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Abstract: Let jp ∈  and 1jp ≥ , 2j n= , ,  be a fixed positive integer. In this paper a generalized Roper-Suffridge

extension operator 
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Ω = ∈ :| | + | | <∑  is defined. Some different conditions for jP  are 

established under which the operator preserves an almost spirallike mapping of type β  and order α  and spirallike mapping of 
type β  and order α , respectively. In particular, our results reduce to many well-known results. 
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1. Introduction and Preliminaries

Let n  be the vector space of n  complex
variables 1( )nz z z= , ,  with the Euclidean inner

product 
1

n

jj
j

z w z w
=

, = ∑ and Euclidean norm 

1 2|| ||z z z /= , , where nz w, ∈ . The open ball

{   || || }nz z r∈ : <  is denoted by n
rB  and the unit 

ball 1
nB  by nB . The closed ball 

{   || || }nz z r∈ : ≤  is denoted by n
rB , and the unit 

sphere is denoted by {   || || 1}n nB z z∂ = ∈ : = . In

the case of one complex variable, 1B  is denoted by 
U . For 2n ≥ , let 1

2ˆ ( ) n
nz z z −= , , ∈   so that

1 ˆ( ) nz z z= , ∈ .
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Let ( )n mL ,   denote the space of complex
linear mappings from n  into m  with the
standard operator norm, 

sup{|| ( ) ||   || || 1}A A z z= : = ,   
and let nI  be the identity in ( )n nL ,  . Let Ω

be a domain in n  and ( )H Ω  be the set of

holomorphic mappings from Ω  into nC . Let 
0∈Ω , a mapping ( )f H∈ Ω  is called normalized 

if (0) 0f =  and (0)f nJ I= , where (0)fJ is the 

complex Jacobian matrix of f  at the origin and nI

is the identity operator on n .
Let ( )S Ω  be the set of normalized biholomorphic 

mappings on Ω . In the case of one complex variable, 
the set ( )S U  is denoted by S . A normalized 

mapping ( )f H∈ Ω  is said to be convex if its 
image is a convex domain. Let 0∈Ω , a normalized 
mapping ( )f H∈ Ω  is said to be starlike with 
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respect to the origin if its image is a starlike domain 
with respect to the origin. The classes of starlike and 

convex mappings on Ω  will be denoted by ( )S ∗ Ω  

and ( )K Ω , respectively. In the case of one complex 

variable ( )S U∗  and ( )K U  is denote by S ∗  and 

K , respectively. A normalized mapping ( )f H∈ Ω  

is said to be ε  starlike if there exists a positive 

number ε , 0 1ε≤ ≤ , such that ( )nf B  is starlike 

with respect to every point in ( )nf Bε . Assume that 
nP : →   is a homogeneous polynomial of 

degree n . Then P  satisfies ( ) ( )nP z P zλ λ=  for 
nz∀ ∈  and λ ∈ . It is easy to see that 

( ) ( )P z z nP z∇ = , where 
1

( )
n

P PP z
z z

 
 
 
  
 

∂ ∂
∇ = , ,

∂ ∂
  

is the gradient of ( )P z . 

A domain nΩ ⊂   is said to be circular domain if 
ie zθ ∈Ω  holds for every z ∈Ω  and θ ∈ . A 

domain nΩ ⊂   is said to be Reinhardt domain if 
1 2

1 2( )nii i
ne z e z e zθθ θ, , , ∈Ω  holds for every 

1 2( )nz z z z= , , , ∈Ω  for all jθ ∈ , 

1 2j n= , , , . The Minkowski functional ( )zρ  of 

a bounded circular convex domain Ω  in n  is 
defined as 

( ) inf 0 nzz t z
t

ρ  = > , ∈Ω , ∈ . 
 


