integrals. Obviously, the sum of all line integrals ℐi (i = 1,...4) vanishes as does the contour inte-
gral γ = 0 = ℐ1 + ℐ3 .

(4) Finally, the result for the original integral ℐ is ∫-∞+∞ α x -β x2 x = - α2

4 β · ℐ3 = - α2

4 β π / β

An alternative treatment is to use straightforwardly the procedure changeVariable4Integral with the transformation x  z +  α
2 β .

ContourIntegration_P2.nb

53

■ (5) Action integrals in the context of Bohr-Sommerfeld theory

Already in the year 1919 Arnold Sommerfeld [25], [26] had presented an interesting approach for the evaluation of certain types of action integrals
(occurring in Hamilton-Jacobi theory) using the technique of contour integration and the residue theorem.

◼ (1) Action integral of type r = ∮ pr r =   + 2 ℬ
r - 

r2 r

 Theory and derivation of the action integral of type  A + 2 B
r

- C
r2

r is discussed in some detail here.

 Branch cut and pole structure of  A + 2 B
r

- C
r2

r

However, we are only interested in the evaluation of the following contour integral  A + 2 B
r

- C
r2

r which has a branch cut originating from the

square root. The branch points {r1, r2} are obtained as solution of the equation A + 2 B
r - C

r2  0 w.r.t. r :

The coefficients of the radicant can be expressed in terms of {r1, r2} :

{r1 r2, (r1 + r2)} // fs

-  , - 2 ℬ 
The movement (represented by the action integral) is constricted between r1 = - B+ B2+A C

A , r2 = - B- B2+A C
A with r1 < r2 (and A = 2 mE < 0). A

complete r-cycle runs from r1 to r2 and back to r1. Along the path r1  r2 the momentum pr > 0 so that the positive sign of the square root must be
taken (+); on the way back, i.e. r2  r1 , holds pr < 0 and the negative sign of the square root has to be selected - . Thus, the integration is ex-

tended over both sheets of the two-valued function f (r) = ± A + 2 B
r

- C
r2

; the branch points r1 and r2 define a branch cut between r1 and r2 on the

real axis.

ContourIntegration_P2.nb

54

For better imagination it is appropriate to map the complex r-plane  on the Riemann sphere 2 =  ⋃ {∞} ; the origin r0 = 0 becomes the “South
pole” and r∞  ∞ the “North pole” (here ∞ is called a ComplexInfinity in Mathematica). Any closed contour path on the Riemann sphere sepa-
rates two complementary regions (the inner and outer region which depend on the orientation of the contour path). The (blue) contour path is unique and
encloses the two singularities at r0 = 0 and r∞ = ∞ .

The Re(r)-axis projected on the Riemann sphere is a meridian through the South pole and the North pole. The positive Re(r)-axis which extends from 0
to ∞ is the 0° meridian; similarly the negative Re(r)-axis extending from 0 to -∞ is the 180° meridian. The branch cut between r1 and r2 is located on
the positive Re(r)-axis and is encircled counter-clockwise there. However, mapping this path on the Riemann sphere will reverse its orientation to clock-
wise.

Now, the (green) contour path encircling the branch cut between r1 and r2 can be stretched (like a rubber band) over the Riemann sphere and is stuck
only at the two singularities r0 = 0 ("South pole") and r∞ = ∞ ("North pole"); obviously, on the Riemann sphere both poles are encircled counter-clock -°

ContourIntegration_P2.nb

55

0 = ∞ = ∞
wise. Contributions from the path (blue lines/semi-circles in opposite directions) on the 180° meridian compensate each other so that only the residues
for r0 and r∞ remain.

 Residues of f (r) = A + 2 B
r

- C
r2

The sign of the square root (f (r) = ±) is negative for r < r1 and positive for r > r2 as shown by closer investigation of the behaviour of the func-

tion f (r) . Thus, the residue ℛ0 for a 1st order pole at z = r0 = 0 with f (z) = - A + 2 B

z - C

z2 becomes

f0[z_] := -  + 2 ℬ
z
- 
z2ℛ0 = Residue[f0[z], {z, 0}]

- -
Next, as z∞ the residue for r∞ is calculated. Above r2 the positive sign of the square root must be chosen f (z) = +  + 2 ℬ

z
- 

z2
. Substitution of

w = 1
z maps the singularity at r∞ to 0. There occurs a 2nd order pole as is obvious from f (z) z = - 1

w2 f  1
w  w . The residue ℛ∞ becomes

w =. ;
f∞[w_] := -f0[z] * D 1w , w /. z  1

w


f∞[w]ℛ∞ = Residue[f∞[w], {w, 0}]
-  + 2 w ℬ - w2 

w2

- ℬ

ContourIntegration_P2.nb

56

Finally, due to change of orientation (the branch cut contour is counter-clockwise whereas the poles r0 and r∞ are encircled clockwise) the value of the
action integral r is -2 π · (ℛ0 + ℛ∞)
r = -2 π  (ℛ0 + ℛ∞) // sf

2  π ℬ + -
Evaluation with r1 and r2 with F0(r) = 1

r (r - r1) (r - r2) and F∞(ρ) = - 1ρ  1ρ - r1  1ρ - r2 leads to the same result.

