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or
what is still missing in Mathematica

Part 2 . Construction of sophisticated Contour Paths,
Location of Poles inside/outside Closed Contours,
Special Functions Representations by Contour Integrals,
Transformation of Improper Integrals into Contour Integrals and
Investigation of Action Integrals.

Prof. Dr. Robert Kragler

Weingarten University of Applied Sciences
kragler@hs-weingarten.de

Abstract :

While the first part was devoted primarily to the main procedures cal cul at eResi dues and Cont our | nt egr ati on applied
to a wide class of complex functions f(z) which are rational polynomials, products of rational and trigonometric/ hyperbolic
functions, rational functions consisting of trigopnometric/hyperbolic functions. However, the investigations of the second part of

this paper are special topics which occur in the context of contour integration and are of interest in itselves. The issues
discussed in this paper are :
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(1) introduction of a language for creation and visualization of non-trivial integration paths consisting of polylines and circular
arcs such as contours y which exclude certain poles or branch cuts, or the sophisticated contour for Meijer G-functions
meandering around integer singularities but avoiding half-integral ones, or the Pochhammer double-loop contour for the
evaluation of the so-called Euler’s integral etc. ;

(2) criterium for the determination of poles inside/outside an arbitrary closed contour ;

(3) symbolic evaluation of the integral representation for special functions such as Meijer G-function or Euler's integral for Beta
function etc.

(4) transformation of improper integrals (along the real axis) into exotic contour integrals with the help of change of variables,
+ . . ;
e.g. fo * =L ax with variables z- rei? where ¢ ->2T” etc. ;

5) evaluation of action integrals such as ¢ py ar = A+22 - < dr by mapping the complex plane C on the Riemann sphere R ;
roor2

O Initialization

In order to execute the subsequent Mathematica code with the examples given the Mathematica package Cont our | nt egr ati on™ must be loaded
first. It should be located in the same subdirectory from where the current notebook Cont our | nt egr ati on_P2. nb is revoked.

Cl ear ["d obal “ %" 1;
Set Di rect or y[Not ebookDi rectory[]]
Get ["Contourl ntegration "]

C.\eMai |l _Attachnent\ Cont ourl ntegration_final

The Mathematica package comprises al definitions, procedures, replacement rules etc. which are required to run the main procedure Cont our | nt e-
gral etc.. After successful execution of the package the Mathematica version, date and time are shown.
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Ver si onDat eTi ne

Mat hematica V10..14.1 for Mcrosoft Wndows (64-bit) (April 11, 2016)
date= August 13, 2016; time= 15:21h

Special notations
For sake of better readability some special notations will be introduced and used throughout the notebook which are given here.

Numerical contour integrals 3?/ f (9 dzand fabf @dz,

Not at i on[ 98 f dz_ = Nintegrate[f_ , Evaluate[Join[{z_},¥_ 111 ,WrkingForm - tF]
Y_

Dt[z_1/.2_-»g_
Dt [6_]

Not at i on[ 9§_=b_f _dz_, , 4 = Nintegrat e[EvaI uat e[Si mpl i fy[f = ]] {6_,a_, b_}] , Wor ki ngFor m - tF]
6_=a_

Lineintegrals fut)f (R@®)) - dt[R]

Notation[j f_ . dt[r_ ] e Linelntegral[f_. Dt[r_1,£Z_,p_,r_] ]
L,p
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Symbolic contour integrals ﬁdpm polRange Onofff (2dz

Not at i on[ 98 f_dz_ << Contourlntegral [f_,z_, sel ect Pol es_, pol esRange_, onof f _] ]
sel ect Pol es_, pol esRange_, onof f _

Replacement Rules and Shortcuts

This are substitutionrulesfor {sin(@), cos(#) } and {sinh(d), cosh(#) } not included in the package Cont our | nt egr ati on

Z=.
i i 1 1 1 1 21
trigRul e: = {Sln[e_] - —[z - —], Cos[e_] -~ —[z + —], Csc[e_] -~ , Sec[e_] -» ,
21 z 2 z z - L 7z + L
z z
z - l) Z + L) 1 )
Tan[e_] - -i 2. Cot[@] » i —~—, d6o_ » — dz }; (* 2 = e @ %)
(z + 2 (- %) 2
z z
) 1 1 1 1 2 2
hypRul e: = {SI nhfe_ 1 - —[z - —], Cosh[e_]1 - —[z + —], Cschfe.] - — , Sech[e_ ] » —,
2 z 2 z z - L1 (z o 1)
z z
zZ - L Z + L) 1
Tanh[e_] - 2’ Coth[e_] - . de - — dz } (* Z = e %)
(z + i— (z - i—) z
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In order to make the code more transparent some shortcuts will be used throughout this paper :
fl=Flatten, sf=Simplify, fs=FullSimplify, sF=StandardForm, tF=TraditionalForm, cF=ColumnForm, ce=ComplexExpand, hF=HoldForm,
th=AbsoluteT hickness[2] and th1=AbsoluteThicknesq1] and polyFor m=PolynomialFor m[#, TraditionalOrder->True]& .

Some additional rules are defined :

AbsRule = {Abs[x_ +iy_]- \/ X2 + y? } , relm ={Re[#],Im[#]}& , ratChop[v_] := RationalizefChop[expr]] .
Global variables$<name> being used are: $«, $sing, $branchCut, $rootObj, $poles, $polesType, $order C, $i, $circ.
In Mathematica V10 there are three useful procedures in the package Conpl exAnal ysi s :

The following definitions circumvent the context Conpl exAnal ysi s°

{branchCuts, branchPoi nts, hol onorphicQ =
{Compl exAnal ysi s” BranchCut s, Conpl exAnal ysi s” BranchPoi nts, Conpl exAnal ysi s” Hol onor phi cQ };

? Conpl exAnal ysi s” BranchCuts Conpl exAnal ysi s” BranchPoi nts Conpl exAnal ysi s™ Hol onor phi cQ

BranchCuts|f, z] gives the branch cuts of f with respect to the variable z. BranchCuts|[f] returns the branch cuts of the pure function f.
BranchPoints[f, z] gives the branch points of f with respect to the variable z. BranchPoints[f] returns the branch points of the pure function f.

HolomorphicQ[f, z] returns True if f is a holomorphic function. HolomorphicQ works best if there are no symbolic parameters.
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B Prolog

Contour integration is amethod in complex analysis for the calculation of integrals along a closed path y in the complex plane C (see[1, 2]. In this sec-
ond part some more sophisticated applications will be demonstrated.

Topics listed in Abstract :

(1) introduction of alanguage for creation and visualization of non-trivial integration paths consisting of polylines and circular arcs such as contours y
which exclude certain poles or branch cuts, or the sophisticated contour for Meijer G-functions meandering around integer singularities but avoiding
half-integral ones, or the Pochhammer double-loop contour for the evaluation of the so-called Euler’s integral €c. ;

(2) criterium for the determination of poles located inside/outside an arbitrary closed contour ;

(3) integral representations of Meijer G-functions G [z

aiz, ..., ap .
bj_, ceey bq) !

(4) transformation of improper integrals (along the real axis) into ‘exotic’ contour integrals with the help of change of variables. It will be shown that
due to a suitable change of integration variable certain types of improper integrals (along the real axisR) can be transformed into contour integrals
with aclosed contour y in C.

(5) evaluation of action integrals such as4§ prdr = gS,/ynzzr—‘- r% dr by mapping the complex plane C on the Riemann sphere R ;

A detailed investigation of multi-valued functions f () with branch cuts and evaluation of corresponding contour integrals will be given in a subsequent
paper Part 3.

= Motivation for Symbolic Contour Integration

Contour integrationis a method in complex analysis for the calculation of certain integrals along a path y in the complex plane C; this method is closely
related to the calculus of residues as shown before. One use of contour integrals is the evaluation of integrals along the real axisthat are not easily deter-
mined by using only methods with real variables. The main applications of contour integration are :

o direct integration of a complex- valued function f(2) along acurve y in C,

e application of Cauchy’sintegral theorem,

e application of the residuetheorem.



ContourIntegration_P2.nb

e special functions often defined by contour integral representations

See, for example, the definition of the I'-function in terms of Hanked’ s contour integral as found on The Wolfram Functions Site [4] with URL :
http://functions.wolfram.con/ .

' = ﬁ fL e ttz1dt . The path of integration £ startsat oo + i 0 above the real axis, goes to p + i 0, encircles the origin in counter-clockwise

direction with radius p to the point p -i 0 below the real axis, and returns to the point oo - i 0.

1

@2riz_q

r(z_ ) := Contourlntegrate [et tZz-1, {t, £}]

A Mathematica procedure Cont our I ntegrate[f[z,t], {t, £}] issuggested for the (symbalic) calculation of the contour integrals. However,
this essential procedure is not yet implemented in Mathematica nor available elsewhere which is astonishing. There are several reason why the imple-
mentation has not been done (Private communications with M. Trott / WRI (2010) ).

This was the motivation for the author to implement a corresponding procedure which covers many nontrivial contour integrals but does not claim to
cope with all possible cases and situations occuring in the context of contour integrations.

Special notation for contour integrals

Sﬁse| ect Pol es_, pol esRange_'cm”_f_dlz_ < Contourlntegral [f_, z_, sel ectPol es_, pol esRange_, onoff _]

? Contourl ntegral

Contourintegral[f, z, selectPoles_All, polesRange_{ }, onoff_"On"] evaluates contour integrals symbolically in the complex
plane C by means of the residues for the poles selected. 'f' denotes the integrand f(z) of the contour integral where 'z' is
the integration variable ze C. The parameter 'selectPoles'={ 1, j, ... } a subset of poles can be selected to be considered
for the residues; default value for 'selectPoles' is All. The sum of residues is evaluated using calculateResidues which
has the same parameter list as Contourlntegral. For the final result the sum of (selected) residues is only multiplied
by 2w and returned in the variable J for the contour integral. With "No" intermediate printout is complete suppressed.


http://functions.wolfram.com/
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Contourlntegral[ > 2 {2, 3}, {}, O’l]

(Z3 + 1)

The same result is obtained with the special notation with the symbol 55

J = —l dz
(2.3}, (3,"No" (28 4+ 1)?

2
all residues: = resz= 75; sel ect Pol es= {2, 3}
|

. 1 41ir
Contour integral 7= ¢$———dz = -

(l+23)2 9

41
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B (1) Creation and Visualization of Contours

In order to evaluate real-valued integrals the integrand f(x) is continued to the complex plane € and the integration interval on thereal axis (a,b) e Ris
extended to aclosed curve y by attaching in the simplest case a semi-circle in the upper/lower half-plane H,,_ . Often the contribution of the semi-circle
totheintegral vanishes if the radius R - oo so that only the real-axis part of the integral remains.

o Contour created by polylines with showPol ygonal Cont our

In the simplest case a closed contour is made of alist y; of points Py = (X +i Yx) € C which are connected by polylines. This is achieved with the
procedure

? showPol ygonal Cont our
Rectangular and diamond-like shaped contours
Here, various contours (of rectangular and diamond-like shape) are shown

Z=.;
¥yl1=(1+4.5 -1+42.5 -1-4.5 1-4i.5 1+i.5};

¥2 = {1, &, -1, -1, 1};

¥3=(1+4.5 4, -1+4.5 -1-4.5 -4, 1-42.5, 1+1.5};
showPol ygonal Cont our [{{¥1}, {¥2}, {¥3}}]
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{o| 1} {0, 1}
{-1. 050} 5 {1.,0.57} {-1., 0.5} {1.,0.5 0}
{-1. -0.5} ~ {1.,-0.5f} {-1.,-0.5 1} {1.,-0.5 1}
{0, |-} {0, -}

Polygonal contour with vertex coordinates

Furthermore, the coordinates of vertex points (defining the polygonal contour) and additional points (such as roots, singularities etc.) given in thelist cnt
pl XPt s can be displayed with showPol ygonal Cont our 1 which isan improved version of the procedure above.