 

If Ω  is a bounded circular convex domain, then 

Ω  is a Banach space in n  with respect to this 

norm, and { ( ) 1}nz zρΩ = ∈ : < . Also, The 

Minkowski functional ( )zρ  is 1C  on Ω  except 

for a lower dimensional manifold. Moreover, the 
Minkowski functional ( )zρ  has the following 

properties of (see [11]): 

( ) ( ) [0 ) {0}z z z \
z z
ρ ρλ λ∂ ∂

= , ∈ ,+∞ , ∈Ω ,
∂ ∂

 (1) 

( ) ( ) {0}i i ne z e z R z C \
z z

θ θρ ρ θ−∂ ∂
= , ∈ , ∈ .

∂ ∂
 

Definition 1. [22] Suppose that nΩ ⊂   is a 
bounded complete convex domain. Its Minkowski 

functional ( )zρ  is 1C  except for a lower 

dimensional manifold. Assume that 0 1α≤ <  and 

2 2
π πβ− < < . A mapping ( )f H∈ Ω  is said to be 

almost spirallike mapping of type β  and order α  

if the following condition holds: 

1( )2 ( ) ( ) ( ) cos

{0}

i
f

zRe e J z f z z
z

z \

β ρ ρ α β− −∂  ≥ , ∂ 
∈Ω ,
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1

( ) ( ) ( )

n

z z z
z z z

ρ ρ ρ 
 
 
  
 

∂ ∂ ∂
= , ,

∂ ∂ ∂
 . 

Definition 2. [22] Suppose that nΩ ⊂   is a 
bounded complete convex domain. Its Minkowski 

functional ( )zρ  is 1C  except for a 

lower-dimensional manifold. A mapping ( )f H∈ Ω  

is said to be spirallike mapping of type β  and order 

α  if 

( )

1( )4 ( ) ( )
( ) cos

( ) cos 2 sin

{0}

i
f

ze J z f z
z z

z i

z \

β ρα
ρ β

ρ β α β

− −∂
−

∂ ≤ ,
−

∈Ω ,

 

for 0 1α< < , 2 2
π πβ− < <  and 

1( )2 ( ) ( ) 0 {0}i
f

zRe e J z f z z \
z

β ρ− −∂  ≥ , ∈Ω , ∂ 
 

for 0α = . 
The class  ( )Sα βΩ,  consists of all normalized 

spirallike mappings of type β  and order α  on Ω  

and the class  ( )ASα βΩ,  consists of all normalized 

almost spirallike mappings of type β  and order α  

on Ω  for 0 1α≤ < . Then, we have 
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( )( ) ( )    cos
( )

i ff A U f S U and Re e US f
β

α

ξβ α β ξ
ξ ξ

− 
∈ , ⇐⇒ ∈ ≥ , ∈ , ′ 

 

and 



0
( )( ) ( )    0
( )

i ff U f S U and Re e US f
β ξβ ξ

ξ ξ
− 

∈ , ⇐⇒ ∈ ≥ , ∈ , ′ 
 

and 



( )( ) ( )    2 (1 tan ) 1 2 tan 1
( )

ff U f S U and i i US fα

ξβ α β α β ξ
ξ ξ

∈ , ⇐⇒ ∈ − − + ≤ , ∈
′

 

for 0 1α< < . 
 

The class ( )Sα
∗ Ω  consists of all biholomorphic 

starlike mappings of order α  on Ω  for 0 1α≤ < . 

Let ( ) ( 0)S Sα α
∗ Ω = Ω,  for 0 1α< <  ( we say 

α -spirallike )   and  0 ( ) ( )S S∗ ∗Ω = Ω ,  and  let 

 



0 0( ) ( ) ( )A SS Sβ β βΩ, = Ω, = Ω, . It is evident that 

 

0 0( 0) ( 0) ( )A SS S
∗Ω, = Ω, = Ω .  From Theorem 

1.2.1  in  [2],  we  have  ( ) ( )S Sα
∗ ∗Ω ⊂ Ω   for 

0 1α≤ < . Spirallike mappings are important for 
study because they are natural generalization of 
starlike mappings which leads to a useful criterion for 
univalence. 