Finally, the result for r is

r =  A + 2 B
r

+ C
r2

r = 2 π   ℬ + - 
 “Double keyhole” contour

The contour around the branch cut can be “blown up” to a “double keyhole” contour shown below which encloses the singular points {r0, r∞}. As
regards to a graphical representation numerical values must be chosen for {r1, r2} = {1 / 2, 3 / 2} and for the singular points {r0, r∞} = {0, 2} .

ContourIntegration_P2.nb

57



R

-

+r0
r1 r2 r∞∞

Because the (green) contour path encircles the branch cut counter-clockwise the method of residues cannot be applied directly. However, this contour
path can also be interpreted such as encircling the outer region of the complex r-plane (blue contour). In this outside region the integrand is unique so
that there is no restriction to apply the residue theorem. In the limit r∞ only two singularities {r0, r∞} are essential and the (blue) contour can be con-
tracted such that only the singularities are encircled clockwise.

 Plots of  + 2
ℬ
r

- 
r2 with parameters arbitrarily set to { , ℬ,  } = {1, -15, 200} are displayed below.

In order to visualize the function f0(r) =  +2 ℬ
r - 

r2 = 1
r2 (r - r1) (r - r2) in the complex r-plane suitable values for {r1, r2, r∞} should be taken

which are large enough to emphasize the branch cut between (r1, r2) . Contour and 3d plots give an impression about the behavior of f0(r) .
Assuming for {r1, r2, r∞} = {10, 20, 50}, thus the corresponding values for {, ℬ, } = {1, -15, -200} are found.

 Here is the plot of f0(z) along the real axis which clearly shows the gap, i.e. the branch cut, between 10 and 20.

ContourIntegration_P2.nb

58

-10 0 10 20 30
r

2

4

6

8

10

f0(z)= 1- 30

z
+ 200

z2

 The procedure complexFctContourPlot will display the function f0(z) as a contour plot where possible branch cuts are shown as green lines.

? complexFctContourPlot

Obviously, in addition to the linear branch cut extending from r1 = 10 to r2 = 20 there is a circular branch cut through the origin with radius R = 20
3 .

ContourIntegration_P2.nb

59

(ComplexAnalysis`BranchCuts[fz, z] /. {Re[z]  x, Im[z]  y}) // sf

(y  0 && 10 < x < 20) || 0 < x < 40
3

&& y  - -x (-40 + 3 x)
3

|| y  -x (-40 + 3 x)
3

Here are the corresponding 3d plots using complexFctPlot3D for the function f0(z) in terms of its absolute, real and imaginary values.

 In order to take further correction terms into account the reader is referred to the original work of A. Sommerfeld [25] pp. 656 - 659. Modified con-
tour integrals are investigated below.

(i) From physical point of view the introduction of an additional correction term D0 r is relevant for the investigation of the theory of the Stark effect.

(i) 1 =  A + 2 B
r - C

r2 +D0 r r = r + 1
2 D0 1 - 1

8 D0
2 2

The integral can be solved by a series expansion of the square root in terms of powers of D0. For the calculation only the pole r∞ together with the sub-

stitution r = 1
z

 has to be taken into account. For r0 = 0 the integrand behaves regular. The type of integrals involved are :

 1 = - 1

A
 1

z3
1

1 + 2 B
A

z - C
A z2

z and 2 = - 1
A3/2  1

z4
1

1 + 2 B
A

z - C
A z2

3/2 z

 so that 1 = 2 π    B

A
+ -C  + D0

4 A3/2  3 B2

A + C + 5
16

B D0
2

A7/2  7 B2

A + 3 C 
(ii) As regards to the theory of hydrogen-unlike spectra an additional term D1 / r3 is introduced.

(ii) 2 =  A + 2 B
r - C

r2 + D1

r3 r = r + 1
2 D1 3

Again, the integrand is expanded in a power series with respect to D1 so that :

ContourIntegration_P2.nb

60

1

3 = - z

A + 2 B z - Cz2
z

so that 2 = 2 π    B

A
+ -C  + B

2 (-C)3/2 D1
(iii) Adding a second correction term D2 / r4 (where D2 is of the order of D1

2) the contour integral to be investigated turns out to be

(iii) 3 =  A + 2 B
r - C

r2 + D1

r3 + D2

r4 r = r + 1
2 D1 3 + 1

2 D2 4 - 1
8 D1

2 5

Again, the square root is expanded with respect to the correction terms D2 and D3 where terms with powers higher than D2
n (n >2) and D3

m (m >1)
will be neglected.

4 =  1
r4

1

A+ 2 B
r

- C
r2

r and 5 =  1
r6

1

A + 2 B
r

- C
r2

3/2 r

 so that 3 = 2 π    B

A
+ -C  + 1

2
B

C3/2 D1 + 3
2

B
C D2 + 15

8
B
c2 D1

2 + 1
4

A(-C)3/2 D2 + 3
4

1
C D1

2

◼ (2) Action integral of type θ = ∮ pθ θ =  C - D2

sin2 (θ) θ
 Theory and derivation of the contour integral type  C - D2

sin2 (θ) θ is discussed in some detail here.

