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Abstract: Let p; € N and p ; 21, j=2,...,n be a fixed positive integer. In this paper a generalized Roper-Suffridge

extension operator

FE)=| 1)+ [ )X P G 2 ()2, |

on Reinhardt domain ()
P25 5Py

Jj=2

n
={zeC"| zZ, |2 +Z| z, |p"< 1} is defined. Some different conditions for P/ are

established under which the operator preserves an almost spirallike mapping of type [ and order ¢ and spirallike mapping of

type f and order «, respectively. In particular, our results reduce to many well-known results.

Keywords: Roper-Suffridge extension operator, Reinhardt Domain, Almost spirallike mapping of type [ and order « , Spirallike

mapping of type £ and order « , Minkowski functional.

1. Introduction and Preliminaries

Let C" be the vector space of n complex

variables z =(z,,...,z,) with the Euclidean inner

product <Z, W>:Z Zw; and Euclidean norm
=1

|l z|= <Z, Z>1/2 , where z,weC". The open ball
{zeC":||z|<xr} is denoted by B/ and the unit
ball B' by B" . The closed ball
{zeC":||z|[£r} is denoted by B, and the unit
sphere is denoted by OB" ={zeC": || z|=1}. In
the case of one complex variable, B'
U.For n22, let £=(z,,...,2,)€C"" so that

z=(z,2)eC".

is denoted by
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Let L(C",C™) denote the space of complex

linear mappings from C" into C” with the

standard operator norm,
| All=sup il A(2) || [| z[[= 15,
and let I be the identity in L(C",C"). Let Q

be a domain in C" and H(L) be the set of

into C" . Let
0e€Q, a mapping f € H(Q) is called normalized

if f(0)=0 and J,(0)=1,, where J (0) is the

holomorphic mappings from Q

complex Jacobian matrix of f* at the origin and [,

is the identity operator on C".

Let S(Q) be the set of normalized biholomorphic
mappings on . In the case of one complex variable,
the set S(U) is denoted by S . A normalized
mapping f € H(Q) is said to be convex if its
image is a convex domain. Let 0 € ), a normalized

mapping f € H(Q)) is said to be starlike with



384 The Generalized Roper-Suffridge Extension Operator on the Reinhardt Domain

respect to the origin if its image is a starlike domain

with respect to the origin. The classes of starlike and
convex mappings on Q will be denoted by S*(Q)
and K(Q), respectively. In the case of one complex
variable S*(U) and K(U) is denote by S and
K, respectively. A normalized mapping f € H(Q)
is said to be ¢& starlike if there exists a positive

number &, 0<g&<1, such that f(B") is starlike
with respect to every point in & f(B"). Assume that
P:C">C
degree n. Then P satisfies P(Az)=A"P(z) for
vzeC"

is a homogeneous polynomial of

and A€C . It is easy to see that
op a_P]

oz 0z

VP(z)z=nP(z) , where VP(2)=|—
Z, .,

cey

is the gradient of P(z).

A domain Q c C" is said to be circular domain if
e?zeQ holds for every zeQ and R . A
domain Qc C" is said to be Reinhardt domain if
(" Zl,e"g2 22,...,e’ﬁ” z,)eQ holds for every

0,eR
j=12,...,n. The Minkowski functional p(z) of

z2=(2,,2y5...,2,) €Q for all

a bounded circular convex domain Q in C" is

defined as
o(2) = inf{t >0,2 ¢ Q},z eC’.
t

If Q 1is a bounded circular convex domain, then
Q is a Banach space in C" with respect to this

norm, and Q={zeC":p(z)<1} . Also, The

Minkowski functional p(z) is C' on Q except

for a lower dimensional manifold. Moreover, the
Minkowski

functional p(z) has the following

properties of (see [11]):

9P (42)=P (), 2 €[0,40),2€Q1{0}, ()
oz Oz

8—'O(e"gz) =e " 8—'O(Z),l9 € R,ze C"\{0}.
oz 0z

Definition 1. [22] Suppose that Qc C”" is a
bounded complete convex domain. Its Minkowski
p(z) is C'
dimensional manifold. Assume that 0 <o <1 and