In 1995 , Roper and Suffridge [19] introduced an 
extension operator which gives a way of extending a 
locally biholomorphic function on the unit disc U  to 
a locally biholomorphic mapping on the unit ball nB  
in n . 

For fixed 2n ≥ , the Roper-Suffridge extension 

operator ( see [6] and [19] )  is defined as follows: 

( )1 1 ˆ[ ( )]( ) ( ) ( ) n
n f z f z f z z z B′Φ = , , ∈ ,  

where f  is a normalized biholomorphic mapping on 

the unit disc U  in C  and 1 ˆ( )z z z= ,  belonging 

to the unit ball nB  in nC  and the branch of the 

power function is chosen so that 
11 0( ) 1zf z =′ | = .  

The following results illustrate the important and 
usefulness of the Roper-Suffridge extension operator 

( ) ( ) ( ) ( )n n
n nK K B S S B∗ ∗Φ ⊆ , Φ ⊆ .  

The first was proved by Roper and Suffridge when 
they introduced their operator [19], while the second 
result was given by Graham and Kohr [5]. Until now, 
it is difficult to construct the concrete convex 
mappings, starlike mappings on nB . By making use 
of the Roper-Suffridge extension operator, we may 
easily give many concrete examples about these 
mappings. This is one important reason why people 
are interested in this extension operator. A good 
treatment of further applications of the 
Roper-Suffridge extension operator can be found in 
the recent book by Graham and Kohr [6]. 

In 2002 , Gong and Liu [3, 9] introduced the 
definition of ε − starlike mappings and obtained that 
the operator 

( )1

1 1 1 ˆ[ ( )]( ) ( ) ( ( )) p

pn f z f z f z z,
′Φ = , ,  

maps the ε − starlike functions on U  to ε −
starlike mappings on the Reinhardt domain 

2
1

2
1

n
n p

n p j
j

z C z z,
=

 
Ω = ∈ :| | + | | < 

 
∑ , where 

1p ≥ . When 0ε =  and 1ε = , 1 ( )
pn f,Φ  maps 

the starlike function and the convex function on U  
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to starlike mapping and convex mapping on n p,Ω , 

respectively. 
Furthermore, Gong and Liu [4] proved that the 

operator 

1 1
2
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maps the ε − starlike functions on U  to ε −
starlike mappings on the Reinhardt domain 
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Ω = ∈ :| | + | | < 

 
∑ , where 

1jp ≥ , 2j n= , , . Also, Liu and Liu [10]  

proved that this operator preserves starlikeness of 
order α  on the domain 

2 … nn p p, , ,Ω . On the other 

hand, Feng and Liu [1] proved that this operator 
preserves almost starlikeness of order α  on the 
domain 

2 … nn p p, , ,Ω . 

In 2005 , Muir [13] modified the Roper- Suffridge 
extension operator as follows: 

( )1 1 1

1

ˆ ˆ[ ( )]( ) ( ) ( ) ( ) ( )

ˆ( )

n Q

n

f z f z f z Q z f z z

z z z B

, ′ ′Φ = + , ,

= , ∈ ,
 

where ˆ( )Q z  is a homogeneous polynomial of 
degree 2  with respect to ẑ , and f , 1z  and ẑ  
are defined as above. He proved that this operator 
preserves starlikeness and convexity if and only if 
|| || 1 4Q ≤ /  and || || 1 2Q ≤ / , respectively. This 
modified operator plays a key role to study the 

extreme points of convex mappings on nB  (see [14, 
15]). Later, Kohr [7], Muir [12] and Rahrovi et all [18] 
used the Loewner chain to study the modified 
Roper-Suffridge extension operator. Recently, the 
modified Roper-Suffridge extension operator on the 

unit ball nB  is also studied by Wang and Liu [21] 
and Feng and Yu [1] and S. Rahrovi et all [17]. 