? showPol ygonal Cont our 1

showPolygonalContour[ylist:{{_}..}, range_:Full, cmplxPts_:Null] draws n (n=1|2]|...) polygonal closed contours y1,y2,...y, Within
the 'range'= {{Xo,X1 },{¥o.Y1}} (default is Full) where the coordinates of the vertex points P; € C are shown and the direction
of the contour path is indicated by arrows centered halfway on each of the connecting (poly)lines between subsequent
vertices P;,Pi,1. 'cmplxPts' is the set of points (default is Null) enclosed by the contour with coordinates given in C.

Here, for example the complex roots of the polynomial Ps(2) == 0 are displayed in addition :

10
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z3 1
Plz_]:=2%-—-2%+=
2 2

€=z/. Solve[P[z] ==0, z];

cnpl xRoots = (#[1] +4 #[2]) & /@ ({Re[&], | M[£]}")

y4=2{1, i, -1, -i, 1};

showPol ygonal Cont our 1[ {{¥4}}, {{-3.1, 3.1}, {-3, 3}}, cnpl xRoot s]

}

{1 1 i-+/3 1 i+3 1 1
2 2 2 2 \/2—\/2—

11
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Circular contour

Because a contour path y consists of polylines and arcs the built-in routine Ci r cl e[ { X, y}, r, {t het al, t het a2} ] should internally be repre-
sented by a polyline. But this seems not to be the case so that instead a user-defined version circl e[ { x, y}...] was created with an internal poly-
line representation which admits further processing of closed contours in the context of the Point-In-Polygon problem.

?circle

The subsequent test shows various circles and dlipsoids (theinternal representation of which are polylines) using several instances of the procedure
circle.

Procedure circle

In practice, contours in the complex plane € or in some half-planesH.,- or H;, turn out to be more complicated if poles/'singularities z areto be en-
closed or excluded. Sometimes, in order to avoid branch cuts the contour encircling this discontinuity will be deformed into another equivalent contour.

o Creation and visualization of contours more involved using cont our Pat hGener at i on and
cont our Pat hGr aphi c

Thus, apart from trivial cases which are taken care by showPol ygonal Cont our 1 the construction of these contours could become quite involved
so that it is suitable to have procedures such as cont our Pat hGener at i on and cont our Pat hG aphi ¢ for the generation and visualization

12
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of more sophisticated contours y .

? cont our Pat hGener ati on

“"contourPathGeneration[pts,contour_:All,opts___ ] creates the contour in terms of polylines. ‘pts' is the list of points (xx+iy,) defining the
contour in the complex plane C. 'contour' is the index (connectivity) list numbering the sequence of points to give polylines and
circles. For default value 'All' the complete index list is interpreted as a single polyline line[{1,2,3,...}]; circular arcs are defined as
sublists {...,{i,j,k},...}. If an arc comprises more than 3 points, e.qg. {i,j,k,I,m} = circ[{i,j,k,|,m}], then intermediate points (here k,l) are
dropped for the calculation of the corresponding arc; if the index order is inverted to guarantee correct orientation of an arc, e.g.
cir[{3,2,1}], then the coordinates of the resulting (circular) polyline will be reversed with adjacent duplicates of coordinate points
being removed. If the global variable $branchCut # { }, e.g. {X;+7 y,,....Xn+/ y,,}, then an additional contour is created encircling
the branch line spanned by P; and P,. Two lists, {coordsContour,coordsBranchCut} are returned (which may be further used
for the procedure PointinPolygonQ to determine which poles/singularities are inside the contour). ‘coordsContour' describes
the list of coordinate pairs of the resulting contour whereas 'coordsBranchCut' describes the contour encircling the branch cut."

? cont our Pat hGr aphi ¢

contourPathGraphic[pts,singPts,contour_:All,opts] shows a contour path which consists of arcs and polylines going through 'pts'. The list of points
'‘pts' which determines the blue contour are P;=x;+i- y; in the complex plane C. The points 'pts' are shown as red dots. 'singPts'
denotes a list of singular points which could be included or excluded from the contour and are shown in black. Index list ‘contour’ (
e.g. contour={{1,2,3},3,4,{4,5,6},6,7} ) defines the sequence of circular arcs and polylines constituting the contour path. The sublists
{ ... {i.i,k}I,m,n,...} = circle[{i,j,k}] specify arcs through 3 points { P;,P;,P« }. Interlaced indices (besides these sublists for arcs), e.g.
{....,)m,n,..} = line[{...,I,m,n,...}], specify polylines. The default value for ‘contour' is All for which a single polyline line[{1,2,3,...,n}]
results. For a closed contour the last point is equal to the first point : P,== P;. There is an optional parameter opts___ which specifies
e.g. the coordinate range of the plot using PlotRange-> {{xo.X1},{Yo.y1 }} respectively All. Moreover, with the global variable
$branchCut a branch cut can be drawn. Thus $branchCut={0+i 0,a+ i0} denotes a branch cut along the positive real axis from x=0 to a.

13
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For the description of an arbitrary contour  which might be open or closed a proper language is provided as regards to the points Py, ... P, characteriz-
ing an arbitrary contour path :

e the vertexlist pt s isalist of points {P;, P,, P3, ...} inthe complex plane C which define the contour;

e anindexlist cont our (eg. contour ={{1, 2, 3,4}, 4,5, {7, 6, 5}, 7, 8} ) defines a sequence of circular arcsand polylines which constitute the con-
tour path. The sublists{{1, 2, 3, 4}, ... , {7, 6, 5}, ... } specify circular arcs, e.g. circ[{1,2,3,4}] and circ[{7,6,5}], going through (at least) 3 points, for ex-
ample {P-, Pg, Ps}; reverse ordering of points changes orientation for the circle from counter-clockwise to clockwise direction. The interlaced indices
such as{... 4, 5, ... ,7, 8} specify polylines, i.e. ling[{4,5}] and ling[{7,8}]. With the help of thiskind of index list even very complicated contours can eas-
ily be defined.

e Branch cuts are taken into account through the global variable $br anchCut which isalist of branch points {P;, P2, ... }in C.

In the following graph the contour is defined by theindexlist cont our ={{5, 3, 1}, 5,6, {6, 7, 8}, {8, 9, 10}, 10, 11} and the branch cut
$br anchCut isgiven by two branch points{ (. 35+04) , (. 85+041) } . The procedure cont our Pat hGener at i on generates polylines with inter-
mediate points so that the arcs look smooth. The branch cut is given as a dashed black line which is encircled by a green closed contour line running
above and below the branch line.

0.5}
[ 2 @9
. . 5 ]
05 0 @85 0.6 0898

Thefirst graph shows theresult of cont our Pat hGr aphi c[ pt s, si ngPt s, cont our ], the second graph illustrates the auxiliary points

14
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coor dsCont our being used for the contour and the third graph shows coor dsBr anchCut which displays the branch cut. These (auxiliary) point
listsare provided by { coor dsCont our, coordsBranchCut}= cont our Pat hGener ati on[ pts, contour]

Branch cut is taken care by the procedures
? branchCut Cont our showBr anchCut

branchCutContour[branchPts] creates a contour encircling a given branchcut which is defined by the global

variable $branchCut = {-a+b i,a+b i}. A list of coordinate pairs 'bcPts' describing the branchcut contour is returned.

showBranchCut[branchPts] displays a branch cut spanned by

'‘branchPts'. It is shown as a dashed black line encircled clockwise by a green closed contour.
which create auxiliary points to define a smooth branch cut contour to be displayed as a green line encircling the dashed black branch line spanned be-
tween given branch points.

branchPts = {(.35+04), (.85+041)};
bcPt s = branchCut Cont our [br anchPt s]
Gr aphi cs[ showBr anchCut [branchPts], | mageSi ze » 150]

{{0.35, 0.04}, {0.321716, 0.0282843}, {0.31, 0.}, {0.321716, -0.0282843},
{0.35, -0.04}, {0.35, -0.04), {0.85 -0.04}, {0.85, -0.04}, {0.878284, -0.0282843},
{0.89, 0.}, {0.878284, 0.0282843), {0.85, 0.04}, {0.85, 0.04}, {0.35, 0.04}}

Auxiliary procedures for the creation of circular arcs are available in the package Cont our | nt egr ati on.

15
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? ArcsAndLi nes Arc3 Arc circle
? vect Angles Orientation arrowLi st
Varioustypes of contours

A sdlection of various types of contours is shown below :

P

Closing a contour at infinity

In order to close a contour in € in most cases a semi-circle or full circle is added which contribution to the integral vanishes in thelimit R - oo so that
only the real-axis part of theintegral remains. But often there are situations encountered (such as the graph meandering around a number of points on the
real axis) where the contour has to be closed either in theright or left half-plane H,, . To cope with this situation it is suitable to introduce an additional
parameter cl ose = {+1, -1, +i, +i} whichindicates that the contour is closed either in the right/left half-plane H,, or in the upper/lower half-
plane H. of the complex plane C with acircular arc with radius R—oo.

16
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close= +1; (% right half-plane H, : {z

m

C| Re(z) > 0} =)
C| Re(z) < 0} =)
C| Im(z) > 0} )
C| Im(z) < 0} =)

close= -1; (x left half-plane H : {z

m

close = +i; (% upper half-plane H, : {z

m

close= -i; (% |lower half-plane H_. : {z

m

Likewise, the parameter i nf = { o, - o, o, - 10} could be introduced with the meaning that the contour ¥ will be closed (at infinity) by a circular
arc R—oo in the right/left half-plane H,, or in the upper/lower half-planeH. of C.

inf = {0, -0, L0, —Lo®}; (% H,H ,6 H, H_ *)
Mathematica has implemented two commands Di r ect edl nfi ni ty and Conpl ex| nfi ni ty for representing infinity.

? Directedinfinity Conplexlinfinity

DirectedInfinity [] represents an infinite numerical quantity whose direction in the complex plane is unknown.
DirectedInfinity [Z] represents an infinite numerical quantity that is a positive real multiple of the complex number z. >

Complexinfinity represents a quantity with infinite magnitude, but undetermined complex phase. >

According to Weisstein [5] complex infinity is an infinite number in C whose complex argument is undefined. In Mathematica this infinite number
is represented symbolically by Conpl ex| nf i ni t y and the notation o is used.

{ DirectedInfinity[l], Directedinfinity[-1], Directedinfinity[di], Directedlnfinity[-i],
Directedinfinity[1+4], Directedinfinity[1-4], Directedinfinity[]} /. {Conplexlnfinity-»Go}

, @O

1+]l 1—]]. N}
V2 2

foo, ooy i (i) o,

Examples below illustrate several contours which are created with cont our Pat hGr aphi ¢ :

17
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s Example 1: Path closed in H,

Here, a contour y is created which liesin the upper half-plane H.. . The function f (2) = o possesses four polesinC : {x%— L ER ¢§+ EZE} but

1+22+7% 2

only thepoles z34 = + §+ % are located in H,.

s Example 2: Path closed in H, with/without inclusion of polein 0

The closed contour is (essentially) inH,. and includes/excludes the pole zy = 0 (by a small semi-circle around the origin) but contains the pole z; = %i .
H, H,
;‘

18
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s Example 3: Sectional contour in H,

Given are three poles {—1, %— % %+ “f} as solution of z3 + 1 == 0. Only the pole z; = {%+ “f} is located inside the sectional contour
y=C+Cr+ G

C
Cr

C>

C1

s Example 4: Rectangular contour around branch cut {0,1}

The contour y avoids the branch cut {0,1} . The orientation of the (green) branch cut contour is opposite to the orientation of the (blue) contour.

C

s Example 5: “Keyhole contour” in € excluding branch cut {-e, 0}

Here, the contour y is constructed to avoid the branch cut on the negative real axis. Notice, the reverse ordering of points{7, 6, 5}, otherwise thecircle is
flipped. This type of contour avoiding either the negative or positive real axis and encircling the origin is colloquialy called “keyhole contour”.

19
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branch cut

Obviously, the keyhole contour is equivalent to the contour around the branch cut.
s Example 6: “Keyhole contour” in € excluding branch cut {0,+oo}

Here the contour y avoids the branch cut on the positive real axis, i.e. extending from the origin {0,0} to {0, R} (with R— o). The origin is clockwise
encircled by asmall circular arc whereas the orientation of the large circular arc is anti-clockwise.