—Z<fB<%. A mapping feH(Q) is said to be

functional except for a lower

almost spirallike mapping of type £ and order «

if the following condition holds:
Re[2e’ﬂ %Jfl(z)f(z)} > p(z)a cos f,
/4

zeQl{0},

op(2) _|0p(2)  0p(2)
Oz oz, 7 oz, |

Definition 2. [22] Suppose that Qc C”" is a
bounded complete convex domain. Its Minkowski

p(z) is C'
lower-dimensional manifold. A mapping f € H(Q)

where

functional except for a

is said to be spirallike mapping of type [ and order
a if

4oe” _6/; iZ) J}l(z) f(2)-
p(z)(cos B—i2asin fB)

zeQl{0},

< p(z)cos 3,

for 0<a<l, —2<f<% and

Re{Ze’ﬁ ?Jfl(z)f(z)} >0,z € Q1{0},
/4

for «=0.
The class §_ (€, /) consists of all normalized

spirallike mappings of type [ and order & on Q
and the class Ag (€, B) consists of all normalized
almost spirallike mappings of type £ and order «

on Q for 0<a <1. Then, we have
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feds§ (U,p) < feSU) and Re[e’ﬁ&}Zacosﬁ, feU,

fes,U,p) < [feSU) and Re{e’ﬁ&}zo,

and
and

fes, WU.p) < feSWU) and
for O<a<l.

The class S, (Q) consists of all biholomorphic

starlike mappings of order @ on Q for 0<a <1.

Let S;(Q)=g,(Q,0) for 0<a<l (we say

« -spirallike) and S;(Q)=S"(Q), and let

$,(Q, ) = A5,(Q, B) = S(Q, B) . It s evident that
A5,(Q2,0)=5,(2,0)=S"(Q). From Theorem

1.2.1 in [2], we have S (Q)cS"(Q) for

0<a<l1. Spirallike mappings are important for
study because they are natural generalization of
starlike mappings which leads to a useful criterion for
univalence.

In 1995, Roper and Suffridge [19] introduced an
extension operator which gives a way of extending a
locally biholomorphic function on the unit disc U to
a locally biholomorphic mapping on the unit ball B”"
in C".

For fixed n>2, the Roper-Suffridge extension

operator ( see [6] and [19]) is defined as follows:

zeB",

[©, (1) = (21 (2)2),
where [ is a normalized biholomorphic mapping on
the unit disc U in C and z=(z,Z) belonging
to the unit ball B" in C" and the branch of the

power function is chosen so that / f"(z,) =1

2a(l—itan f) gf(é) —1+i2atan f

sf'($)

U,
£1(E) -

<1,&eU

1

The following results illustrate the important and
usefulness of the Roper-Suffridge extension operator

® (K)SK(B"), ®,(5)cS (B").

The first was proved by Roper and Suffridge when
they introduced their operator [19], while the second
result was given by Graham and Kohr [5]. Until now,
it is difficult to construct the concrete convex
mappings, starlike mappings on B”". By making use
of the Roper-Suffridge extension operator, we may
easily give many concrete examples about these
mappings. This is one important reason why people
are interested in this extension operator. A good
further
Roper-Suffridge extension operator can be found in
the recent book by Graham and Kohr [6].

In 2002, Gong and Liu [3, 9] introduced the
definition of & — starlike mappings and obtained that

treatment  of applications  of  the

the operator

[@,, (NG =( G0 2),

maps the & — starlike functions on U to &—

starlike mappings on the Reinhardt domain
n

Q,, = {z eC" |z [ +))|z, 1< 1} . where
=2

p=1. When £¢=0 and £=1, ® , (f) maps

the starlike function and the convex function on U
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to starlike mapping and convex mapping on € p?

respectively.