Assuming for the coefficient C = D2

sin2(θ0) the integrand is simplified to

g[θ_] :=  Sin[θ0]-2 - Sin[θ]-2
The integration path in the complex θ-plane encircles the branch cut between the angles {θ0, π - θ0} and gives rise to the geometry shown in the figure be-θ

ContourIntegration_P2.nb

61

θ θ0 π θ0

low on the lhs. Due to the periodicity of the integrand g(θ) the contour path can be continuously deformed to the border line for the (periodic) strip be-
tween 0 and π with the singularities 0 and π excluded.

0

i
+i

-i

0 0

As regards to periodicity the strip in the complex θ-plane between [0, π) can be folded into an infinite tube by stitching together left and right border. If,
in addition, both ends of the tube at + ∞ and - ∞ are joined there results a torus as shown in the figure on the rhs. Again, the integration path can be de-
formed such that only the singularity at θ = 0 is encircled. This corresponds to the geometric operation of folding the semi-circle at θ = π with the one π π

ContourIntegration_P2.nb

62

θ = θ = π
at θ = 0. In addition, only the integration path of 2π at infinity remains since the circumference of the torus is just π (which is the period of the inte-
grand).

The residue (for the single pole) at θ = 0 is

ℛ0 = Residue[g[θ], {θ, 0}]
 
Similarly, the asymptotic contribution of the integral for θ  ∞ becomes ∮ pθ θ ≃ limθ∞ ∮ g(θ) θ = 2 π D

sin(θ0) where D
sin2(θ0) = C .

∞ = 2 π Limit[g[ θ], θ  ∞] /.  (v_)2  v /.  Csc[θ0]   
2 π 
Hence, the final result of the contour integral turns out to be

θ = (2 π  ℛ0 + ∞) // Expand // sf // polyForm

2 π   - 
 θ =  C - D2

sin2 (θ) θ = 2 π   - 
Note, that C = L and D = Lz are the angular momentum and the z-component. (In the framework of the Bohr-Sommerfeld theory the evaluation of ac-
tion integrals leads to quasi-classical quantization.)

ContourIntegration_P2.nb

63

■ Conclusions

In conclusion the author is convinced that the package ContourIntegration.m will be a useful extension of the built-in procedure Integrate in
Mathematica. It is the author’s expectation that Mathematica users will find the main procedure ContourIntegral and additional routines for find-
ing poles, evaluating the corresponding residues, designing intricate contour paths and visualizing various views of complex functions useful.

■ Appendix

◼ (1) Representation of special functions in terms of Meijer G-functions

In several cases Meijer G-functions reduce to simpler special functions; a selection given by E.W. Weisstein and M. Trott [19] is listed below :

 G1,2
2,12 z 1 /2

3, -3
 ⟺ Bessel function K3(z) ⟹ f2112(2 z, s) = 2-s z-s Γ 1

2 - s Γ(s - 3) Γ(s + 3) (Example 1)

Note that for given G1,2
2,1 the numerator simplifies to 1 due to the empty products ∏j1=2p=1 sowie ∏j2=3q=2 (m=2, n=1)

 MeijerG1
2
, {}, {{3, -3}, {}}, 2 z // hF // tF (* G1,2

2,12 z 1/2
3,-3 *) ,

res = MeijerG1
2
, {}, {{3, -3}, {}}, 2 z, res // tF  // cF

G1,22,1 2 z
1
2

3, -3-z π BesselK[3, z]π (-z) K3(z)
 G0,2

1,0(z u, -u) ⟺ Bessel function J22 z  ⟹ f1002(z, s) = z-s Γ(s+u)Γ(-s+u+1)
 G2,2

1,2z 1 /2, 1 /2
0, 0

 ⟺ Elliptic function 2 K(-z) ⟹ f1222(z, s) = z-s Γ 1
2 -s2 Γ(s)Γ(1-s)

ContourIntegration_P2.nb

64

 G1,2
2,12 z a

c, b
 ⟺ Hypergeometric function U(α, β, z) ⟹ f2112(2 z, s) = 2-s z-s Γ(-a - s + 1) Γ(b + s) Γ(c + s)

 G3,3
1,3-z 1 /2, 1 /2, 1 /2

0, -3 /2, -3 /2
 ⟺ Generalized hypergeometric function pFq (α; β; z) ⟹ f1333(-z, s) = (-z)-s Γ 1

2 -s3 Γ(s)
Γ 5

2 -s2

 G2,2
1,2 z 1, 1

1, 0
 ⟺ Logarithmic function log(z + 1) ⟹ f1222(z, s) = z-s Γ(-s)2 Γ(s+1)Γ(1-s)

 G2,2
1,2 z 1, 1

1, 1
 ⟺ Rational function z

z+1 ⟹ f1222(z, s) = z-s Γ(-s) Γ(s + 1) (Example 2)