C

s Example 7: “Keyhole contour” in € excluding branch cut {r1, r>}

Here, the (green) contour around the branch cut (between r, and r,) on the positive real axisis deformed (“blown up”) such that instead the singularity
inzg = Oisencircled counter-clockwise by asmall circular arc whereas the branch cut is encircled clockwise by alarge circular arc with radius R—» oo .

20
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s Example 8: “Double keyhole contour” in € excluding branch cut {r1, ro} in favor of poles {ro, 'e }

Action integrals of typefﬁ pr dr =SE /ﬂ+2"f5-§ dr can be casted into the form f,/l— @+ ”r% dr = § %V(z—rl) (z—-r5) dz with the

transformation {A » 1, B > —(r1+r2) /2, C—> —ry1-r,}. Thereresult abranch cut between r; < z < r, and two singlular pointsat ro = 0 and

[eo = ©0O.

The (green) contour around the branch cut can be “blown up” to a double keyhole contour to enclose the singPts = {rqg, r.} instead. Details for the
evaluation of the contour integral are discussed in Section 5, example 1.

21
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s Example 9: Meandering contour avoiding half-integer poles {% % % }

In order to evaluate the integral representation of the Mejer G-function Gﬁ(z z | 31’/33) acontour path has to be generated which includes only the in-

teger poles{..., -2, -1, 0, 1, 2, 3} but avoids the half-integral poles{%, % %}

e Generation of the set of data points pt s9 defining the open contour path £
A list of datapointsci r cLi st for an alternating sequence of circular arcsis created automatically; starting and end points for the polylines are added.

Tothelast pointinci rcLi st,i.e Pe= (14—3+012) , ibisadded : P;; = (14—3+b12).
Similarly, for the prepending points: P, = Pe+ai = (14—3+a12), P,=Pe—i= (14—3—12) andP3=P,—i= (%—i) .
In thisway the list defining alternating semi-circles is supplemented by two polylines at P, and Pe . For a, b some arbitrary values (e.g. R=5) areas-

sumed which could go to Foo and it is assumed that the contour is closed on the left by an semi-circle with radius R— co.
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The integer poles{..., -4,-3,-2, -1, 0, 1, 2, 3} and half-integral poles{%, % %} aregiven assi ngPt s11 and si ngPt s22:

The contour £ goes from (14—3 - :zoo) to (14—3 +1i oo) and must be closed on the left side, i.e. in H; because only there the integrand will vanish for z—

oo . Hence, with this counter-clockwise orientation of the contour £ all singularitites with integer value (red points) from —n, ..., 0, 1, 2, 3, are in-

3

cluded, excludes are, however, the singularities for half-integral values % > ;l ... (green points) :

2

-1}

—2F
e Close contour path Lgesed inH,

In order to close the contour in the left half-plane H, an ancillary point P19 on the negative real axisis added to pt s10. Closing the contour £ by
adding acircular arc (with radius R—» oo) which is defined by {18, 19, 1} one obtainsfor Ly the following gray-shaded semi-circular region which

for radius R» oo finally turns out to be the left half-plane H, . All red dots, i.e. theinteger poles{..., -2,-1,0, 1, 2, 3} , will contribute to the evaluation

of the contour integral of the Megjier G-function Gi'%(Zz | ;/33) :

To display the domain inside a closed contour path Ly.q @S agray-shaded areathe procedure gener at eCl osedCont our Pat h is used.

? gener at eCl osedCont our Pat h
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generateClosedContourPath[pts,singPts,contour_:All,opts] generates a closed contour path and returns a pointlist defining the closed contour.

Finally, the closed contour £Ly0«q iS displayed by the procedure showPoi nt sl nCont our ; the interior is shown as a gray-shaded area, singular points
inside/outside the contour are colored in green/red as already before.

—
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s Example 10: Pochhammer double-loop contour ypn for Euler’s Integral

For the Euler integral §}’Ph ta-1(1-1)>1dt = —4 €7@+ sin(r a) sin(xr b) B(a, b) with a,b € € the Pochhammer double-loop contour Ypn starts

from an arbitrary point ( P; = ((1-.173%) ) intheinterval {Sy, S1} = {0, +1}, encircles S; and then S clockwise, afterwards encircles S; and then S
anti-clockwise, and returns to P;. A short-hand notation for the Pochhammer contour pathis (S, +, Sy+, S;—, S —) (seeeq. [6] ).
B(p, g) isthe Beta function.

(i) With the procedure cont our Pat hGr aphi ¢ the Pochhammer double-loop contour path can be easily created.

(if) Another more conventional approach (using arcs, lines, arrows and dots) of the Pochhammer contour path is given by Forst & Hoffmann [7] ; the
original code was transcribed from Maple to Mathematica. Note, the contour path is symmetric with respect to {-1,1} instead of {0,1}.

(iii) An degant representation of the Pochhammer contour pathis given by M. Trott [8] interms of a parametrized path.

ve N

: =
S
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B (2) Points inside/outside a closed Contour

For the evaluation of acontour integral it isimportant to know which singularities are enclosed by the contour y. However, in Mathematica thereis no
built-in procedure to decide which of the given singularities are inside and which are outside the closed contour. Therefore this section will deal with the
so-called point-in-polygon problemwhich is not only of interest for the evaluation of contour integrals (where the polygon is aclosed path y in the com-
plex plane C ) but was aready investigated in computational geometry and in computer graphics. Hence, the problem can be considered as a geometrical
one for which two commonly used algorithms are available : one is the ray crossing algorithm the other is the winding number algorithm which will be
discussed subsequently [9].

m Ray crossing algorithm

Theidea of the ray crossing algorithmis to draw a horizontal line starting at apoint P in question and extending to infinity. To find out whether point P
is located inside or outside a polygon (which must not necessarily be convex) one tests how many times aray, starting from point P and going in any
fixed direction, intersects the edges of the closed polygon. If P isnot placed just on the boundary of the polygon, the number of crossings is evenif Pis
outside, and odd if inside. Thus this algorithm is therefore also known as even-odd-rulealgorithm[10,11]. The case of non-convex polygons is a bit
more intricate but can be handled using this algorithm too. Moreover, one can omit considerating horizontal edges as afictitious horizontal ray will
never cross them. Furthermore, one can also delete those edges which are entirdly above or below the y-coordinate of the point P = (x,y).

A very effective implementation of the ray crossing algorithm is the procedure given by P. Wellin [12] (which was slightly improved by the author to
make sure that all points inside the closed polygon are colored green whereas points outside are colored red), e.g. see the procedure Poi nt | nPol y-

gonQ.

Poi nt I nPol ygonQ poly : {{_, _} ..}, pt : {x_, y_}, onoff : "OFf"] :=
Modul e[ {tri, el, e2, e3, e4 , x1, yl, x2, y2},
(* ---- Ref : Paul Wellin "Programm ng with Mat hematica, An Introduction" (2013), Chapt. 10.4 pp. 419ff ------ *)
Triangl eArea[tri : {vl , v2 , v3 }] := Det[Map[PadRi ght[#, 3, 1] & tri]]/?2;
Clear[el, e2, e3, e4];

el
e2

Partition[poly, 2, 1, 1];
Del et eCases[el, {{x1_, y1 }, {x2_, y2 }} /; yl ==y2 ]; (* elimnate horizontal edges *)
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e3 = Del eteCases[e2, {{x1_, y1 }, {x2_, y2.}} /; (Mn[ y1, y2 ] =2y || Max[ y1, y2 ] <y)l;
(* del ete edges entirely above/ bel owy-coord of pt *)
e4 = Map[ Reverse @ Sort By[#, Last] & €3 ];
bool e = Odd{Q Count [ Tri angl eArea[ Joi n[#, {pt}]] & / @ed, _?Positive]];
print[onoff, " pt(x,y)=", {x, y}, " = (T|F)=", boole ];
Ret ur n[ bool €] ;

1;

Hereisatest for arectangular contour y and several test points
? Poi nt | nPol ygonQ

PointinPolygonQ [poly:{{_,_}..},pt:{x_,y_},onoff_:"Off"] tests whether points 'pt' are located inside or outside the closed polygonal contour 'poly'.
A list with boolean variables {True|False} is returned if the points lie inside (True) or outside respectively on the contour (False).

1 1 1 1 1
Y = {{ 1, E}’ {- 1, E}’ {- 1, _E}’ {1, _E}’ {1, E}}; (*» contour =)

Poi nt | nPol ygonQ[y, {0, .2}, "Of" ]
Poi nt I nPol ygonQ[y, #1 & /e {{0, .2}, {0, .6}, {-.5 -.3}, {.5 .5+10°'%}}

True
{True, Fal se, True, True}
= Winding number algorithm

The underlying idea of the winding number algorithmisto compute for point P its winding number w.r.t. the polygon [13]. If the winding number is
non-zero, then P lies inside the polygon otherwise P is located outside or on the boundary of the closed polygon. One way computing the winding num-
ber isto sum up the angles extended by each side of the polygon. Denoting by V; the set of N vertices defining the polygon one calculates the following
sum S = YN71(L(Viy1 =P, Vi=P)+ L(Vy =P, V1 = P)) . If S#0then Pisinsidethe polygon. If S ==0then P isoutside with angle L(a,b) return-
ing avalue intheinterval (-, x].
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An efficient implementation of this approach is given by M. Trott [14] with the procedure Poi nt | nPol ygon(2 .

? Poi nt | nPol ygonQ@

Poi nt | nPol ygon@Q [poly_, pt _, onoff : "Of"] := insidePol ygonQCF [pol y] [pt ];
i nsi dePol ygonQCF [slist ] := insidePol ygonQCF [slist] =
Mbdul e [ {segment Li st , segment Li st Lengt h },
(¥ == —mm e © Mchael Trott (Oct. 2013) ——-—m—m e *)
segnentList = Partition[|If [Last [slist] === First [slist], slist, Append[slist, slist[l11]11], 2, 11;

segnent Li st Length = Lengt h [segment Li st ];
Functi on [{segnents, A},
Conpi l e [{{viewPoint, Real, 1}},
Modul e [{sum= 0., px =viewPoint [1], py = vi ewPoi nt [2], gqlx, qly, g2x, g2y},
Do[ {{glx, qly}, {g2x, g2y}} = segnents [KI];
sum = sum + ArcTan [ (qlx - px) (92x - px) + (qly -py) (92y - py),
(qly - py) (g2x - px) - (q1x -px) (92y -py) 1. {k, A}1;
bool e = Round [sum] =!= 0 ]
1
] [segnent Li st , segnment Li stLength ]

Again, hereis atest for arectangular contour with alist of points { {0, .2}, {0, .6}, {-.5, -.3}, {.5, .5}};thesecond point lies outside,
the forth point is slightly above the boundary.
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1 1 1 1 1
y:{{ 1, 5} {— 1, 5} {— 1, —5} {1, —5} {1, E}} (* contour =)
Poi nt | nPol ygon@[y, {0, .2}, "Of" ]
Poi nt I nPol ygonQ[y, #1& /e {{0, .2}, {0, .6}, {-.5 -.3}, {.5 .5+107'%}}

True

{True, Fal se, True, Fal se}

See also the implementation of the winding number approach by David Park [15] using the procedure W ndi ngNunber which applies
Segnent Cr ossi ngl ncrenent .

Another variant of the winding number algorithm is to compute the winding number by integrating 1/z (centered at point P : z = Xp+i Yp ) along the
polygonal contour y in the complex plane. Applying Cauchy’s Residue Theorem [16] may not be very efficient in comparison to other approaches given
above but still this method isin the context of contour integration n(z, , ¥) = L ﬁﬁ dz because complex (numerical) integration isfeasiblein

2ri

Mathematica.

Another implementation with Poi nt | nPol ygon@Q3 was suggested by T. Heidecke [17] and similarly by R.Brambilla [18] following an idea of
Muskhelishvili.