Furthermore, Gong and Liu [4] proved that the
operator

@, ()=

P2

SEL G 2 ()2, |

maps the & — starlike functions on U to &—

starlike mappings on the Reinhardt domain
n

Q,, z{z eC":|z [ +Z|Zj |pf<1} , where
=2

pJ.Zl, j=2,...,n . Also, Liu and Liu [10]
proved that this operator preserves starlikeness of

. On the other

order & on the domain €2 P

hand, Feng and Liu [1] proved that this operator
preserves almost starlikeness of order & on the

domain Qn,pp..,p,, )

In 2005, Muir [13] modified the Roper- Suffridge

extension operator as follows:
[, = (/) + /' EOENTE)2),
z=(z,2)e B,

where Q(ﬁ)
degree 2 with respect to Z, and f, z and Z

is a homogeneous polynomial of

are defined as above. He proved that this operator
preserves starlikeness and convexity if and only if
|O|I<1/4 and ||Q||£1/2 , respectively. This
modified operator plays a key role to study the
extreme points of convex mappings on B" (see [14,
15]). Later, Kohr [7], Muir [12] and Rahrovi et all [18]
used the Loewner chain to study the modified
Roper-Suffridge extension operator. Recently, the
modified Roper-Suffridge extension operator on the
unit ball B” is also studied by Wang and Liu [21]
and Feng and Yu [1] and S. Rahrovi et all [17].

In 2011, Wang and Gao [20] introduced the
following extension operator on the Reinhardt domain

Q

P35 5Py +

[P, )., ()=
IOSECHWER @

(F1(2)7 200 (f1(2)) " 2,

where where f is a normalized locally

biholomorphic function on the unit disc U, P; are
positive

integer, ¢; are complex

Jj=2,...,n and the branch are chosen such that

L) | o=1.

found under which the operator preserves the

constants,

Some conditions for ¢; are

properties of almost starlikeness of order & and
starlikeness of order &, on the Renihardt domain
Qn, P oup, » TESpectively.

In contrast to the modified Roper-Suffridge

extension operator on the unit ball B", it is natural to

ask if we can modify the Roper-Suffridge extension

operator on the Reinhardt domain Qn,pz,..,p,, . In

2014, Li and Feng [8] introduced the following

extension operator

@ IEEPE)

F(z)

b

(f'(zl))7222,_,,,(f'(zl))”i"zn
on the Reinhardt domain Qn,m,.‘,pn . where P,(Z j)
is a homogeneous polynomial of degree n with

A

respect to Z;, and f, z, and 5 are defined as
above. They proved that this operator can preserve the
properties of almost starlikeness of order « ,
starlikeness of order & and strongly starlikeness of
order a on the domain Qn,pz,..,pn
different

respectively, where Qn,pz,..,pn is defined as

Q",pz,-.ﬁp,, = {Z eC" iz |2 +Z|Zj "< 1}. 3)

J=2

given by
Jj=2,...,n,

conditions for P |

In this paper we will establish some different
conditions for ['; such that almost spirallikeness of
type f and order « and spirallikeness of type S
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and order « are preserved under the above
generalized Roper-Suffridge operator. Our results
enable us to obtain some known results from a unified

perspective and also leads many new results.
2. Some Lemmas

In order to prove the main results, we need the

following lemmas.
Lemma 1. [16]. Let p be a holomorphic function

on U.If Re p(z)>0 and p(0)>0, then

2Re p(z2)

"(2)|< .
| P'(2)] e

Lemma 2. [6] ( Schwarz-Pick lemma ) Suppose
that geH(U) g(0)=0 and
g(U) U, then

satisfies

: 1-|g(§)f
< 103571
1£'(S)] 2P

foreach £eU. .

Lemma 3. [16]. Let f be a normalized

biholomorphic function on U .Then

oS @
(1 ’Z‘)—f'(z) 22‘S4. 4)

Lemma 4. [23]. If p(z) is the Minkowski

function of the domain €2, proapn s 270, then

6_,0 _ Z1
e <>2‘ A e
z .
P | T &
— Pj’2
a_p(z): ijj|Zj/p(Z)| . (5)
0z, 2 2| Z 2 Zn: z, Py
z + .
P o) T2 e

3. Main Results

We begin this section with the main results of this
paper.