 G0,2
1,0  z

2 0, 1 / 2 ⟺ Cosine function
cos  2 z π ⟹ f1002(z, s) = 2s z-s Γ(s)Γ 1

2 -s
 G0,2

1,0  z
2 , 1 /2 0, 1 / 2 ⟺ Cosine function cos (z)π ⟹ f1002(z, s) = 2s-1 z-s Γ s

2 Γ 1
2 - s

2 

 G0,2
1,0 z 0

0, 1 /2
 ⟺ Imaginary error function erfi z  ⟹ f1002(z, s) = z-s Γ(1-s) Γ(s)Γ 1

2 -s
 G1,0

0,1 (z 1 - a) ⟺ Exponential function e-1/z z-a ⟹ f0110(z, s) = z-s Γ(s) Γ(a-s)Γ(1-s)
 G0,1

1,0(z 1 - a) ⟺ Exponential function e-z z1-a ⟹ f1001(z, s) = z-s Γ(s - 1) with a = -2 (Example 3)

 G1,1
1,1 z 1 - a

b  ⟺ z-b(z + 1)-a-b Γ(a + b) ⟹ f1111(z, s) = z-s Γ(a - s) Γ(b + s)
 G2,0

0,2(z a, b) ⟺ π z a-b
2 +b-1 csc(π (b - a)) Ia-b 2

z
 + z

b-a
2 +a-1 csc(π (a - b)) Ib-a 2

z
 ⟹ f0220(z, s) = z-s Γ(-a - s + 1) Γ(-b - s + 1)

 G1,2
1,1z a

b, c ⟺ zb Γ (-a + b + 1) 1F


1(-a + b + 1; b - c + 1; -z) ⟹ f1112(z, s) = z-s Γ(-a-s+1) Γ(b+s)Γ(-c-s+1)

ContourIntegration_P2.nb

65

   ⟺ ⟹
 G3,2

1,1z a1, a2, a3
b1, b2  ⟺

za1-1 Γ(-a1+b1+1) 2F


2-a1+b1+1,-a1+b2+1;-a1+a2+1,-a1+a3+1; 1
z
Γ(a1-b2) ⟹ f1132 (z, s) = z-s Γ(-a1-s+1) Γ(b1+s)Γ(a2+s) Γ(a3+s) Γ(-b2-s+1)

 G2,4
2,1z a1, a2

b1, b2, b3, b4 ⟺ π zb2 Γ(-a1+b2+1) csc(π b1-π b2) 2F3(-a1+b2+1,-a2+b2+1;-b1+b2+1,b2-b3+1,b2-b4+1;-z)Γ(a2-b2) Γ(-b1+b2+1) Γ(b2-b3+1) Γ(b2-b4+1) +
π zb1 Γ(-a1+b1+1) csc(π (b2-b1)) 2F3(-a1+b1+1,-a2+b1+1;b1-b2+1,b1-b3+1,b1-b4+1;-z)Γ(a2-b1) Γ(b1-b2+1) Γ(b1-b3+1) Γ(b1-b4+1)⟹ f2124 (z, s) = z-s Γ(-a1-s+1) Γ(b1+s) Γ(b2+s)Γ(a2+s) Γ(-b3-s+1) Γ(-b4-s+1)

◼ (2) Useful functions in the context System`MeijerGDump`

Due to private correspondence with O. Marichev (June 2016) there are additional functions available in the context System`MeijerGDump` which
are useful for a closer investigation/understanding of the evaluation of Meijer G-functions.

◼ MeijerGInfo

This function extracts from the Meijer G-function the index list {m,n,p,q} :

System`MeijerGDump M̀eijerGInfo[MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z]]
{m,n,p,q} = {2, 1, 1, 2}
MeijerG is entire function defined by sums over its LEFT poles in powers of variable

Attributes[MeijerGInfo] = {HoldAll}

ContourIntegration_P2.nb

66

HoldPattern[MeijerGInfo[MeijerG[{a_List, b_List}, {c_List, d_List}, x_, r_: 1]]] :=
Module[{m, n, p, q}, {m, n, p, q} = {Length[c], Length[a], Length[Join[a, b]], Length[Join[c, d]]};

Print["{m,n,p,q} = ", {m, n, p, q}];
If[2 (m + n) ≤ p + q, Print["Integral via L(*∞) contour in definition of MeijerG does not exist"]];
If[p < q, Print["MeijerG is entire function defined by sums over its LEFT poles in powers of variable"];];
If[p > q, Print["MeijerG is entire function defined by sums over its RIGHT poles in powers of 1/variable"];];

If[p  q, Print["MeijerG is defined by sum over LEFT poles INSIDE unit circle and by sum over RIGHT poles OUTSIDE of it"];
If[m + n > p, Print["There exists analyticity cone inside which both definition are equivalent."];

If[NumericQ[x], If[Abs[Arg[x]] < π r (m + n - p), Print[x, " is inside of it"],
Print[x, " is outside of it"]], Print["Cone is defined by ", Abs[Arg[x]] < π r (m + n - p)];]];

If[m + n p, Print["There exists NO analyticity cone. MeijerG is piecewise analytic."];];
If[m + n < p, Print["special case. MeijerG is not defined by L(*∞) contour"]]]];

◼ SlaterForm

This function constructs from the input form of Meijer G-function the integrand for the contour integral consisting of Γ-functions e.g.