? Poi nt | nPol ygon@3

Poi nt | nPol ygon@3 [poly_, pt _, onoff : "Of"] := InsidePol ygonQ[poly, pt, onoff ]
I nsi dePol ygonQ[pol ygon_, point _, onoff : "Of"]:=
Modul e [ { wn, bool e },

wn = W ndi ngNunber [pol ygon, point, onoff ] ;

If [wn === 1, bool e = True, bool e = Fal se];

Ret ur n [bool e] ;

1

W ndi ngNunber [contour _, point _, onoff : "OFf"]:=
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Modul e [{wn, zp},
(% ——mm—m e - © Thi es Hei decke, Mathematica Stack Exchange (Aug 2012) ---—--——-————- *)
zp = Conpl ex ee point ;
Of [Nintegrate::ncvb, Nintegrate::slwon];

fRange = Eval uate @ {g, Sequence ee (Conpl ex eee Append [#, #[1] ] & [contour ]) };

print [onoff, " point zp= ", zp, "; zRange: ", ZRange ];
wn = Round @Re@Chop[ ﬁNI ntegrate[g_lzp, £Range ]]
On[NI ntegrate::ncvb, N ntegrate::slweon];
Ret urn [wn]
]:
contour = {1, =}, {-1 =}, {-1 -2} {1 -2}, {2 2}}; (« contour x)

Poi nt | nPol ygon@[cont our, {0, .2}]
Poi nt I nPol ygon@[contour, #, "Off"]1& /e {{0, .2}, {0, .6}, {-.5, -.3}, {.5, .5+10°"}}

True

{True, Fal se, True, Fal se}
Incorporated in the package Cont our | nt egr at i on isthe procedure

? Poi nt 1 nPol ygonQ

PointinPolygonQ [poly:{{_,_}..},pt:{x_,y_},onoff_:"Off"] tests whether points 'pt' are located inside or outside the closed polygonal contour 'poly'.
A list with boolean variables {True|False} is returned if the points lie inside (True) or outside respectively on the contour (False).

m 2.1 Rectangular contour

Thesimplest test is arectangular polygon for which points inside/outside are shown in green/red.
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The graphics showing the points colored in green or red according to the their location ether inside or outside the closed contour is achieved by the pro-
cedure showPoi nt sl nCont our

? showPoi nt sl nCont our

showPointsinContour [poly,ptsinOut,onoff_:"Off",opts___] draws for a given closed contour 'poly' (which is a polyline) and a number of points
'‘ptsinOut’ a graphics which shows the contour (in blue). Those points located inside the contour are given in green; those points
outside or on the contour are shown in red. The decision whether points are inside or outside the closed contour is made using
PointinPolygonQ. The global variable $Pts = {inPts,outPts} contains two distinct sets of points being in/outside the contour.

m 2.2 Elliptical contour
The next example is an elliptical region (which is represented as a polyline).

The necessary steps of the previous example can be combined into a single procedure showPoi nt s| nCont our

m 2.3 Circular arc contour
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Points in several circular arc contours

m 2.4 Closed contour for Meijer G-function

Closed contour for the Meijer G-function Gi’%(Z z | 31’/33)
Here, the task is to generate a contour which meanders around integer poles at {-4,-3,-2,-1,0,1,2,3} and avoids half-integral poles at {% % g } and is

closed in th left half-plane H; . In order to close the contour in [H; an ancillary point P;g on the negative real axis must be added to the point list given.
Thus the contour £ is supplemented by a circular arc (with radius R— oo) which is defined by {15, 16, 1}. Finally, the resulting closed contour £gese

will become the following gray-shaded semi-circular region which as R— oo turns out to be the left half-plane H, . In thisway all green dots, i.e. theinte-

ger poles {..., - 4, - 3, -2, -1,0, 1, 2, 3} , will contribute to the contour integra determining the Megjier G-function Gi’%(Zz | 31’/33) .

The corresponding procedure for closing a given contour is

? gener at eCl osedCont our Pat h
generateClosedContourPath[pts,singPts,contour_:All,opts] generates a closed contour path and returns a pointlist defining the closed contour.

The procedure gener at eC osedCont our Pat h generates aclosed contour in the form of apolyline.

Thevariable cl osedPol yl i nePt s to be returned contains a pointlist which allows further processing of the closed contour such as gray-shading of
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theinterior domain etc. .

Finally, the closed contour Lgesq iS displayed by the procedure showPoi nt sl nCont our ; the interior is shown as a gray-shaded area, singular points
inside/outside the contour are colored in green/red as before.
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B (3) Integral representations of Meijer G-function : G{,‘]q”(z| gigp)
... bg

As already mentioned above many special functions are given in terms of integral representations which involve contour integrals. Below, as example
for integral representations of special functions the Meijer G-function will be studied in detail.

Asgiven eg. in [4] The Wolfram Functions Site with URL http://functions.wolfram.com/ the Meijer G-function can be defined by means of the follow-
ing contour integral

m n
I1 T'(bj+s) [ F'1-g-9)
""’an’an+l""’ap)=—271ri §J=1 =1 z3ds [; {m,n,p,g}eNAm=qgAn=p

G (z| %
p.q bl, ...,bm,bm+1, ...,bq y .ﬁlr(a’._'_s).ﬁlr(l_bj_s)
j=n+ j=m+

The Meéijer G-function is given through the Mdlin-Barnes integral representation where the I's denote the usual Gamma functions. The contour £ sepa-
rates the poles of the products of T'-functions in the numerator, suchasTI'(b; +s) with (j =1, ... m) fromthoseof I'(1—a;—9s) with

(j=1,... n)inasophisticated way. There are three possibilities for choosing the contour £ (for details see Not at i ons. nb of the Wolfram Functions
Site[19] ). The Mathematica implementation follows the definition suggested by Prudnikov et al. (1990) [20] .

? MeijerG

MeijerG[{{as, ..., an}, {81, ..., ap}}, {{b1, ..., Bm}, {Bme1, ..., bg}}, 7] is the Meijer G function Gpm(;‘(z a, ..., ap)_ -

by, ..., by

Fromthelnpmform '\/E|JerG[{{a.l, ceey an}a {an+l, ceey ap]’]’a {{bll ceey br‘r}a {br'r+l, ceey bq}}a Z]thetradltlonal formWhICh IS

ai, ..., ap] |S obtaln&j eg

- mn
found in literature GJJ\] (z by .. b,

MeijerG[{{a, b}, {c}}, {{d}, {e}}, z]1//hF //tF
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12(-] a b, c
G?"Z(Z‘ de )
Here, hF and t F are shortcuts for the procedures Hol dFor mand Tr adi t i onal For m

3 Examples of special functions’ representation in terms of MeijerG functions

In many cases Meijer G-functions reduce to simpler special functions. A list where Meijer G-functions are reduced to simpler specia functions is given
in Appendix 2 : Representation of special functions in terms of Mejer G-functions [19] . Here three cases will be discussed in some detail. ,

Example 3.1 Gf’zl(Zzl 31/23) < Bessel function Ks(z) = fa112(2, )= 225 T(3-5s) (s -3) (s +3)

In this example the calculation of the contour integral is done step by step in order to show the approach. Note that for given Gi% the numerator simpli-

fiesto 1 due to the empty products H]P;iz sowie Hﬁ§§3 (m=2, n=1) and the MejerG function simplifies to the Bessd function K3(2) .

I\/bijerG[{{é}, {}}, ({3, -3}, (I} 22] //tF

Vi () Ks(2)
Step 1: Find and visualize the singularities for the integrand fs14,
Theintegrand is extracted by application of S| at er For mto the MeijerG function given.

(f2112[Z2_, S_] =System MeijerGDunp Sl ater Form[ MeijerG[{{1/2}, {}}, {{3, -3}, {}}, 221, s1) //tF

1
2szs F[E - s) I'(s—3)I'(s+3)

With the help of procedure f i ndSi ngul ari ti es4SpecFunc theinteger-valued singularities of 1, are determined in the range s={-10,4}.
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?findSi ngul ariti es4Speckct

findSingularities4SpecFct[specFct,s,polesRange,onoff_:"On"] determines the singularities for special functions f(s)="'specFct'
(such as MeijerG functions, which do not have an obvious denominator for poles). The range of the singularites is
confined by 'polesRange’; the singularities found are returned in the global variable '$poles' in order to be displayed in
contourPathGraphics. The global variable '$polesType' with values 'Integer|HalfInteger|All' selects the poles correspondingly.

$pol esType =Integer; (% only integer poles are considered x)
$onof f = True;

findSi ngul arities4Speckct[f2112[2, S], s, {-10, 4}, "On"7J;

$pol es ; (» poles deternined by findSingularities =)

$pol esType = Integer poles : (-10, -10, -9, -9, -8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -1, 0, 1, 2, 3}

1
r-functions product F(s)= F[Efs)r(sfn?) (s +3)

has poles : {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}
with multiplicity : {2, 2,2, 2,2, 2,2,2,1,1,1,1, 1, 1}

In the first plot the singularities are visualized for each I'-function of the integrand separately; the second plot shows the superposition of all singulari-
tiesin the range s = {-8, 8}. Discarding the half-integer singularities (which originate from F(% - s) ) for the calculation of residues as regards to conver -

gence in the left-hand complex plane s € C it should be pointed out that for s < -3 double poles occur whereas the poless={-2,-1, 0, 1, 2, 3} aresimple

poles.

Zo=1;
Vi sual i zeSi ngul arities[f,112[2, S], zo, {-8, 8}]
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{r[;— - 5), (s -3). Ms+ 3}}

15

—10aF
—15F

log(27Re(=) |~ - s) rts - 3)r(s+ 3|

?VisualizeSingularities

VisualizeSingularities [specFctint, z0, polesRange] displays the singularities of the integrand f(z,s)="specFctint’

1
for a given special function which is defined as a contour integral —— 4; fmnpq (2, 8) d's. The first graph shows (with
27mi JL

different colors for each function component) the singularities given as Log[Abs[specFctList]] in the range 'polesRange'.

The second graph shows the superposition of all singularities of the special function investigated at given 'z0'.

Step 2 Calculate residues for given singularities

Theresidues for given integer singularities are evaluated taking into account multiplicity of poles. The result in terms of atruncated series isreturned in

the variable Jo112

? cal cul at eResi dues4Speckct
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calculateResidues4SpeckFct[f, s, selectPoles_:None, polesRange_:{ }, onoff_:"Off"] evaluates the residues symbolically. 'f' denotes the
special function (e.g. MeijerG-function) f(s) with 's' as complex variable se C. The singularities of f(s) are determined by calling
findSingularities within the range given by 'polesRange'={a,b}; the list of lists {poles,u,solK} is returned where 'poles' contains
the list of singularities, 'u' is a list containing the multiplicity of every pole and solK = 0 is set. For special functions the parameter
'selectPoles'= None must be chosen. The global variable $polesType = Integer|Halflnteger|All selects the type of poles to be
considered. The sum of residues for the singularities selected is calculated and returned. With onoff= "No" printout is suppressed.

Jo112 = cal cul at eResi dues4SpeckFct [f 2112 [2, S], S, None, {-10, 4}, "Of"7];

1
r-functions product F(s)= F[Efs)r(sfn?) (s +3)

has poles : {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}
with multiplicity : {2, 2,2, 2,2, 2,2,2,1,1,1,1, 1, 1}

1
processi ng residue Res[Z-Sz-SF[Efst(sfn?) r(s+3), {s,-10} ] for 2-fold pole(1)= -10

1
processi ng residue ReS[Z'SZ'SF[E—SjF(S—\?)) T(s+3), {s,-2} ] for 1-fold pole(9)= -2

1
processi ng residue ReS[Z‘SZ‘SF[E—S]F(S—\?)) r(s+3), {(s,3} ] for 1-fold pole(14)= 3
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1
—-s
2

323/ (72072I0g(z) + 72072 4O (Zzi) + 720721 0g(2) +144144y—416071) 210 221 /7 (5544| 0g (z) + 5544 (?) + 55441 0g (2) +11088y—30787) 20

1115882127 360 12 262 440 960
13 (5544| 0g (z) + 5544 40 (121) + 5544109 (2) + 11088 y 729401) 28 1437 (2520 log(z) + 2520 y(® (?) + 25201 0g(2) + 5040y - 12631) z7

Residues : = Res[2°z 5T T(s-3)T(s+3)]ls-5 =
]

170311680 232243200
11V (2520 log(z) + 2520 y(© (173) + 25201 0g(2) +5040 y - 11749) 26 3V (280 log(z) + 280 y(© (171) +28010g(2) + 560y - 1181) 25

5806 080 71680
NG (140I0g(z) + 140 y© (;) + 1401 0g (2) +280y—503) ¢ 7
Y 20I0g(z)+20w(°>[—J+20I0g(2)+40y—49)z3—
6720 960 2
oo z2 \,72 /? 3V 8\ 8

+ - for poles s= {-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3}
40 24 3 z 72 z3

Step 3: Numerical comparison of the results

Here, the approximate result obtained from the finite sum of residues will be compared with the exact result of the Meijer G-function.