Theorem 1. Let 0<a <l and -Z<f<%.
Suppose that the operator F'(z) is defined by (2)

. (I-a)cos S
and Q, ~ isdefined by (3). If [| P, [[<—F—,

j=2,...,n, then FeAga(Q/‘t,pz,“,pn’ﬂ) if and

onlyif feAg (U,B)=Ag,(f).
Proof. Suppose that p(z) is the Minkowski

functional of Qn,pz,..,p,,. From (1), we may obtain

that p(z) is a C' function except for a lower

dimensional manifold in ﬁn, psn..-p, - By the definition
of an almost spirallike mapping of type £ and order

o , we only need to prove that the following
inequality holds

Re[2e’ﬂ g—'o(z)JF1 (z)F(z)} > p(z)acos S, (6)
4

for all ze Qn’p 220 and H Pj HS (lfa‘)‘cosﬁ ‘

2seea Dy >

Now, for z=(z,Z2) eﬁn,pp”,p 1{0}, we have two

cases:

First, if Z=0, then we can get the conclusion
easily.

Second, suppose Zz # 0. Obviously, the mapping
F is holomorphic in a neighborhood of each

z=(z,2)€Q,,, , {0} . Let wus write

z=u=[1|"u for ueoQ, v,...p Such that

n#0 and AeU {0}, then from (1) we have

Re [L e’ 6_,0(2)];1 (Z)F(Z):| >qcos f
z

p(z) o

2
P14 1%)

e L 21 )T A (4 )} >acos f (1)
Z
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—i6
Re 2 2 peop op
[ A] 0z

<:>Re{

For the fixed u, the expression

R{ 5 0p % I "(Au)F (Au)

7 acosﬂ}

is the real part of an analytic function of the
complex variable A, and hence is harmonic. Due to
the minimum principle for harmonic functions, we
know that it attains it’s minimum on |A|=1, so we
need only to prove for all
z=(z,2)€ aQn,pz,,,,,pn {0} such that 2#0 .
Hence, p(z)=1 and inequality (6) becomes

Re {Ze_iﬁ (;—'0 (2)J;! (Z)F(z):l
z

2acos f,z€0Q,, {0}, Z2#0.
Since
f(21)+f’(zl)z Pj(zj)a
F Z): Jj=2 s
(@) 23 (f'(2)" 2,
hence
Ao ow o,
B I - 0
Jp(2)= :2 /12 U
B0 - Al

where [ is the identity operator on C”~! and

A= f(z)+ f"(zoi P(z)).

=Gy j=2m,
a;=f'(z)VE(z)),

B, = %( &) fz)z, j=2en

0P @, L "Au)F (Au)

W)J; (we’gu)F(we"’u)}acos B

1 } acos f.

We denote
J N (2)F(2)=A=(x,%,,...,%,) € C" then we
have

SE)
5 LI
fEG), @)

= ~1)P, ,

" [ p,(f'(z)) pzf( )Z(p, )P (z, )Jz2

N :[1_f<zl)f"(z1) /'(z) Z (b, -DP(:, )J

p,(f'(@) p.S ()T
Consequently
8p(z)‘] ( )F( )_ f('Zl) ap(z)zl
0z z,f'(z)) 0z
0
—Z (p, -V, ()22
@G,
K fﬂ;(z,()f (2)) ag(z) . ®
. Z
(7 ~DRG) |
P Sz )Z e
Now, from Lemma 4, we obtain
( )= Z1
521 202E+Y p, 12, 1"
j=2
az()_ pZ]|Z| (9)
22| 7 [ +ZP,IZ Ip’)
In terms of (8) and (9), we obtain
2 Z—’D(z)JFl(z)F(z) = Gn(Z) ,(10)
Z

2|7+ p 1z, 1"
J=2
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where

1— S(z)f"(z)

o , (f'(z)) .
G(z)=e”Y p, |z, | ;’"(Z) +2e7# (]J:(( )) (pj—l)Pj(zj)]
Jj=2 1 -1 P =2
i );(k )P(z))
e S e e[ S@SE), e, npoe [f() _p,_Q_J'
w2 e ;p"zf' ( p,(f'(zl))J 2 (n DR Fay & ol
Since ZG@QWZ . - |z | +Z|Z |7=1,

6(y=2e 75 LE 4o n¥ 12 (l_ﬂzl)f"(zl)J

z,/'(z,) = p;(f'(z))’
+eiﬁ§(pj—l)13j(zj)(§t((jll)) 1z P)—- —j. (1)
Since f € 4§, (U, ), we set
()= ”ﬁ%ﬂ'sinﬂ—acosﬂ, -