In 2011, Wang and Gao [20] introduced the 
following extension operator on the Reinhardt domain 

2 … nn p p, , ,Ω : 

2
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…
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j
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Φ =

′+ ,
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∑



     (2) 

where where f  is a normalized locally 
biholomorphic function on the unit disc U , jp  are 
positive integer, ja  are complex constants, 

2j n= , ,  and the branch are chosen such that 
1

11 0( ( )) | 1p j
zf z =′ = . Some conditions for ja  are 

found under which the operator preserves the 
properties of almost starlikeness of order α  and 
starlikeness of order α , on the Renihardt domain 

2 nn p p, , ,Ω


, respectively. 
In contrast to the modified Roper-Suffridge 

extension operator on the unit ball nB , it is natural to 
ask if we can modify the Roper-Suffridge extension 

operator on the Reinhardt domain 2 … nn p p, , ,Ω . In 
2014 , Li and Feng [8] introduced the following 
extension operator 
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f z f z P z
F z

f z z f z z

 
 
 
 

= 
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on the Reinhardt domain 2 … nn p p, , ,Ω . where ( )j jP z  
is a homogeneous polynomial of degree n  with 
respect to jz , and f , 1z  and ẑ  are defined as 
above. They proved that this operator can preserve the 
properties of almost starlikeness of order α , 
starlikeness of order α  and strongly starlikeness of 
order α  on the domain 2 … nn p p, , ,Ω  given by 
different conditions for jP , 2j n= , , ,  
respectively, where 2 … nn p p, , ,Ω  is defined as 

2

2
… 1

2
1j

n

n
pn

n p p j
j

z C z z, , ,
=

 
Ω = ∈ :| | + | | < . 

 
∑  (3) 

In this paper we will establish some different 
conditions for jP  such that almost spirallikeness of 
type β  and order α  and spirallikeness of type β  
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and order α  are preserved under the above 
generalized Roper-Suffridge operator. Our results 
enable us to obtain some known results from a unified 
perspective and also leads many new results. 

2. Some Lemmas 

In order to prove the main results, we need the 
following lemmas. 

Lemma 1. [16]. Let p  be a holomorphic function 

on U . If ( ) 0Re p z >  and (0) 0p > , then 

2

2 ( )( )
1
Re p zp z

z
′| |≤ .

− | |
 

Lemma 2. [6] ( Schwarz-Pick lemma )  Suppose 

that ( )g H U∈  satisfies (0) 0g =  and 

( )g U U⊂ , then 
2

2

1 | ( ) |( )
1

gg ξξ
ξ

−′| |≤ ,
− | |  

for each Uξ ∈ . 
Lemma 3. [16]. Let f  be a normalized 

biholomorphic function on U .Then 

2 ( )(1 ) 2 4
( )

f zz z
f z
′′

− | | − ≤ .
′

        (4) 

Lemma 4. [23]. If ( )zρ  is the Minkowski 

function of the domain 2 … nn p p, , ,Ω , 0z ≠ , then 

1
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 (5) 

3. Main Results 

We begin this section with the main results of this 
paper. 

Theorem 1. Let 0 1α≤ <  and 2 2
π πβ− < < . 

Suppose that the operator ( )F z  is defined by (2) 

and 
2 … nn p p, , ,Ω  is defined by (3). If (1 )cos

4|| ||jP α β−≤ , 

2j n= , , , then 

2 …( )
nn p pF ASα β, , ,∈ Ω ,  if and 

only if  ( ) ( )f A U AS Sα αβ β∈ , = . 

Proof. Suppose that ( )zρ  is the Minkowski 

functional of 2 … nn p p, , ,Ω . From (1), we may obtain 

that ( )zρ  is a 1C  function except for a lower 

dimensional manifold in 2 … nn p p, , ,Ω . By the definition 
of an almost spirallike mapping of type β  and order 

α , we only need to prove that the following 
inequality holds 

12 ( ) ( ) ( ) ( ) cosi
FRe e z J z F z z

z
β ρ ρ α β− −∂  ≥ , ∂ 

 (6) 

for all 
2 … nn p pz , , ,∈Ω , 0z ≠  and (1 )cos

4|| ||jP α β−≤ . 