39



ContourIntegration_P2.nb

ser J isthefinite series of powers {2, Z*, ..., Z9} (originating from the poless=-3, ... ,-10)

(serJ = (Level [ (Jp112 //tF //polyForm, 3, List] //Drop[#, 6] &) //Drop[#, -51&) //tF

! 7
{_% Vrn B [20Iog(z) +40y —49+20log(2) + 20 W(O)(E))’

Vr 7 (140109(2) + 280y — 503 + 140l0g(2) + 140y©(3)) 3+ 2(280loy(2) + 560y — 1181+ 280l0g(2) + 280y°(Z))

6720 71680
11Vr 2(2520l0g(2) + 5040y — 11749+ 2520l0g(2) + 25209©(2)) 1431 77 (2520l0g(2) + 5040y — 12631 + 2520l09(2) + 2520%%( L))

B 5806080 - 232243200 ’
13V 2 (5544109(2) + 11088y — 29401+ 554410g(2) + 5544y©(2)) 221 Vn 2 (5544l09(2) + 11088y — 30787 + 5544 l0g(2) + 5544 y©( )

B 170311680 . 12262440960 ’
323Vn 719(72072l0g(2) + 144144y — 416071+ 72072l0g(2) + 720724%(2))

B 1115882127360

Similarly, the corresponding terms from the exact series expansion of Mejer G-function are

serl\/ll:((LeveI [Series[lvlaijerG[{{é}, {}}, {{3, -3}, {}}, 22], {z, O, 10}] //fs // Normal, 1, Li st] //

Drop[#, 1] &) // Drop[#, 5] &) // Reverse; (% z3,...z10 %)

c8 =serML[5]; c7 =serML[6]; (= interchange terns 5 and 6 x)
(serM=serML /. {serML[5] » c7, serML[6] » c81}) //tF
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Vr 2(60log(z) + 60y + 37— 60log(2)) Vr Z*(-420l0g(z) — 420y + 101 + 420l0g(2))
- 2880 ’ 20160 ’
vV 2 (-2520log(2) - 2520y + 1621 + 2520l09(2)) V7 2 (-27720log(z) — 27720y + 25111 + 27 720109(2))
215040 ’ 5806080 ’
Vr 77 (-360360l0g(2) - 360360 + 397129+ 360360l0g(2)) V7 2(-360360l0g(2) — 3603607 + 453913 + 36036010g(2))
232243200 ’ 851558400 ’
vV 2(-6126120l0g(2) — 6126120y + 8527331+ 6126120l0g(2)) V7 7 (~16628040l0g(z) — 166280407 + 25049807 + 16628040l0g(2))

61312204 800 797058 662 400 }

Comparison of individual terms (as regards to powers z3 ... 710 ) from the series expansion of Y (- e?) K3(2) with the corresponding terms of the sum
of residues J,112 shows numerical agreement e.g. for z=2. :

Tabl e[ {serJ[i], serM[iQ}/. {z-» 2.}, {i, 1, 8}] //cF

(-0.352684, -0.352684}
{-0.198952, -0.198952}
{0. 0438937, 0.0438937)
{0.177999, 0.177999}
{0.184751, 0.184751)
{0. 13103, 0.13103}

{0. 0738765, 0. 0738765}
{0. 0351856, 0. 0351856}

Step 4 : Plotting the results

1/2

These are the plots of the real and imaginary part of the exact Meijer G-function Gf’zl(22| s 3

) and the approximate evaluation of the contour integral

gS(Zz)‘S r@/2-s)ris-3)ris+3)dz for poles from s={-10, ..., 3} considered. Obviously, there is good agreement in the range from z = { -2, 3} ; taking

into account more (integer) poless < —10 will increase the accuracy of the approximation.
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Re[ szl(zz|3l/_23) 1,Re[$ (22)ST(1/2-9T(s-3)T(s+3)dz] Im[ szl(22131/_23) 1.,Im[$@z)ST(1/2-9T(s-3) I(S+3)dz]

1.0
4
2qo}t 051
\
-§¢ -4 -2 2 ER 3 [ -2 -1
‘
’ a )
- - 1
200 ' : e
1 ]
Y ]
-400} '
! -1.0t

The contour plots of thereal and imaginary part of the exact Meijer G-function Gf’zl(z z ‘ 31/ 23) and the approximate evaluation of the contour integral

§ (22)°F(1/2-s)F(s-3)F(s+3)dz for polesfrom s={-10, ..., 3} show qualitative agreement in the range -2 < x, y < 2. Note, that the branch cut on the
negative real axisfor the Mejer G-function is missing for the approximate function.
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-2 -1 o 1 2 -2 -1 o 1 2

Example 3.2 G}% (z| i i) <= Rational function =5 = f1222(z,8) =z I[(-s) (s +1)
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The second example demonstrates that this particular Meijer G-function reduces to asimple rational function :

MeijerGL{{1, 1}, {}}, {{1}, {1}}, z]
z

l+z

The corresponding integrand is given as f1o5,

(f1222[2_, S_]1 =System MeijerGDhunp Sl aterForm[ MeijerG[{{1, 1}, {}}, {{1}, {13}, z1, s1) //tF
ZST(-9)T(s+1)

Because of the I'-functions I'(-S)I'(s+1) there occur integer poles only in the range s = {-8, 8} with multiplicity u=1.

{I'{-sl,: M=+ 1))

log{|T{-s)T{s+1}])

s el - s
Instead of doing a stepwise approach the procedure Cont our | nt egr al (with the variable sel ect Pol es= SpecFct ) will calculate the contour in-
tegral directly.
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Note, that in Cont our | nt egr al the sum of residues is multiplied by the factor (2 &) ; hence, in order to compare the results obtained with the those
from cal cul at eResi dues4SpecFct division by (27 i)~ isrequired.

(J1222 = Contour I ntegral [fi002[z, S], S, Speckct, {-9, 9}, "No"]/ (2x1i));

) 1 1 1 1 1 1 1 1 1
Contour integral 7= ¢zST(-s) T(s+1)ds = 2im [29-28+27-26+25-24423 2242 -1+~ - — ¢ - 4 - T
z z2 z8 z4 z5 26 z7 78 79

for 'Integer' poles in the range s = {-9, 9}

Reconstruction of the infinite series from the truncated series expansion.

The evaluation of the contour integration (where only a finite number of poles is taken into account) leads to atruncated alter nating series which agrees

with the series expansion of lZ: forzp=0.

Series[ , {z, z0=0, 9}] // Nor mal

1+z

z-22+2%-2%+2%5-25+27 - 28+ 2°
By means of the Mathematica procedure Fi ndSequenceFunct i on theinfinite series can formally be reconstructed :

(J1222 // pol yForm;
res = Table[-(-2)", {n, -9, 9}]
Ci1222 = Fi ndSequenceFunctionfres /. {z » 1}, K]

{iy _iy i1 _iy i1 _iy i1 _iy E1 _11 Zy _221 231 _241 251 _261 271 _281 29}
z° 28 z7 26 z° z4 73 22 z
(_1)l+k

Finally, deduction of the infinite series P, (2) is in agreement with theresult following from Mei jerd {{1, 1}, {}}, {{1},{1}}. z] .

n
Pln_, z_]:= 201222 FAIR P, 2]
k:l
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z

1+2

Example 3.3 GgP(z|1-a) <= Exponential & power function ez} = f1001(2z, S)=z"(s -1) with a=2
Regarding the third example, the Meijer G-function reduces to e~2- z1-2 :

MeijerGL{{}, {}}, {{l1-a}, {}}, z1//tF
e Z Zl—a
Theintegrand g, consists of one I'-function only; for the parameter a = 2 is chosen. For s < 1 there occur integer poles with multiplicity p=1 .

(f1001[Z_, S_] =System MeijerGDhunp Sl aterForm[ MeijerG[{{}, {}}, {{-1}, {}}, 21, s1) //tF

ZST(s-1)

is-13

log{| s -1)])

(J1001 = Contourl ntegral [fi001[2z, S], S, Speckct, {-9, 2}, "No"]/ (2x1i));
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Contour integral 7= ¢zST(s-1)ds =

z9 z8 z7 z6 z5 z4 z3 22 2 1 )
217 - + - +——-——+—-—+—-1+—| for '"Integer' poles in the range s = {-9, 2}
3628800 362880 40320 5040 720 120 24 6 2 z )

Reconstruction of the infinite series from the truncated series expansion
The evaluation of the contour integration leads again to a truncated alternating series which agrees with the series expansion of e-2z1
Series[e?z™*, {z, 0, 9}] // Normal // pol yForm

z° z8 z7 z5 z° z4 23 22 2
- + - + - — 0 —+ — =1+
3628800 362880 40320 5040 720 2

1
+ -
120 24 6 z

From the 11 terms of the truncated series the associated infinite series can be reconstructed :

series = (z*Jygo1 // Expand) /. {Plus » List} /. {z > 1}
(C1001 = Fi ndSequenceFuncti on[series, k]) //tF

{1 L 1 1 1 1 1 1 1 1 1 }
’ "'2' 6 24 120 720" 5040 40320 362880 3628800
(_1)k+l

(Dk-1

The prefactor zis introduced in order to obtain amodified series which enables Fi ndSequenceFunct i on to find the series coefficient cyggp in
closed form. Hence, the resulting infinite series P1001(2) isin agreement with the direct result fromMei jerd {{},{}},{{1-a},{}}. z] .

1 n
Proor [N_, Z_1:=— ZClool %1, Proor [, Z]
z
k:l

e—z

z

a7
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B (4) Improper integrals transformed into contour integrals through change of variables

There are further types of contour integrals which do not fit into the categories of definite integrals given in Part 1. However, extending the original inte-
gration path along the real axisR into the complex plane C and closing the contour v theintegral can be evaluated in terms of a contour integral.

For examples improper integrals(with integration originally along the real axis[R) can be casted into contour integrals and evaluated in C by means of
some tricky transformation which involves change of (integration) variable

In MathGroup several approaches to this problem are found. See for example [21], the sequel of discussions in MathGroup by Alex Krasnov, Alexan-
der Elkins and others. In addition, there exist some Mathematica packages [22], one provided by David Park as part of his Presentations package, i.e.
Present ati ons” St udent sl nt egr al , and ancther one, Synbol i cConput i ng which supports much more than change of integration vari-
ables only.

= Change of variables using changeVar i abl e4l nt egr al

Due to private communication with M. Trott [23] the procedure changeVar i abl e4l nt egr al isimplemented inthe Cont our | nt egrati on
package.

? changeVari abl e4l nt egr al

b_ Z|
changeVariable4integral[ r fz_dz_,{{ ,z2{ , {2z_}] calculates the definite integralf bf(z) dz with achange of variables forthe integral
za_ Za

G
f bg(g’)cﬂg’. Here 'fz' is the integrand f(z) and 'dz' the differential. 'z' is the old and '¢" the new variable. 'z2¢" is the transform
Ga

fromz = { (e.g. { =rand z2{ = r-e‘“”), '(27' is the inverse function (e.g. {2z = z:6'?, p=const ). {'za', 'zb'} are the
lower/upper limits of the integral which must be transformed too, i.e. {za, zp} = {Ga, (b} = { {22/.{z> za},{2z/.{z> zb}}.
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m Evaluation using contour integration with tricky contours

Thefollowing two examples taken from S. Hassani [24] illustrate how improper integrals (with integration originally along the real axisR) can be
casted into contour integrals which are evaluated in the complex plane € by some tricky transformation. The following examples are found in [24]
Chapt. 10.3.9 pp. 284 -285.