(I-a)cos B
then p(z,) isanalyticon U suchthat Re p(z,)>0 for z, eU with p(0)=1 and
5 (1 AEAVIEN
(f'(z))’
Substituting (12) and (13) into (11), we get
G(z)=2]z | (1-a)(cos B)p(z,) +acos B—isin B)

RO WAEHE (l—i}filz, " (@=ea)cos f)(p(z) +20'(2))

J

]z (1-a)cos B(p(z,)+z,p'(z,)+acos f—isin f. (13)

/'(z)
f(z)

£z, 1" (acos f-isin )+ Y (p, —1>P,<z,>[ (-7, \2>—271J

=(-a)p(z)cos B +2|z [ acos B—2i|z | sinf

n
20z P+ 1z "
=2

+Z| z,|” (e’ (p, =) +acos B—isin f)+(1-a)cos Bz, p'(z)D |z, |”
=~

f"(z)
1'(z)

+e“’ﬂ2(p,—1)P( )[ (=12 - 2le

Hence
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ReG(z)>(1—-a)cos S Rep(z,)+2 |z " acos

20z P Y|z, 1"
j=2
+Y (00s f(p, 1) +acos B) |z, 7 —(1-a)cos B z,p'(z) | (-, )
j=2

/" (z) _ 2y A=
—f,(zl)(1 |z, ) -2z,

—1e™ 12 (p; =D P(z))|
j=2
By Lemma 1 and 3, we can get that

Re G(2) = (1-a)cos B(1+|z, [ |Re p(z)+2| 7, acosﬁ+zn:((pj ~I)cos B+acos Bz, |

~(l-a)eos (1-4zp)2 & | fe PE)_430 1Pl p -1z pr=(-a)eos (1 | z, [ Re pl(z)+2Pacos
-

1

+> ((p; =1)(cos B4 P, |)+acos B) |z, |” .
=2
Therefore, when ||PJ||SW, j=2,...,n,wehave

Re G(z)=(1-a)(1- |z |)’ Rep(z,)cos B+2| z, [ arcos B+acos B plz "

J=2

n
2|z P+ p; 1z, 1"

J=2

>qcosf . (14)

In the terms of (10) and (14), we obtain

Re(Ze’ﬂ %JFI (z)F(z)j > cos .
zZ

Hence F e A,’S\'Q(Qn,pz,--»m’ﬂ) :

Conversely, if

F(2)= {f(z» L EXPELS G 2 (@2, € 45,9, )

then we prove that f € Ag*a(U,ﬂ). In fact z=(z,,0,...,0) € Q,, ., with z# 0, from (8) and (9), we

have

Re(e"ﬁ le;('?z)l)J = p(zz) Re(e"ﬁ %J;l(z)]F(z)j > q cos f3,

for 0<|z, |<1. This completes the proof. [
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If we take a =0, in Theorem 1, we obtain:
Corollary 2. Let —Z < #<Z. Suppose that the

operator F'(z) is defined by (2). If || P, < <L
j=2,...,n, then FeAS’(Qn’pz’“’p ,f) if and
onlyif f € AS(B).

Set f#=0, in Theorem 1, then we get the
following corollary due to [8]:

Corollary 3. Let 0<a <1. Suppose that the
operator F(z) is defined by (2). If || P, [|<%,

j=2,...,n,then F € AS;(Qn,pz,..,pn) if and only
if feAS,.

If we take =0, in Corollary 3, we obtain
following corollary:

Corollary 4. Suppose that the operator F'(z) is
defined by (2). If || P, [|<y

<+, j=2,...,n, then
FeS (Qn’pz’_'

) ifandonlyif fe€S".

—-Z<p<z .