Now, for 
21 …ˆ( ) {0}

nn p pz z z \, , ,= , ∈Ω , we have two 

cases: 

First, if ˆ 0z = , then we can get the conclusion 
easily. 

Second, suppose ˆ 0z ≠ . Obviously, the mapping 
F  is holomorphic in a neighborhood of each 

21 …ˆ( ) {0}
nn p pz z z \, , ,= , ∈Ω . Let us write 

iz u e uθλ λ= =| |  for 
2 … nn p pu , , ,∈∂Ω  such that 

ˆ 0u ≠  and {0}U \λ ∈ , then from (1) we have 

12 ( ) ( ) ( ) cos
( )

i
FRe e z J z F z

z z
β ρ α β

ρ
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≥ ∂ 
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i i i i
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β θ θ θ
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is the real part of an analytic function of the 
complex variable λ , and hence is harmonic. Due to 
the minimum principle for harmonic functions, we 
know that it attains it’s minimum on 1λ| |= , so we 
need only to prove for all 

21 ˆ( ) {0}
nn p pz z z \, , ,= , ∈∂Ω
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Now, from Lemma 4, we obtain 
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In terms of (8) and (9), we obtain 
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11

2 1

( )( 1) ( ) (1 ) 2
( )

n
i

j j j
j

f ze p P z z zf z
β−

=

 ′′
+ − − | | − . ′ 

∑                     (11) 

Since  ( )f A USα β∈ , , we set 

1

1 1

( )
( )

1

sin cos
( )

(1 )cos

f zi
z f ze i

p z
β β α β

α β

−
′ + −

= ,
−

                         (12) 

then 1( )p z  is analytic on U  such that 1( ) 0Re p z >  for 1z U∈  with (0) 1p =  and 

1 1
1 1 12

1

( ) ( )1 (1 )cos ( ( ) ( )) cos sin
( ( ))

i f z f ze p z z p z i
f z

β α β α β β−  ′′
′− = − + + − . ′ 

          (13) 

Substituting (12) and (13) into (11), we get 

( )

2
1 1

1 1 1
2 2

21
11

2 2 1

1

( ) 2 ((1 )(cos ) ( ) cos sin )

11 ((1 )(cos ) ( ) ( ) )

( )( cos sin ) ( 1) ( ) (1 ) 2
( )

(1 ) (

j j

j

n n
p pi

j j j
j jj

n n
p i

j j j j
j j

G z z p z i

e p z z p z z p z
p

f zz i e p P z z zf z

p z

β

β

α β α β β

α β

α β β

α

−

= =

−

= =

= | | − + −

 
′+ | | − + | | − +  

 
 ′′

+ | | − + − − | | − ′ 

= −

∑ ∑

∑ ∑

2 2 2
1 1 1

2

1 1
2 2

21
11

12

) cos 2 2 cos 2 sin

( ( 1) cos sin ) (1 )cos ( )

( )( 1) ( ) (1 ) 2
( )

j

j j

n
p

j
j

n n
p pi

j j j
j j

n
i

j j j
j

z z z i z

z e p i z p z z

f ze p P z z zf z

β

β

β α β β

α β β α β

 
 
 
 
 
 
 
 =

−

= =

−

=

| | + | | + | | − | |

′+ | | − + − + − | |

′′ + − − | | − . ′ 

∑

∑ ∑

∑

 

Hence 
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2 2
1 1 1

2

2
1 1 1

2

21
11

2 1

( ) (1 )cos 2 ( ) 2 cos

(cos ( 1) cos ) (1 )cos ( ) (1 )

( )( 1) ( ) (1 ) 2
( )

j

j

n
p

j
j

n
p

j j
j

n
i

j j j
j

Re G z z z Rep z z

p z z p z z

f ze p P z z zf z
β

α β α β

β α β α β

 
 
 
 
 
 
 
 =

=

−

=

≥ − | | + | | + | |

′+ − + | | − − | | − | |

′′
− | | − | | − | | − .