+
Example 4.1 : fowﬁdx = %

Consider the integral along the positive real axis:

I1=j§ox3ildx.

Since theintegrand f(x) = is an odd function the lower limit of the integral cannot be extended to -oco. But with atrick the contour can be closed as

1
x3+1

a120° sector in H; .

Theunderlying idea isto perform a contour integration and apply a suitable change of the integration variable to evaluate some line integral.

(1) Investigating the singularities of the integrand f (2) which are simply the roots of the denominator : Z2 + 1 = 0 with solutions z(k) = e@k-Din/3
for (k = 1,2,3) gives ahint how to close the contour in C.

1 i+/3 1 i1i+/3
sorted roots {zi,zy, z3}= {—l, E— 2 ,E+ 5 }

"?" 1+iV3

= 2

Hence, if the roots are sorted with respect to their imaginary partsthen the root in the 1st quadrant isgiven as z3 = e

(2) Instead of integration along the real axis from [0,+c0) aclosed contour y is chosen asa 120° segment including the pole z; = ¢i7/3 = (%)
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located in the first quadrant. The three roots aswell as the contour y that only has z; as an interior point are shown below. The closed contour y is speci-

fied by the following points in the complex plane C : {0, R, R-(— %+12 #) 0} . For consistency theinterval [0, R] is denoted by C,, the arc seg-

ment from [R, R- (— 34 3‘/?)] is Cr and theinterva [R . (— f;+:z %) , 0] is denoted as C> where R— 0. Hence, the closed contour

4 4
v = C1+Cr + C, comprises asegment of 120° encircling the pole z; = % .

e cx\ C

C Z3

C1

() The contour integral consists of three parts Ty = I1 + Jr +Z2 which are evaluated separately.

The contour integral 7, can be split into three parts:
+ 00 X
Iy=I1+Ir+1= fo );de+fCR Zﬁjdz +fC2 Zﬁjdz = 2niResf (2) |z=2,

thusthe original integral to be calculated is 7: = 7, — I, — Jwr . Thefollowing steps are performed :

e First, the contour integral 7, (taking into account only the pole z; = % ) can be calculated straightforwardly

j,:ContourIntegraI[ z, {3}, {}, No] // ce

z3+1

dz =

. l .
Contour integral 7= 9823+l 3 (\/3_71) 7
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Appling the residuetheorem gives the same resullt.
e Second, the integral g along the circular arc Cr vanishes for R— oo, as usual.
e Third, calculation of integral 7, along C»

Thus, in order to evaluate the line integral 1, along C, (which runs from R-(—% +i 54@) to Owith R»o0) one changestheintegrationvariable from

. . . . . 0 127,
z- (€% Theintegral over {turnsout simpleif ¢ = 2x/3ischosen: Io = sz 231+1 dz =f°° %dg: -eiZn/3 fooog-sljdl{ =-ei2m/3 ] .
[ +

Theintegration can be done directly with the help of procedure changeVar i abl e4l nt egr al with the transformation of variables are z2¢ :
. 2n

;2 : i
z->fe' 3 anditsreverse {2z (- ze™"' 5,

or explicity by changing the integration variable from z to £ where the integration boundaries must be transformed correspondingly.

. 2n
In both cases the result is e
(4) Finally, the original integral 7; = fg‘ﬁdx (along the positive real axis or C1=[0,00) ) isobtained from 7, = I; + I = (1-¢'?*?) I; where the

27

3V3

contour integrals is 7, = (%—rz ’31) == Res3 . Solving for 7, thereis; 7 =

Sol ve[(l—e“”/?’) I == Ty, Il][[l, 1, 21
2
33

+oo
Example 4.2 f_:«ewx-ﬂxz dx = A[n/ B e /48,
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Consider the Gaussian integral
I=[elex-Bdx wherea,BeR, >0

(Side note : with Mathematica V9 at least thisintegral can be calculated directly.)

With atrick this integral can again be calculated in terms of a contour integral 7, .

25"
closed contour y = Cy + C> + C3 + C4  Wwith the corresponding line integrals 7; .

Theunderlying idea isto change the variable of integration from x - z+i then evaluate the contour integral for the analytic function e-#2° ona

(1) Completing squares in the exponent of ei«*-Ax* one obtains asimpler line integral but its path is shifted by —i % :

(2) The contour y = Cy + C + C3 + C4 is closed as shown below.

Because e~#7 is an analytic function the contour integral 7, = fy eBZ dz vanishes. (Cauchy-Goursat theorem) .

Contour integral 7= ¢ ef(-Zdz = 0

(3) The contour integral 7, = 0 can be split into four line integrals 7; along C (i =1,..4):
Jy=§e'pzzdz= 0=34 T = fcl e B?dz+ sz e B7Z clz+fC3 e‘ﬂzzdz+fc4 eB?dz=
4

-R -R-i /(2 R—i a/(2
= lim f+Re‘/’dex+ lim f—R LACP) -p2 47 4 tim L@ gz gy sy fim +2dz =

fR
Ros o RowJ —R—i /(2 B) Rowd R-ia/(2B) €
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== [t e-PCdx + 0+ lim fR‘i.“/‘z’” eBPPdz +0 = 1) +15
—o R- oo

—-R-ia/2p)
I= —jm e B dix
R - +R
e
I,-0 =0 I4-0
(~R—-i—) l 2 jy» ¢ .I (+R=i—)
2[3 +R-i a 2[3
I3=Iimj ® /(zp)e'pzzdlz
R0 J_R-7 al(28)

The contour integral 7, over the closed contour y is zero :

In the limit R— oo the integral boundaries go to infinity. Along C; (from-Rto -R-i a/28) and C; (from R-i /28 to R) the following substitutions
z=- (R+i y) respectivay z=(R+i y) are made which give rise to avanishing prefactor FIzim e AR sp that the integrals 1> 4 tend to zero.

With Mathematica the integrals 7; (i =1,...4) are calculated as{— %’, 0, %, 0})

Theonly non-zero integrals 77 3 are familiar Gaussian integrals. Obviously, the sum of all line integrals Z; (i = 1,...4 ) vanishes as does the contour inte-
ga I, =0=11+13 .

+oo | _2Z _
(4) Finaly, the result for the original integral 7 is L:ewx-ﬂxz dx = e #.-1; = e % [n|B

An dternative treatment isto use straightforwardly the procedure changeVar i abl e4l nt egr al with thetransformation x - z+1i %.
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B (5) Action integrals in the context of Bohr-Sommerfeld theory

Already in the year 1919 Arnold Sommerfeld [25], [26] had presented an interesting approach for the evaluation of certain types of action integrals
(occurring in Hamilton-Jacobi theory) using the technique of contour integration and the residue theorem.

= (1) Action integral of type J; = §pr dr = gg‘/}l+2%— r% dr

e Theory and derivation of the action integral of type 9§JA +2 fi - rc—z dr isdiscussed in some detail here.

e Branch cut and pole structure of 95,//“2'?—- < dr

However, we are only interested in the evaluation of the following contour integral 9§"A +2 ‘f—— r% dr which has abranch cut originating from the
square root. The branch points {r1, r,} are obtained as solution of the equation A + 2 'rg—— rc—z =0 w.rt r:

The coefficients of the radicant can be expressed interms of {rq, ro} :

{rira, (ri+r2)} //fs

The movement (represented by the action integral) is constricted between r; = — @, ro=-— BJBAZJ'E withry < rp(and A = 2mE < 0). A

complete r-cycle runs from r, to r, and back tory. Along the path r; = r, the momentum p; > 0 so that the positive sign of the square root must be
taken (+vV ); ontheway back, i.e ro = ry, holds p; < 0 and the negativesign of the square root has to be selected (— \/_) Thus, the integration is ex-

tended over both sheets of the two-valued function f (r) = + JA +2 f; - r% ; the branch pointsr; and r, define abranch cut between r; and r, on the

real axis.
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For better imagination it is appropriate to map the complex r-plane C on the Riemann sphere $2 = € U {oo} ; the origin ro = 0 becomes the “ South
pole’ and r,, = oothe“North pole’ (here o iscalled aConpl exl nfi nity inMathematica) . Any closed contour path on the Riemann sphere sepa-
rates two complementary regions (the inner and outer region which depend on the orientation of the contour path). The (blue) contour pathis unique and

encloses thetwo singularitiesat ro=0andr,, = co.

The Re(r)-axis projected on the Riemann sphere is a meridian through the South pole and the North pole. The positive Re(r)-axis which extends from O
to oo isthe 0° meridian; similarly the negative Re(r)-axis extending from 0 to -0 is the 180° meridian. The branch cut between r, and r; is located on
the positive Re(r)-axis and is encircled counter-clockwise there. However, mapping this path on the Riemann sphere will reverse its orientation to clock-

Wise.

Now, the (green) contour path encircling the branch cut between r; and r, can be stretched (like a rubber band) over the Riemann sphere and is stuck
only at the two singularities ro = 0 ("South pole') and r, = oo ("North pole"); obviously, on the Riemann sphere both poles are encircled counter-clock -

55



ContourIntegration_P2.nb

wise. Contributions from the path (blue lines/semi-circles in opposite directions) on the 180° meridian compensate each other so that only the residues
forroandr. remain.

e Residues of f(r) = A+2%—Q

r2

The sign of the squareroot ( f(r) = + 4/ ) isnegativefor r < ry and positive for r > r, asshown by closer investigation of the behaviour of the func-

tion f(r) . Thus, theresidue R, for alst order poleat z=rg = Owith f(2) = — A+2§- < becomes

7
B c
folz_1:=- J.ﬂ+2———
z z2

Ro = Resi due[fo[z], {z, 0}]
-/-¢

Next, as z—oo the residue for r, iscalculated. Above r, the positive sign of the square root must be chosen f(2) = + /ﬂ +2 fz—’ - § . Substitution of

w= % maps the singularity at r., to 0. There occurs a2nd order pole asis obvious from f(2) dz = - # f(vl—v) dw . The residue R., becomes
W=. ;
1 1
fo[W.]:=|[-fo[z]*D|—, w|]| /. {2z -
[w_] [ 0l2] D[~ ]) {z- =}
folW]

R = Resi due[fo[w], {w, 0}]

VAL2WB - W C

w2

Z
e
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Finally, due to change of orientation (the branch cut contour is counter-clockwise whereas the polesrg and r,, are encircled clockwise) the value of the
actionintegral J; is—2xi - (Ry+ Reo)

Jr = =27i (Ro+Re) // S

ey

217

Evaluation with ry and r, with Fo(r) = %V (r=r) (r=ry) andFe(p) = _;17 (;% - r1) (;17_ rz) leads to the same resullt.

Finally, the result for 7; is

o= Pnretear = 2mi( F+Vc)

¢ “Double keyhole” contour

The contour around the branch cut can be “blown up” to a“double keyhol€’ contour shown below which encloses the singular points {rg, re}. As
regards to agraphical representation numerical values must be chosen for {r, ro} = {1/2, 3/2} and for the singular points{rg, r.} = {0, 2} .
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Because the (green) contour path encircles the branch cut counter-clockwise the method of residues cannot be applied directly. However, this contour
path can also be interpreted such as encircling the outer region of the complex r-plane (blue contour). In this outside region the integrand is unique so
that there is no restriction to apply the residue theorem. In the limit r - oo only two singularities {rq, r..} are essential and the (blue) contour can be con-

tracted such that only the singularities are encircled clockwise.

e Plotsof ,[Aa+2 {i - r% with parameters arbitrarily set to { A, B, C} = {1, —15, 200} are displayed below.

(@)

£ ¢ _ % V(I =ry) (r—=ry) inthe complex r-plane suitable values for {r1, r», I} should be taken

In order to visualize the function fo(r) = /A +2 il ALl

which are large enough to emphasize the branch cut between (rq, r,) . Contour and 3d plots give an impression about the behavior of fo(r) .
Assuming for {rq, ro, re} = {10, 20, 50}, thus the corresponding values for {A, B, C} = {1, —15, —200} arefound.

e Hereisthe plot of fo(2) aong thereal axiswhich clearly shows the gap, i.e. the branch cut, between 10 and 20.
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30 200
fo(2)= |1- —+—
z Z?