System`MeijerGDump S̀laterForm[MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z], s] // tF

2-s z-s Γ 1

2
- s Γ(s - 3) Γ(s + 3)

ContourIntegration_P2.nb

67

Attributes[SlaterForm] = {HoldAll} ;
SlaterForm[MeijerG[{a_List, b_List}, {c_List, d_List}, z_, r_: 1], s_] :=
Module{coeff, ap, am, bp, bm},{coeff, ap, am, bp, bm} = Simplify System`MeijerGDump` sortG [c, 1 - a, b, 1 - d];(r coeff z-s Times @@ Gamma[ap + r s] Times @@ Gamma[am - r s]) /(Times @@ Gamma[bp + r s] Times @@ Gamma[bm - r s]) /; NumericQ[r] && (Positive[r] || Negative[r])

The auxiliary function sortG extracts from the input form of Meijer G-function the index lists {coeff, ap, am, bp , bm} used for evaluation of prod-
ucts of Γ-functions.

coeffList = {a  {1 / 2}, b  {}, c  {3, -3}, d  {} } ;{coeff, ap, am, bp, bm} = Simplify[System`MeijerGDump`sortG[c, 1 - a, b, 1 - d] /. coeffList]
1, {-3, 3},  1

2
, {}, {}

◼ MeijerGToSums

The function MeijerGToSums shows the summands of the infinite sums (of left poles) which are not evaluated due to Hold. Applying
ReleaseHold evaluates the sums.

expr1 = System`MeijerGDump M̀eijerGToSums[MeijerG[{{1 / 2}, {}}, {{3, -3}, {}}, 2 z], s]
expr2 = expr1 // ReleaseHold

ContourIntegration_P2.nb

68

Hold[Sum] (-1)s 2-3+s z-3+s Gamma[6 - s] Gamma- 5
2 + s

Gamma[1 + s] , {s, 0, 5} +
Hold[Sum] 23+s z3+s Gamma 7

2
+ s -Log[2 z] + PolyGamma[0, 1 + s] - PolyGamma0, 7

2
+ s + PolyGamma[0, 7 + s] 

(Gamma[1 + s] Gamma[7 + s]), {s, 0, ∞}
- π

3
- 8 π

z3
- 8 π

z2
- 3 π

z
+ π z

24
- π z2

40
-

1
240 z3

π -1920 - 1920 z - 720 z2 - 80 z3 + 10 z4 - 6 z5 + 240 z z3 BesselI[3, z] Log[2 z] +
240 z z3 BesselI[3, z] PolyGamma0, 7

2
 - 16 Hypergeometric1F1Regularized(0,1,0)- 5

2
, -5, 2 z +

3600 z6 Hypergeometric1F1Regularized(0,1,0) 7
2
, 7, 2 z + 5 z6 Hypergeometric1F1(1,0,0) 7

2
, 7, 2 z

With the rule Hold[Sum][X_, range_]  Σrange @ X the sums together with their index range are rewritten in a more comprehensive form.

ContourIntegration_P2.nb

69

Attributes[MeijerGToSums] = {HoldAll}
HoldPattern[MeijerGToSums [MeijerG[{a_List, b_List}, {c_List, d_List}, x_, r_: 1], k_Symbol]] :=
System`MeijerGDump` TideUpSummand 

Module{res1, res2, Sum1, var},
Catch HypergeometricLogDump` MeijerGAMain ;

BlockHypergeometricLogDump` $HypPFQRegularized = PFQRegularizedFormalSum [k, Sum1],
var = Hold[Sum];
res1 = Block HypergeometricLogDump` $HeadToReplaceSumAWith = Sum1,

$SumLeftPoles = True,
SumLeftPoles[{a, b}, {c, d}, x, r] ;

IfLength[a] + Length[b]  Length[c] + Length[d],
res2 = Block  HypergeometricLogDump` $HeadToReplaceSumAWith = Sum1,

$SumLeftPoles = False,
SumLeftPoles{1 - c, 1 - d}, {1 - a, 1 - b}, 1

x , r /.Log 1
x   -Log[x],  1

x w_  x-w ;
Refine[Piecewise[{{res1, Abs[x] ≤ 1}, {res2, Abs[x] > 1}}] /. {Sum1  var}],
Throw[res1 /. {Sum1  var}]   /. { Hold[Sum][body_, {it_, par___}]  Hold[Sum][body /. {it  k}, {k, par}] }, k /; ! InexactNumberQ [x] && NumericQ[r] && Positive[r]

Auxiliary functions needed in MeijerGToSums are TideUpSummand and SumLeftPoles; from the context HypergeometricLogDump`
there are MeijerGAMain, $HypPFQRegularized and $HeadToReplaceSumAWith

ContourIntegration_P2.nb

70

◼ (3) Change of integration variables methods

(1) Change of variables using changeVariable4Integral

The change of variables z ζ (= z2ζ) (and its inverse ζ  z (= ζ2z) can be applied to the following type of integral ∫za

zb f (z) z ; of course one must

transform the integrand f (z) taking into account the Jacobian corresponding to the change of variables, the differential z and the lower and upper lim-
its of the integral {za, zb} e.g. {0,∞} . This is achieved with the procedure changeVariable4Integral

Clear[fz, z, za, zb, z2ζ, ζ2z, ζ];
SetAttributes[changeVariable4Integral, HoldFirst];
changeVariable4Integral ∫za_zb_ fz_ z_, {ζ_, z2ζ_, ζ2z_} :=

Integrate[(fz /. {z  z2ζ})* D[z2ζ, ζ], {ζ, ζ2z /. {z  za}, ζ2z /. {z  zb} }];
implemented in the package Contour Integration. [23].