Suppose that the operator F'(z) is defined by (2)

>Pn

Theorem 5. Let 0<a<l ,

and Qn,pz,..,p is defined by (3). If
|P|<=3=cosfS , j=2,...,n , then

Feg,(Q,, . .B) ifandonlyif feg (U,B).
Proof. We first prove that F € Sa(Qll,pz,..,p ,B)

when feg (U,p). By the definition of almost

spirallike mapping of type [ and order « , we need

to prove that the following inequality

< p(z)cos B, 15)

dae” 2_5(2)ng (2)F(z)— p(z)(cos B—2iasin 3)

Similar to the theorem 1 we need only to prove that (15) holds for p(z)=1 and Z#0, according to the
maximum modulus theorem for analytic functions. So, it is sufficient to show that
<1,

4o (1—itan ﬁ’)g—'j(z)J};l (2)F(z)-1+i2atan B zeoQ,, W0}, Z2+0.

Case 1. When o =0, noting that S'O(U,ﬂ):ASO(U,ﬂ):S(U,ﬂ), from theorem 1, we obtain that

FeAgO(Qn,pZMPn,ﬁ)=§0(Qn’pz’“,p”,ﬁ) ifand only if f € S(U, p).
Case2. When O<a <1, we set

q(zl):2a(1—itanﬂ)&—l+i2atanﬂ, (16)
z,f'(z)
then ¢g(z,)e H(U) and |q(z,)|<1 for z, €U and
@) 1-2atan fq(z)+54'(2) )
(f'(z)’ 2a(1-itan f5) '
From (8) and (9), we obtain
4a(1—itan ﬁ’)g—p(z)JFl(z)F(z)—(l—ﬂa tan ) = H() , (18)
Z

n
20z P +) 1z "

J=2
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where

f( p f(Zl)f”(Zl)
H(z)=2a(1- 2 AN e
(2)=2a( ztanﬂ)[ | z, ’ 2. f(z,) jz_;,pj |Zj | ( pj(f'(zl))2 J}

+2a<1—itanﬂ)(i<p SAE )(’;EZI))(I )~ 2D

n
2 .
2|z +) pylz |7

j=2

—(1-i2a tan )

Substituting (16) and (17) into (19), we get

H(2)=2|z [ q(z)+Qa-DY (p, -z, " +q(z)) |z, " +24'(z)D |z, "
j=2 j=2 j=2

att-itn)3 (0P )(f(g)) (-1 P)- 2zlj
— (1412, () + Ca=DY. (p, =Dz, " +2q )Y |2,
+2a<1—itanﬂ)ji2<pj—1>Pf<zf>(’}"§ (-1, - 2zlj

By Lemma 2 and 3, we can get that

| H(2) £ W+ 2, ) q(z) [+]2a =113 (p, =Dz, |” +|24'(z) | )|z, |”
j=2 j=2

+2arl—ztanﬂrz|P< oL 1o py -2z,
)
< (5 P) gz 1+ 12a-113 (5, <D 2,

Jj=2

+z| JM(I ey z AR IEAR

_|1|

<(I+zP)(1q(2) | —1)+1+\21P+2 \ = (1— | 61(21) b

+|2a_1|2(pj_1)|zj |P,-
=2

Pl(p, =Dz, "

=(IHzp)+H1Hz)2(1q(2) | —1)+]Z:: [ 201+ CO? 7 ra j(pj—l) | z;] 72,

If [P |< %COS /3, then we obtain

(19)
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|H(2) S+ z [+ (p, =Dz, "

n
:2|Zl |2 +ijlzj |P»,- .

The equality (18) and (20) show that

J=2

(20)

4o(1—itan ﬁ)aa—p(z)JFl(z)F(z) —(1-i2atan B)|<1.
z

then F e Sa(Qn,pz,..,p,,’ﬂ)'

then we prove that f € g (U,f). In fact, letting z=(z,0,...,0) €eQ,

Conversely, if

F@) =[G+ @Y PG 2 (PG 2, €54, )

and (9), we have

Re[e™” /(z) 1= 2 Re[e"ﬂg—p(z)J;l(z)F(z)}
4

2f'(z)  p(z)

for 0<|z |<1 and a=0,and

with z, #0. From (3.3)

>0,

z=z

2a(l—itanﬂ)&—l+i2a tan

z,f'(z)
_|4a(l-itan B) dp
- p(2) 0z

(2)J; (2)F(z)—(1-i2a tan B)

for 0<|z |<1 and 0 <a <1. This completes the proof. [

j=2,...,n,then FES;(Qn,pZ,..,pH) ifandonlyif f €S .
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