′

∑

∑

∑

 

By Lemma 1 and 3, we can get that 

( )

2 2
1 1 1

2

21 12 2
1 1 112

21

2

( ) (1 )cos 1 ( ) 2 cos (( 1)cos cos )

2 ( )(1 )cos (1 ) 4 || ||( 1) (1 )cos ( ) 2 cos1
1

(( 1)(cos 4 ||

j

j

n
p

j j
j

n
p

j j j
j

n

j
j

Re G z z Re p z z p z

z Re p zz P p z Re p z zz
z

p P

α β α β β α β

α β α β α β

β

 
 
 

=

=

=

≥ − + | | + | | + − + | |

| |− − −| | − − | | = − + | |− | |
− | |

+ − −

∑

∑

∑ ||) cos ) jp
j jzα β+ | | .

 

Therefore, when (1 )cos
4|| ||jP α β−≤ , 2j n= , , , we have 

2 2
1 1 1

2
( ) (1 )(1 ) ( ) cos 2 cos cos j

n
p

j j
j

Re G z z Rep z z p zα β α β α β
=

≥ − − | | + | | + | |∑
 

2
1

2
cos 2 j

n
p

j j
j

z p zα β
 
 
 
 
 
 
 
 =

≥ | | + | | .∑                            (14) 

In the terms of (10) and (14), we obtain 

1( )2 ( ) ( ) cosi
F

zRe e J z F z
z

β ρ α β− −∂  ≥ . ∂ 
 

Hence 

2 …( )
nn p pF ASα β, , ,∈ Ω , . 

Conversely, if 



11
2

21 1 1 2 1
2

( ) ( ) ( ) ( ) ( ( )) ( ( )) ( )pp n

n

n

j j n n p p
j

F z f z f z P z f z z f z z ASα β
 
 
  , , ,  = 

′ ′ ′= + , , , ∈ Ω , ,∑


  

then we prove that  ( )f A USα β∈ , . In fact 
21( 0 0)

nn p pz z , , ,= , , , ∈Ω


  with 1 0z ≠ , from (8) and (9), we 

have 

11

1 1

( ) 2 ( ) ( )] ( ) cos
( ) ( )

i i
F

f z zRe e Re e J z F z
z f z z z

β β ρ α β
ρ

− − −  ∂ = ≥ ,   ′ ∂  
 

for 10 1z<| |< . This completes the proof.  
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If we take 0α = , in Theorem 1, we obtain: 
Corollary 2. Let 2 2

π πβ− < < . Suppose that the 

operator ( )F z  is defined by (2). If cos
4|| ||jP β≤ , 

2j n= , , , then 

2 …( )
nn p pF AS β, , ,∈ Ω ,  if and 

only if ( )f AS β∈ . 
Set 0β = , in Theorem 1, then we get the 

following corollary due to [8]: 
Corollary 3. Let 0 1α≤ < . Suppose that the 

operator ( )F z  is defined by (2). If 1
4|| ||jP α−≤ , 

2j n= , , , then 
2 …( )

nn p pF ASα
∗

, , ,∈ Ω  if and only 

if f ASα
∗∈ . 

If we take 0α = , in Corollary 3, we obtain 
following corollary: 

Corollary 4. Suppose that the operator ( )F z  is 

defined by (2). If 1
4|| ||jP ≤ , 2j n= , , , then 

2 …( )
nn p pF S ∗

, , ,∈ Ω  if and only if f S ∗∈ . 

Theorem 5. Let 0 1α≤ < , 2 2
π πβ− < < . 

Suppose that the operator ( )F z  is defined by (2) 

and 
2 … nn p p, , ,Ω  is defined by (3). If 

1 |2 1|
8|| || cosjP α
α β− −≤ , 2j n= , , , then 



2 …( )
nn p pF Sα β, , ,∈ Ω ,  if and only if  ( )f USα β∈ , . 