? changeVariable4Integral

For example, with the replacement rules z2ζ : z  ζ +  α
2 β  and ζ2z : ζ  z -  α

2 β  the integral becomes :

Clear[z, z, α, β];
$Assumptions = {α ∈ Reals, β ∈ Reals, β > 0};
changeVariable4Integral -∞∞ α z -β z2 z, ζ, ζ +  α

2 β , z -  α
2 β  // fs

- α2
4 β πβ

ContourIntegration_P2.nb

71

similarly, with z2ζ : x  r  2 π
3 and its reverse ζ2z : r  x- 2 π

3 the integral is :

changeVariable4Integral
0

∞ 1
1 + x3 x, r, r  2 π

3 , x - 2 π
3 

2 π
3 3

(2) Change of variables using SC package SymbolicComputing

An alternative approach makes use of the package SymbolicComputing.mx from Youngjoo Chung [22] which is available for Mathematica
V9.0.1 and higher. It can be downloaded from the following URL

(* ToExpression[URLFetch["http://symbcomp.gist.ac.kr/downloads/InstallSymbCompPersonal.m"]] *)(* installs package SymbolicComputing.mx in ...\AppData\Roaming\Mathematica\Applications *)
This powerful package (with more than 800 routines) can do much more than performing change of variables only. In order to avoid some infinite loop
the SC package should be loaded first, thus remove the package ContourIntegration` then load package SymbolicComputing` :

removePackage["ContourIntegration "̀]; (* remove ContourIntegration package temporarily *)
removePackage["Notation`"];
Unprotect["Global`*"];
Remove["Global`*"];
$ContextPath = $ContextPath /. {"Notation`"  Sequence[] , "ContourIntegration "̀  Sequence[] }
Then the SC package can be loaded without any problem.

In order to avoid conflicts with code contained in the main package ContourIntegration` the package SymbolicComputing` must be
loaded first if procedures from the SC packages will be executed.

ContourIntegration_P2.nb

72

DefaultOperators:={OverHat[_],OverHat[_][__],Subscript[OverHat[_],__],Subscript[OverHat[_],__][__]};
Get["SymbolicComputing`"]//Timing (* ~ 2 sec : loading successful *)
$SCVersion (* "Beta 3.1 (January 7, 2016)" *)

{2.69882, Null}
Beta 3.1 (January 7, 2016)
If the packages are loaded in reverse order then loading of the SC package will need up to 6 min. and additional warnings will occur.

Names["SC*"] // Length
$ContextPath;

814

The essential procedure SCMAF[integral_,transInt_, replVar_List, evalInt, opts___:{}] together with two more SC-rou-
tines SCTransInt and SCEvalInt performs the transformation of variables and does a stepwise calculation of the integral. (Private communica -
tions with Youngjoo Chung 9/2013). For further details use the Help Browser for AddOns : see SymbolicComputing > Function Analysis > SCMAF

? SCMAF SCTransInt SCEvalInt

SCMAF[expr, f 1, {x11, x12, ...}, f 2, {x21 , x22, ...}, ...] makes multiple
replacements x11  f 1[x11, x12 , ...], x21  f 2[x21, x22, ...], etc. See the help browser for more details.

SCTransInt[expr] transforms integrals.
SCTransInt[expr, rules] transforms integrals by applying rules.

ContourIntegration_P2.nb

73

SCEvalInt[expr] evaluates integrals expressed with SCIntegrate.
SCEvalInt[expr, var1, var2, ...] evaluates integrals expressed with SCIntegrate for the variables vari.

Clear[fz, z, za, zb, ζ, ϕ];
SCMAF∫za_zb_ fz_ z_, SCTransInt, {All, TransVar  {z, ζ, z  f[ζ]}}, SCEvalInt, All, RA,

Comment  "Upper/lower limits will be changed" 
With the help of the procedure SCMAF the evaluation of the integrals requiring change of integration variable can be performed :

The setting of the parameter ϕ can be explicitly given in terms of a replacement rule with RA  ϕ  2 π
3

$Assumptions = { ϕ ∈ Reals && ϕ > 0};
SCMAF

0

∞ 1
1 + z3 z, SCTransInt, All, TransVar  z, r, z  r  ϕ , SCEvalInt, All, RA  ϕ  2 π

3



0

- Re[ϕ] ∞  ϕ
1 + 3  ϕ r3 r

2 π
3 3

and

$Assumptions = { {α, β} ∈ Reals && β > 0};
SCMAF-∞∞ α z -β z2 z, SCTransInt, All, TransVar  z, ζ, z  ζ +  α

2 β , SCEvalInt, All 

ContourIntegration_P2.nb

74

-∞∞ α   α
2 β+ζ-β   α

2 β+ζ2 ζ
- α2

4 β πβ
The SC package’s own interpreter for 2d forms of derivatives, integrals etc.