L i I r

-10 0 10 20 30

e The procedure conpl exFct Cont our Pl ot will display the function fo(2) as acontour plot where possible branch cuts are shown as green lines.

? conpl exFct Cont our Pl ot

-5 ¢ % 10 1% 20 25

12-5 0 % 1019 20 25

kS k1 x

Obviously, in addition to the linear branch cut extending fromr, = 10tor, = 20 there isacircular branch cut through the origin with radius R = %.
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(Conpl exAnal ysi s” BranchCuts[fz, z] /. {Re[z] » X, Im[z] » y}) // sf

V=X (-40 +3X) y - =X (=40 +3x)
A3 \/3

40
(y =0&&10 <x <20) || O<x<?&&ty——

|

Here are the corresponding 3d plots using conpl exFct Pl ot 3Dfor the function fy(2) in terms of its absolute, real and imaginary values.

e In order to take further correctiontermsinto account the reader is referred to the original work of A. Sommerfeld [25] pp. 656 - 659. Modified con-
tour integrals are investigated below.

(i) From physical point of view the introduction of an additional correction term Dg r isrdevant for the investigation of the theory of the Stark effect.

0] 51=9§\/A+2?——%+D0r dr = $+%D07<1—§D027(2

Theintegral can be solved by a series expansion of the square root in terms of powers of Dg. For the calculation only the poler,, together with the sub-

stitutionr = % has to be taken into account. For ro = 0 the integrand behaves regular. The type of integrals involved are:

K=

1 1 1 1
dz and Wg:-mgg— sz dz

bad B C
B C (1+2KZ —;ZZ)
l+2Az y Z

sothat J,=2ni [(% + V—c)+ 2 (o) + 2 BA?,(;Z (7Aﬁ+30)]

(ii) Asregards to the theory of hydrogen-unlikespectra an additional term D, /r3 is introduced.

(ii)jzzgg\/A+2'r3——r%+?—§ dr = J; + D1 K3

Again, the integrand is expanded in a power series with respect to D, so that :
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—9§ £ dz
\]A+ZBZ—C22

sothat  J,=2ni [(_ + ‘/_) 2- 0)3/2 ]

(iii) Adding a second correction term D5 /r4 (where D, is of the order of D4?) the contour integral to be investigated turns out to be

(|||)j3_9§\/A+2 D2 dr =9, + = D17(3+ —D27<4— —D1 Ks

Again, the square root is expanded with respect to the correction terms D, and D3 where terms with powers higher than D," (n >2) and D3™ (m >1)
will be neglected.

e A L=
A+2— ror

so that Jg—Zﬂ'l[(E+ —c)+;c3,2(D1+ D2+£§D1) iW(D2+31DlZ)]

= (2) Action integral of type Jo = ¢ pyd6 = q’) ]

e Theory and derivation of the contour integral typegg,{ C- Ser)zz 0 d @ isdiscussed in some detail here.

Assuming for the coefficient C = the integrand is simplified to

2(0 )

gle_]:= D} \/Si Nn[6p]2-Sin[e]-?
The integration path in the complex 6-plane encircles the branch cut between the angles {6, 7 - 6o} and gives rise to the geometry shown in the figure be-
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low on the Ihs. Due to the periodicity of the integrand g(6) the contour path can be continuously deformed to the border line for the (periodic) strip be-

tween 0 and & with the singularities 0 and xr excluded.

7 N 0
/) T \
/ T\
/ \
/ \
/ \
\
|
i N
+10 II ‘
| N
| I
-iio0 \ |
TE_ 90 / 90
\ /
\ / T
\ /,
\ /)
N Z

Asregards to periodicity the strip in the complex 8-plane between [0, ) can be folded into an infinite tube by stitching together 1eft and right border. If,
in addition, both ends of the tube at +i co and -i oo are joined there results atorus as shown in the figure on the rhs. Again, the integration path can be de-

formed such that only the singularity at @ = O isencircled. This corresponds to the geometric operation of folding the semi-circle at 6 = & with the one
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at 6 = 0. In addition, only the integration path of 2 at infinity remains since the circumference of thetorusisjust & (which isthe period of the inte-
grand).

Theresidue (for the singlepole) at # =0 is
Ro = Residue[g[e], {e, 0}]
i{D}

Similarly, the asymptotic contribution of the integral for 8 -» oo becomes § Podo ~limg, e §g(0) d6 =2z L where L2L— = yT .

sin@o) sin®(6o)
To=2nLinit[g[ie], 6 » o] /. {\/ V)2 > v} /. {|9| Csc[60] -m/c}
2nc

Hence, thefinal result of the contour integral turns out to be

Jo= (271 Ro+TJw) // Expand // sf // pol yForm

2n (Ve -{Dt)

570:35 - 2 a0 =2x(VC - D))

Note, that YC =L and D = L, are the angular momentum and the z-component. ( In the framework of the Bohr-Sommerfeld theory the evaluation of ac-
tion integrals leads to quasi-classical quantization.)
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B Conclusions

In conclusion the author is convinced that the package Cont our | nt egr at i on. mwill be auseful extension of the built-in procedure | nt egr at e in
Mathematica. It is the author’s expectation that Mathematica users will find the main procedure Cont our | nt egr al and additional routines for find-
ing poles, evaluating the corresponding residues, designing intricate contour paths and visualizing various views of complex functions useful.

B Appendix
m (1) Representation of special functions in terms of Meijer G-functions

In several cases Meijer G-functions reduce to simpler special functions; a seection given by EW. Weisstein and M. Trott [19] islisted below :

° G12,’21(22 | 31/2 )  Bessd function K3(2) = fa12(22, )= 27°2°° F(% —9)T(s-3)T(s+3) (Examplel)

Note that for given Gi’% the numerator simplifies to 1 due to the empty products ijﬂz sowie Hﬁ;§3 (m=2, n=1)

{MaijerG[{{%}, {}}, (3, -3}, {1}, 22] //hF //tF (% Gf*zl(22|31”_23) %),
res:l\/laijerG[{{%}, {}}, (3, -3}, 1}, 22], res //tF}//CF
Gifez| 7|
3, -3
-e? +/n Bessel K[3, z]
Vo (-e?) Ks (2)

¢ Gz u -u) < Bessd function Jp(2Vz) = fion(z S = %%%

rs1(i-sf (s
. 62122(2| 1/2’ (1)/2) & Elliptic function 2K(=2) = fio0(z, 9) = —E?l—_)s)—

64



ContourIntegration_P2.nb

Cab) & Hypergeometric function U(a, 8,2 = fu122z, 9= 2°72T'(—a-s+1)I'(b+s)I'(c+59)

1 \3
(-=27°T(5-s] I'(s)
r(3-sf

o Galg(—z| ;/2’322’ 13//2;) < Generdlized hypergeometric function pFq (a; B; 2 = fizs(-2, 9 =

ZST(=9?TI'(s+1)

o Gj% (z| i (l)) & Logarithmic function log(z+1) = f1220(z, S) = s

z| i i) < Rationa function 2%1 = f1000(2, ) = ZST (-9 I'(s+ 1) (Example2)

e Gy9 (% | 0. 1/2) < Cosine function ﬂ‘/gl = f1002(z, S) = zsrz(—;rs)s

251zs F! —; )
e Gy¥ (%, 1/2] 0 1/2) < Cosine function % = f1002(z, S) = )

V4

2 2
10 0 i : - _ Z°IA-9T(9
° Gj% (z| N 1/2) & Imaginary error function erﬂ(«/? ) = f1002(z, S) = e
Go1 ial functi 1z 7a — f _ I TI(@=s)
¢ Gy (2] 1-a) < Exponential function e Y2 72 = 1p110(Z, S) = T(l-9)

¢ Gil(z| 1-a) < Exponentia function 272 = fig01(z, ) = z°T(s- 1) witha=-2 ( Example 3)

l1-a

oGl (z b ) = zPz+)PT@+bh) = fuuz s =z°T@-9Tb+9

¢G2z| a,b) = x (zaE—b’fb-l cso(r (b =) 1o %) +27 % L csc(z (a—b)) | o-a( %)) — fop(z, S) = 25T (—a—s+ 1) T(=b—s+ 1)

S [(—a—s+D I'(b+s)
I'(-c-s+l)

oGi’%(z| bac) & ZPr(-a+b+1)Fi(-ma+b+1 b-c+1 -2 = fi112(z, 9 =
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i, al a2 a3 Al-1 r(—al+bl+l)zﬁz(—al+bl+l,—al+b2+l;—al+a2+l,—al+a3+l; %) N z9 = 7S T(—al—s+1) [(b1+s)
3.2 b1, b2 I'(al-b2) W32 2™ T(a2+9) [(a3+5) [(—b2—s+1)
o G217 al, a2 — 22 T(—al+b2+1) csc(r bl-n b2) oFa(=al+b2+1 —a2+b2+1:—b1+b2+1.b2-b3+1.b2-b4+1:—2) +
24" | b1, b2, b3, b4 I'(@2-b2) T(=b1+b2+1) [(b2—b3+1) [(b2—b4+1)

x 2 C(=al+bl+1) csc(r (b2=b1)) sFa(=al+bl+1,—a2+bl1+1:b1-b241.b1-b3+1.bl-bl+1;—2)

I'(@2-b1) I'(b1-b2+1) '(b1-b3+1) I'(b1-b4+1)
2 ST(—al—-s+1) I'(b1+s) I'(b2+5S)
[(a2+s) [(—b3—s+1) IT(-b4—s+1)

= f124(z,9) =

m (2) Useful functions in the context System Mei j er Ghunp’

Due to private correspondence with O. Marichev (June 2016) there are additional functions available in the context Syst em Mei j er Gbunp™ which
are useful for acloser investigation/understanding of the evaluation of Meijer G-functions.

m Meijerdnfo
This function extracts from the Meijer G-function theindex list {m n, p, q} :

System MeijerGhunp MeijerAnfo[ MeijerGL{{1/2}, {}}, {{3, -3}, {}}, 2211

{m n, pvq} = {27 lv lv 2}

MeijerG is entire function defined by suns over its LEFT poles in powers of variable

Attributes[Meijer@nfo] = {Hol dAI | }
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Hol dPattern[ MeijerG@nfo[MeijerG[{a_List, b_List}, {c_List, d_List}, x_, r_:1]11]1:=
Module[{m n, p, q}, {m n, p, q} = {Length[c], Length[a], Length[Join[a, b]], Length[Join[c, d]]};
Print ["{mn,p,gq} =", {m n, p, g}
If[2 (m+n) <p+q, Print ["Integral via L(ixo) contour in definition of MeijerG does not exist"] 1;
If[p<qg, Print["MeijerGis entire function defined by suns over its LEFT poles in powers of variable"]; ];
IfIp>q, Print["MeijerGis entire function defined by suns over its RIGHT poles in powers of 1/variable"]; ];

If[p==q, Print["MeijerG is defined by sum over LEFT poles INSIDE unit circle and by sum over Rl GHT poles QUTSIDE of it" ];
If [m+n>p, Print ["There exists analyticity cone inside which both definition are equivalent."];
I'f [ NumericQ[x], If [ Abs[Arg[x]]<mxr (m+ n-p), Print[x, " is inside of it"],
Print [x, " is outside of it"]
], Print ["Cone is defined by ", Abs[Arg[x]] <xr (m+n-p)];

1;
If [m+n==p, Print ["There exists NO analyticity cone. MeijerG is piecewise analytic."]; 1;
If [m+n<p, Print ["special case. MeijerGis not defined by L (ixw) contour"] ]

m S| ater Form

This function constructs from the input form of Mejer G-function the integrand for the contour integral consisting of I'-functions e.g.