Proof. We first prove that 

2 …( )
nn p pF Sα β, , ,∈ Ω ,  

when  ( )f USα β∈ , . By the definition of almost 

spirallike mapping of type β  and order α , we need 

to prove that the following inequality 
 

14 ( ) ( ) ( ) ( )(cos 2 sin ) ( ) cosi
Fe z J z F z z i z

z
β ρα ρ β α β ρ β− −∂

− − ≤ ,
∂

             (15) 

Similar to the theorem 1 we need only to prove that (15) holds for ( ) 1zρ =  and ˆ 0z ≠ , according to the 
maximum modulus theorem for analytic functions. So, it is sufficient to show that 

2

1
… ˆ4 (1 tan ) ( ) ( ) ( ) 1 2 tan 1 {0} 0

nF n p pi z J z F z i z \ z
z
ρα β α β−

, , ,

∂
− − + ≤ , ∈∂Ω , ≠ .

∂
 

Case 1. When 0α = , noting that  



0 0( ) ( ) ( )U A U S US Sβ β β, = , = , , from theorem 1, we obtain that 

 

2 2… …0 0( ) ( )
n nn p p n p pF AS Sβ β, , , , , ,∈ Ω , = Ω ,  if and only if ( )f S U β∈ , . 

Case 2. When 0 1α< < , we set 

1
1

1 1

( )( ) 2 (1 tan ) 1 2 tan
( )

f zq z i i
z f z

α β α β= − − + ,
′

                     (16) 

then 1( ) ( )q z H U∈  and 1( ) 1q z| |<  for 1z U∈  and 

1 1 1 1 1
2

1

( ) ( ) 1 2 tan ( ) ( )1
( ( )) 2 (1 tan )

f z f z i q z z q z
f z i

α β
α β

′′ ′− + +
− = .

′ −
                    (17) 

From (8) and (9), we obtain 

1

2
1

2

( )4 (1 tan ) ( ) ( ) ( ) (1 2 tan )
2 j

F n
p

j j
j

H zi z J z F z i
z z p z

ρα β α β−

=

∂
− − − = ,

∂ | | + | |∑
         (18) 
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where 

2 1 1 1
1 2

21 1 1

( ) ( ) ( )( ) 2 (1 tan ) 2 1
( ) ( ( ))

j
n

p
j j

j j

f z f z f zH z i z p z
z f z p f z

α β
=

  ′′
= − | | + | | −    ′ ′  

∑  

21
11

2 1

( )2 (1 tan ) ( 1) ( ) (1 ) 2
( )

n

j j j
j

f zi p P z z zf z
α β

=

  ′′
+ − − − | | −   ′  

∑  

2
1

2
(1 2 tan ) 2 j

n
p

j j
j

i z p zα β
 
 
 
 
 
 
 
 =

− − | | + | | .∑                        (19) 

Substituting (16) and (17) into (19), we get 

2
1 1 1 1 1

2 2 2

21
11

12

2
1 1 1 1

2 2

( ) 2 ( ) (2 1) ( 1) ( ) ( )

( )2 (1 tan ) ( 1) ( ) (1 ) 2
( )

(1 ) ( ) (2 1) ( 1) ( )

2

j j j

j j

n n n
p p p

j j j j
j j j

n

j j j
j

n n
p p

j j j
j j

H z z q z p z q z z z q z z

f zi p P z z zf z

z q z p z z q z z

α

α β

α

α

= = =

=

= =

′= | | + − − | | + | | + | |

′′ + − − − | | − ′ 

′= + | | + − − | | + | |

+

∑ ∑ ∑

∑

∑ ∑

21
11

12

( )(1 tan ) ( 1) ( ) (1 ) 2
( )

n

j j j
j

f zi p P z z zf z
β

=

′′ − − − | | − ′ 
∑

 