SCMAF  (x + x0)mx , SCEvalDeriv, All, Hold  x0
m (x + x0)-1+m
SCMAF

0

∞
Sinz3 z , SCTransInt, {All}, SCEvalInt, All 


0

∞
Sinz3 z

1
6
Gamma 1

3


but the usual 2d form of an integral will not be ignored (in the context of the SC package).


0

∞
Sinz3 z


0

∞
Sinz3 z

In order to avoid any conflict with subscripted variables used in the packages SymbolicComputing` and ContourIntegration` the procedure
SCEnableNotation[False] will remove all symbols associated with the SC package and the 2d interpreter of the SC package is disabled so that

ContourIntegration_P2.nb

75

SCEnableNotation[False]
the usual 2d notation of the Mathematica FrontEnd is supported and the calculation with the Mathematica kernel done again.

? SCEnableNotation

SCEnableNotation[enable] sets whether to enable the package's own interpretation
of the 2-D form of integrals, products, sums, partial derivatives (∂x f), intersections (⋂) and unions (⋃).

SCEnableNotation[False];

0

∞
Sinz3 z

1
6
Gamma 1

3


Thus, if one wants to make use of the package ContourIntegration` again the SC package must be removed in order not to interfer with the pack-
age ContourIntegration` :

removePackage["SymbolicComputing "̀]
$ContextPath = $ContextPath /. "SymbolicComputing`"  Sequence[]
SymbolicComputing` * ; SymbolicComputing`Private` *
package SymbolicComputing` was removed

{ContourIntegration`, Notation`, Units`, CCompilerDriver`, ResourceLocator`,
StreamingLoader`, IconizeLoader`, CloudObjectLoader ,̀ PacletManager`, System`, Global`}

Reload the package ContourIntegration` (after removal of the SC package) :

ContourIntegration_P2.nb

76

Clear["Global`*"];
SetDirectory[NotebookDirectory[]];
Get["ContourIntegration`"]

■ Acknowledgement

The author wants to thank Oleg Marichev/WRI and Albert Tamazyan for the help for better understanding of subtle problems related to Meijer G-func-
tions and to allute to some new functions in the context System`MeijerGDump`. Concerning the problem of a consistent treatment of change of vari-
ables in integration the patient support of Youngjoo Chung/GIST [22] is gratefully acknowledged to provide the author with the latest version of his pack-
age SymbolicComputing.mx and give additional tips how to make effective usage of the relevant routine therein. In the same context thanks to various
contributors to the MathGroup thread [mg131569] “Change of Variables for Integrals” [21]. It should also be noticed that David Park had drawn atten-
tion to his Presentations`StudentsIntegral.m package which provides another approach to the same problem of change of variables as regards to integra-
tion. And, finally, the author is particularly grateful to Michael Trott/WRI for his tireless competent support answering - over the period where this pro-
ject became mature - numerous questions and gave profound advice to subtle technical problems in Mathematica.

■ References

[1] Robert Kragler "Contour Integration; a Procedure still Missing in Mathematica" Lecture at XVII. Mathematica-Tag, (18. Febr. 2016) WIAS/Berlin

[2] Robert Kragler “Contour Integration - or what is still missing in Mathematica, Part1 : Residues and Contour Integration” (2016)

[3] Robert Kragler “Contour Integration - a Procedure still Missing in Mathematica” ACA 2016, (4 Aug. 2016) Kassel/Germany

[4] Michael Trott & Oleg Marichev from The Wolfram Functions Site : http://functions.wolfram.com

[5] Eric W. Weisstein “CRC ENCYLOPEDIA Of MATHEMATICS” 3rd Ed. Chapman & Hall/CRC Press (2009) Vol. 1 p. 655

[6] Frank W.J. Olver, Daniel W. Lozier, Ronald F. Boisvert & Charles W. Clark “NIST Handbook of Mathematical Functions”, Cambridge Univ. Press (2010) ISBN
978-0-521-14063-8, Chapt. 5.12, p. 142

ContourIntegration_P2.nb

77

http://functions.wolfram.com

Wilhelm Forst & Dieter Hoffmann “Funktionentheorie erkunden mit Maple”, Springer-Verlag (2002), ISBN 3-540-42543-8, Chapt. 4.1, pp. 116-117

[8] Michael Trott “The Mathematica Guidebook for Symbolics”, Springer-Verlag (2006), ISBN 0-387-95020-6, Solutions 7a, pp. 1245-1248

[9] Wikipedia “Point in polygon”, URL http://en.wikipedia.org/wiki/Point_in_polygon;
Daniel Lichtblau in MathGroup Archive 2009 : [mg96475] “Testing if a point is inside a polygon” (Feb. 2009);
see also the discussion by Adriano Pascoletti, Rafael Torres Carot, David Park and Paul Wellin,
URL : http://www.mathematica-users.org/webMathematica /wiki/wiki.jsp?pageName=Notebook;PointInsidePolygon.nb