System MeijerGhunp Sl ater Form[ MeijerG[{{1/2}, {}}, {{3, -3}, {}}, 2z], s] //tF

1
2szs F[E - s) I'(s—3)I'(s+3)
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Attributes [Sl aterForm] = {Hol dAI | } ;

Sl at er Form[ Mei jerG[{a_List, b_List}, {c_List, d List}, z_, r_: 1], s_]:=
l\/bdule[{coeff, ap, am bp, bmy,
{coeff, ap, am bp, bm} = Si nplify[Systerﬁl\/bijerGJan‘ sortGic, 1-a, b, 1-d]];
(r coeff z-5 Times eeGanma[ap +r s] Ti mes @@ Ganma[am-r S]) /
(Ti mes ee Gamma [bp +r s] Ti mes ee Ganma [bm-r s])
] /; NunmericQ[r] & (Positive([r] || Negativel[r])

The auxiliary function sor t G extracts from the input form of Meijer G-function the index lists {coeff, a,, am, by, bm} used for evaluation of prod-
ucts of I'-functions.

coefflList ={a-»{1/2}, b> {}, c>{3, -3}, d- {}};
{coeff, ap, am bp, bm} =Sinplify[ System MeijerGunp sortGc, 1-a, b, 1-d] /. coefflList ]

{1 -3, 3, {%} 0.0

m Meij er GToSuns

The function Mei j er GToSuns shows the summands of the infinite sums (of left poles) which are not evaluated due to Hol d. Applying
Rel easeHol d evaluates the sums.

exprl = System Meijer GDunp Mei j er GToSuns[ MeijerG[{{1/2}, {}}, {{3, -3}, {}}, 2z], s]
expr2 =exprl // Rel easeHol d
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(-1)®23% 23+ Gammma[6 - 5] Gamma[- > +s
HoId[Sum][ , {s, 0, 5} |+

Gamma [l +s]

7 7
Hol d [Sum [[23*3 z3+s Gamm[5+s] [—Log[Zz] +Pol yGamma[0, 1+s] - Pol yGamTa[O, E+S] + Pol yGamma[0, 7+s])]/

(Ganma [l +s] Gamma[7 +s]), {s, O, oo}]

A/ 7T 8/t 8\t 3/ Nz oA/ z2
_ _ _ " _
3 z3 z2 z 24 40
1

240 z3

A |-1920-1920z -72022-8023% +10z%-62%+240 e? z3 Bessel | [3, z] Log[2z] +
7 . . 5
240 e* z3 Bessel | [3, z] Pol yGamTa[O, E] - 16 Hyper geonet ri c1F1Regul ari zed© 1.0 [— 5 -5, 2 z] +

7 7
3600 z® Hyper geonetri c1F1Regul ari zed©® 1. ® [5 7, 2z | +52z%HypergeometriclF1:0.0) [E 7, 2 z”

With therule {Hol d[Sum] [X_, range_] - ra%'.ge e X} the sums together with their index range are rewritten in a more comprehensive form.
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Attributes [MeijerGloSuns ] = {Hol dAI | }

Hol dPat t ern [Mei j er GToSuns [MeijerG[{a_List, b_List}, {c_List, d _List}, x_, r_: 1], k_Synbol 1] : =
System Mei j er Ghunp” Ti deUpSummrand [
l\/bdule[{resl, res2, Suml, var},
Cat ch [ Hyper geonet ri cLogDunp™ Mei j er GAMAi n
Bl ock [{Hyper geonetri cLogbunp® $HypPFQRegul ari zed = PFQRegul ari zedFor mal Sum [k, Suni] }
var = Hol d [Sum];
resl = Bl ock [{ Hyper geonet ri cLogDunp’ $HeadToRepl aceSumAW th = Sunt,
$Sunleft Pol es = Tr ue},
SunieftPol es [{a, b}, {c, d}, X, r] ];
| f [Lengt h[a] +Length [b] == Length [c] + Length [d],
res2 = Bl ock[ { Hyper geonet ri cLogDunp’ $HeadToRepl aceSumAW th = Sunt,
$Sunlef t Pol es = Fal se},
SunLeftPoIes[{l-c, 1-d}, {1-a, 1-b}, & r] /.
{roa[3] »-toara. (3] x4} |:
Refine[ Piecewise [{{resl, Abs[x] <1}, {res2, Abs[x] >1}}1 /. {Sunl - var} ],
Throw([resl /. {Suml - var} ]
] ] ]] /. {Hold[Sum][body , {it_, par___3}] » Hold[Sum] [body /. {it -»k}, {k, par}]}, k

] /; 'lnexact Number Q[x] & Numeri cQ[r ] & Positive[r]

Auxiliary functions needed in Mei j er GToSuns are Ti deUpSumand and Sunief t Pol es; from the context Hy per geonet ri cLogDunp’
thereare Meij er GAMai n, $HypPFQRegul ari zed and $HeadToRepl aceSumAW t h
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m (3) Change of integration variables methods
(1) Change of variables using changeVar i abl e4l nt egr al

The change of variables z— ¢ (= z2¢ ) (and itsinverse { -» z (={2z) can be applied to the following type of integral fzzabf (2) dz; of course one must

transform the integrand f (2) taking into account the Jacobian corresponding to the change of variables, the differential dz and the lower and upper lim-
its of theintegral {z,, z,} e.g. {0,00} . Thisisachieved with the procedure changeVar i abl e4l nt egr al

G ear [fz, z, za, zb, z2g, g2z, ],
Set Attri but es [changeVari abl e4l nt egral , Hol dFirst ];

changeVari abl e4l nt egr al [J’ZZ:—fz_dlz_, {&_, z2¢_, §22_}] D=
Integrate[ (fz /. {z - z2¢}) = D[z2g, &)1, {& 2z /. {z > za}, €2z /. {z » zb} }1;

implemented in the package Cont our | nt egrati on.[23].
? changeVari abl e4l nt egr al

For example, with the replacement rulesz2,: z— ({+i %) and {2z: (> (z-i %) the integral becomes :

Cear [z, z, a, B];
$Assunptions = {a e Reals, B € Reals, B >0};

. © 2 a a
changeVari abl e4l ntegral[j elt*z-B2" qz, {g, (§+1'1 2—) (z—i 2—)}] //fs
o B B

o2

e 48 /7T

VB
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. 2n . 2n
similarly, withz2¢: x - re' s anditsreverse {2z: r —» Xe™ = theintegral is:

. 1 i2r i 2"
changeVari abl e4l nt egr al [Jm 3 dx, {r, re s, Xe 3_}]
0 1+x

27
343

(2) Change of variables using SC package Synbol i cConputi ng

An aternative approach makes use of the package Synbol i cConputi ng. nx from Youngjoo Chung [22] which is available for Mathematica
V9.0.1 and higher. It can be downloaded from the following URL

(» ToExpressi on[URLFetch["http: //synbconp. gi st. ac. kr /downl oads/I nst al | SynbConpPer sonal. nf' 1] *)
(» installs package SynbolicConputing. nx in ...\AppData\Roam ng\Mat hemati ca\ Appli cati ons *)

This powerful package (with more than 800 routines) can do much more than performing change of variables only. In order to avoid some infinite loop
the SC package should be loaded first, thus remove the package Cont our | nt egr ati on” then load package Synbol i cConput i ng”

renovePackage[" Contourlntegration"1J; (» remove Contourlntegration package tenporarily =)
renovePackage["Notation "1;

Unprot ect ["d obal ™ %" 7;

Renove[" d obal “ %" 1;

$Cont ext Pat h = $Context Path /. {"Notation " - Sequence[], "Contourlntegration" -» Sequence[] }

Then the SC package can be loaded without any problem.

In order to avoid conflicts with code contained in the main package Cont our | nt egrati on™ the package Synbol i cConmputi ng™ must be
loaded first if procedures from the SC packages will be executed.
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Def aul t Operators: ={OverHat [ _],OverHat [_1[__1, Subscript [OverHat [_1, 1, Subscript[OverHat[ 1, 1[__1};
Get [" Synbol i cConputing "1//Ti m ng (* ~ 2 sec : loading successful )
$SCVer si on (» "Beta 3.1 (January 7, 2016)" =x)

(2.69882, Null}
Beta 3.1 (January 7, 2016)
If the packages are loaded in reverse order then loading of the SC package will need up to 6 min. and additional warnings will occur.

Names["SCx"] // Length
$Cont ext Pat h;

814

The essential procedure SCMAF[ i ntegral _,translint_, replVar List, evallnt, opts__ :{} ] together with two more SC-rou-
tines SCTr ans| nt and SCEval | nt performs the transformation of variables and does a stepwise calculation of the integral. (Private communica-
tions with Youngjoo Chung 9/2013). For further details use the Help Browser for AddOns : see SymbolicComputing > Function Analysis > SCMAF

? SCMAF SCTr ansl nt SCEval | nt

SCMAF[expr, fq, {X11, X12, ---}, 2, {¥o1, X0, ...}, ...] makes multiple
replacements x1; = f1[X11, X2, ...], Xo1 = f2[Xo1, X2, ...], €tc. See the help browser for more details.

SCTranslInt[expr] transforms integrals.
SCTranslInt[expr, rules] transforms integrals by applying rules.
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SCEvalint[expr] evaluates integrals expressed with SCintegrate.
SCEvalint[expr, varq, var,, ...] evaluates integrals expressed with SCintegrate for the variables var;.

dear [fz, z, za, zb, &, ¢];
SCI\/AF[J’ZZ:—fZ_dlz_, SCTransint, {All, TransVar » {z, & z ==f[£]}}, SCEval Int, All, RA

Comment - "Upper /lower limts will be changed" ]

With the help of the procedure SCVAF the evaluation of the integrals requiring change of integration variable can be performed :

The setting of the parameter ¢ can be explicitly given in terms of areplacement rule with RA» ¢ == 23—"

$Assunptions = { ¢ € Real s && ¢ > 0};

o 1 , 2
SCI\/AF[ dz, SCTransl nt, {AII, TransVar - {z, r, z=r e”’}}, SCEval Int, All, RA» ¢ == —
0 1+23 3

and

$Assunptions = { {a, B} e Reals & B > 0};

SCWF[jmeiaz—Bzz dz, SCTranslnt, {AII, TransVar - {z, g, z= [§+1'1 %]}} SCEval I nt, All ]
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[t lio i ag

o2

efﬁ\/F
VB

The SC package' s own interpreter for 2d forms of derivatives, integrals etc.

d (X+X0)rT

SCVAF [ ,
X

. SCEval Deriv, All, Hold - xo]

m (X + Xg) ~+*m

SCWF[rSi n[z®] az, SCTransint, {All}, SCEvalint, Al |
0

J:Si n(z3] daz

1 1
5 camma |

but the usual 2d form of an integral will not beignored (in the context of the SC package).

J:Si n[z®] az
J:Si n[z3] dz

In order to avoid any conflict with subscripted variables used in the packages Synbol i cConputi ng” and Cont our | nt egrati on” the procedure
SCEnabl eNot at i on[ Fal se] will remove all symbols associated with the SC package and the 2d interpreter of the SC package is disabled so that
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the usual 2d notation of the Mathematica FrontEnd is supported and the calculation with the Mathematica kernel done again.
? SCEnabl eNot at i on

SCEnableNotation[enable] sets whether to enable the package's own interpretation

of the 2-D form of integrals, products, sums, partial derivatives (0« f), intersections (n) and unions (U).

SCEnabl eNot ati on[Fal se];
FSi n[z®] az
0

1 1
gGamm[?)}

Thus, if one wants to make use of the package Cont our | nt egrati on” again the SC package must be removed in order not to interfer with the pack-
ageCont our I nt egrati on

renovePackage[" Synbol i cConputing "]
$Cont ext Pat h = $Cont ext Pat h /. "Synbol i cConputing " -» Sequence[]

Synbol i cComputing™ » ; SynbolicConputing Private =«

package SynbolicConputing was renoved

{Contourlntegration’, Notation, Units , CConpilerDriver , ResourcelLocator’,
St reanmi ngLoader , | coni zeLoader ™, Cl oudObj ect Loader ™, Pacl et Manager™, System, d obal "}

Reload the package Contourlntegration™ (after removal of the SC package) :
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Cl ear ["d obal “ %" 1;
Set Di r ect or y[Not ebookDi rectory[]1];
Get ["Contourl ntegration "]
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