By Lemma 2 and 3, we can get that 

2
1 1 1 1

2 2

21
11

12

2
1 1

2

2
1

1 2
1

| ( ) | (1 ) | ( ) | | 2 1| ( 1) | ( ) |

( )2  | 1 tan  | | ( ) | ( 1) (1 ) 2
( )

(1 ) | ( ) | | 2 1| ( 1)

1 | ( ) |   | 
1

j j

j

n n
p p

j j j
j j

n

j j j
j

n
p

j j
j

H z z q z p z z q z z

f zi P z p z zf z

z q z p z

q zz
z

α

α β

α

= =

=

=

′≤ + | | + − − | | + | |

′′
+ − − − | | −

′

≤ + | | + − − | |

−+ |
− | |

∑ ∑

∑

∑

2
1

2

2 2
1 1 1 1 1

2 2

2 2
1 1 1

2

8(1 )     ( 1)    
cos

(1 )(  ( )  1) 1 2    (1   ( )  )
8| 2 1| ( 1) | | ( 1) | |

cos

(1 ) (1 ) (  ( )  1)   2

j

j j

n
p

j j j
j

n n
p p

j j j j j
j j

n

j

z P p z

z q z z z q z

p z P p z

z z q z

α
β

αα
β

=

= =

=

−| | + | | − | |

≤ +| | | | − + +| | + | | − | |

+ − − | | + −

= +| | + −| | | | − + |

∑

∑ ∑

∑
81      ( 1)    

cos
jp

j jjP p zαα
β

 − | + | | − | | . 
 

 

If 1   2 1  
8    cosjP α
α β− | − || | ≤ , then we obtain 

 



The Generalized Roper-Suffridge Extension Operator on the Reinhardt Domain 393 

2
1

2
  ( )  1 ( 1) j

n
p

j j
j

H z z p z
=

| | ≤ + | | + − | |∑
 

2
1

2
2 j

n
p

j j
j

z p z
=

= | | + | | .∑                                (20) 

The equality (18) and (20) show that 

14 (1 tan ) ( ) ( ) ( ) (1 2 tan ) 1Fi z J z F z i
z
ρα β α β−∂

− − − ≤ .
∂  

then 

2 …( )
nn p pF Sα β, , ,∈ Ω , . 

Conversely, if 



11
2

21 1 1 2 1
2

( ) ( ) ( ) ( ) ( ( )) ( ( )) ( )pp n

n

n

j j n n p p
j

F z f z f z P z f z z f z z Sα β
 
 
  , , ,  = 

′ ′ ′= + , , , ∈ Ω , ,∑




 
then we prove that  ( )f USα β∈ , . In fact, letting 

21( 0 0)
nn p pz z , , ,= , , , ∈Ω



  with 1 0z ≠ . From (3 3).  

and (9), we have 

11

ˆ1 1

( ) 2[ ] ( ) ( ) ( ) 0
( ) ( )

i i
F

z z

f zRe e Re e z J z F z
z f z z z

β β ρ
ρ

− − −

=

∂ = ≥ , ′ ∂ 
 

for 10 1z<| |<  and 0α = , and 

1

1 1

1

ˆ

( )2 (1 tan ) 1 2 tan
( )

4 (1 tan ) ( ) ( ) ( ) (1 2 tan ) 1
( ) F

z z

f zi i
z f z

i z J z F z i
z z

α β α β

α β ρ α β
ρ

−

=

− − +
′

− ∂
= − − ≤

∂  
for 10 1z<| |<  and 0 1α< < . This completes the proof.   

Set 0β = , in Theorem 5, then we get the following corollary due to [8]: 

Corollary 6. Let 0 1α≤ < . Suppose that the operator ( )F z  is defined by (2). If 1 |2 1|
8|| ||jP α
α

− −≤ , 

2j n= , , , then 
2 …( )

nn p pF Sα
∗

, , ,∈ Ω  if and only if f Sα
∗∈ . 
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