[10] M. Shimrat “Algorithm 112: Position of point relative to polygon” (1962) , Commun. ACM Vol. 5, issue 8 (Aug. 1962)

[11] Ivan Sutherland et al. “A Characterization of Ten Hidden-Surface Algorithms” (1974), ACM Computing Surveys Vol. 6, no. 1

[12] Paul Wellin “Programming with Mathematica; An Introduction” (2013) Cambridge Univ. Press, ISBN 978-1-107-00946-2 , pp. 419-427

[13] Wikipedia “Winding number”, URL : https://en.wikipedia.org/wiki/Winding_number

[14] Michael Trott / WRI (private communication Oct. 2013)

[15] David Park in MathGroup Archive 2000 : [mg25350] “Point inside a polygon” (Sept. 2000)

[16] Todd Rowland & Eric Weisstein from MathWorld, URL : http://mathworld.wolfram.com/Inside-Outside Theorem.html

[17] Thies Heidecke in Mathematica Stack Exchange “How to check if a 2D point is in a polygon?” (Aug. 2012)

[18] Roberto Luigi Brambilla (private communication Oct. 2013) and N. I. Muskhelishvili “Singular Integral Equation” Dover (1992), pp. 127

[19] Eric W. Weisstein, Michael Trott from The Wolfram Functions Site : http://functions.wolfram.com/notebooks/SpecialFunctions/MeijerG-Function.nb

[20] A. P. Prudnikov, Yu. A. Brychkov & O. I. Marichev “Evaluation of Integrals and the Mellin Transform” Itogi Nauki i Tekhniki, Seriya Matemat. Analiz (1998)
Vol. 27, pp. 3-146;
A. P. Prudnikov, O. I. Marichev & Yu. A. Brychkov “Integrals and Series. Vol. 3: More Special Functions.” Gordon and Breach (1990), Chapt. 8.2
“The Meijer G-Function Gp,q

m,n z
(ap)(bq) “, pp. 617-626

Lucy L Slater “Generalized hypergeometric functions” Cambridge Univ. Press (1966), ISBN 978-0-521-09061-2, Chapt. 4

ContourIntegration_P2.nb

78

http://en.wikipedia.org/wiki/Point_in_polygon;
http://www.mathematica-users.org/
https://en.wikipedia.org/wiki/Winding_number
http://mathworld.wolfram.com/Inside-Outside
http://functions.wolfram.com/notebooks/SpecialFunctions/MeijerG-Function.nb

Discussions in MathGroup : Alex Krasnov [mg131613] and Alexander Elkins [mg131572]

[22] Youngjoo Chung MathGroup [mg131582] with SymbolicComputing` package presented at WTC2011 (see https://symbcomp.gist.ac.kr).
David Park MathGroup [mg131569] with Presentations`StudentsIntegral package

[23] Private communications : Michael Trott / WRI (9/2013)

[24] Sadri Hassani "Mathematical Physics; A Modern Introduction to Its Foundations", Springer-Verlag (1999), ISBN 978-3-642-87431-4, Chapt. 10.3.9, pp. 283-285

[25] Arnold Sommerfeld “Atombau und Spektrallinien”, Verlag Harri Deutsch (1978), ISBN 3-87144-484-7
 p.655 - 659 ‘Mathematische Zusätze und Ergänzungen’, (4.) Ausführung einiger Integrale auf komplexem Wege.
 Ludwig Waldmann “Quantentheorie” Vorlesung, WS 1965/66 University of Erlangen

[26] Herbert Goldstein, Charles P. Poole Jr. & John L. Safko “Classical Mechanics” 3rd Ed. , Pearson Education, Inc. (2002), Chapt. 10.8,
‘The Kepler Problem in Action and Angle Variables’, p, 505-516

About the Author

Robert Kragler holds a doctoral degree in theoretical physics from University of Frankfurt/M. (1974) and a Dr. habil. from University of Constance
(1981). He is professor from Weingarten University of Applied Sciences where he retired in 2008. He uses Mathematica since 1989 for his research and
applied computer algebra methods particularly in his lectures courses on calculus and quantum physics .

Robert Kragler
Weingarten University of Applied Sciences
D-88241 Weingarten, Germany
kragler@hs-weingarten.de
http://portal.hs-weingarten.de/web/kragler/mathematica

Download : http://portal.hs-weingarten.de/web/kragler/Mathematica/ > Contour_Integration
Mma files (V10) : ContourIntegration_P1.nb, ContourIntegration_P2.nb, ContourIntegration.m
 MmaDay_WIAS2016_ContourIntegration.nb, ACA2016_ContourIntegration_P2.nb

ContourIntegration_P2.nb

79

https://symbcomp.gist.ac.kr
mailto:kragler@hs-weingarten.de
http://portal.hs-weingarten.de/web/kragler/mathematica
http://portal.hs-weingarten.de/web/kragler/Mathematica/

