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Abstract: This study integrated instrumental and relational approaches to the teaching and learning of solids in a preservice teacher’s 
class. The researcher guided the preservice teachers to gather various prisms, pyramids, and spheres to study the total surface areas 
and volumes. At the end of the integrated models, the test scores showed closed relationships in the concurrent instructional 
strategies of the integrated models. The researcher therefore, recommended the design models for the teaching and learning of solids 
in mathematics.  
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1. Introduction

The study of three-dimensional figures 

(mensuration) is the science of measuring solid figures 

or solids. The solids are mainly categorized into 

regular and irregular, prisms and pyramids, and 

spheres. Irrespective of these categorizations, the 

common concepts of interest to preservice teachers are 

total surface areas and volumes, and the procedures of 

discovering these two concepts are collecting, 

classifying, testing, and making inferences. Quite 

apart from these procedures, it is not still clear the 

appropriate mathematical design and the associated 

type of learning expected of preservice teachers. This 

seeming uncertainty breeds mathematical anxiety, 

weak knowledge and computational errors in applying 

solids to solve problems of the society. This opens up 

the debate as to whether instrumental or relational or 

both types of learning should be espoused by 

preservice teachers, and extends the contention to the 

various philosophical viewpoints. This paper therefore, 

seeks to explore the philosophical viewpoints and 

situate an integrated design model for teaching and 
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learning of solids (Bishop, 1980; Bolt, 1987; Asiedu, 

1997; Asafo-Adjei, 2002; Appau, 2006). 

2. Postpositivist Views of Mathematical
Knowledge 

This view is sometimes called the absolutism, 

logicism, scientific method, empirical science, and 

postpositivism. The absolutist view of mathematical 

knowledge assumes certainty and unchallengeable 

truths. It is called post-positivism because it represents 

the thinking after positivism, challenging the 

traditional notion of the absolute truth of knowledge 

and recognizing that everyone cannot be positive 

about knowledge when studying the behaviour and 

actions of humans. It is logicism because it represents 

all the concepts of mathematics that can be ultimately 

reduced to logical sets of interrelated theories, 

mathematical truths, axioms and rules (Ernest, 1991; 

Summit & Rickards, 2013; Creswell, 2014). 

Applying this view to solids, one can state, for 

instance, that the total surface area of a cube is 6x3 

because a cube is a cuboid whose sides are equal. It is 

also verifiable that the volume of a cone is one-third 

the volume of a cylinder. In both of these instances, 

one can observed elements of instrumental and 
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relational learning. Thus, knowing the total surface 

area of cuboid is instrumental and inking it to a cube 

is relational (Skemp, 1976).  

3. Constructivist Views of Mathematical 
Knowledge 

The constructivists view mathematical knowledge 

in two-fold claims of intuitive positivity i.e. (construing 

mathematical notions and logical operations is 

coherent and legitimate) and negativity (classical way 

of construing mathematical notions and logical 

operations is incoherent, illegitimate, distorted, and 

unintelligible. Constructivism constantly seeks 

understanding, develops subjective learning experiences, 

and makes sense of socio-historical perspectives 

(Ernest, 1991; Crotty, 1998; South African Institute 

for Distance Education--SAIDE, 2008; Summit & 

Rickards, 2013). 

The two main schools of constructivism are radical 

and social. Radical constructivists totally discard the 

notion of truth and propose viability to make accurate 

predictions, to solve problems, and to accomplish 

personal goals. Social constructivism, on the other 

hand, focuses on knowledge sharing among members 

of the classroom community in an interactive fashion. 

Social constructivism claims radical constructivism 

does not take into account the role of social interaction 

in the construction of knowledge (Beswick, 2005; 

Egodawatte, 2011). 

It can be deduced here in this view, that solving for 

the total surface area (A) of pyramid, for instance is 

both radical and social. Radical in the sense one needs 

to perform activities to discover that 

facebaseofareabh
n

A 
2

, where n is the number 

of sides of the base face, and it is social in the sense 

that there should be adequate socio-cultural 

knowledge of pyramids to promote the discovery. It 

should be noted that instrumental knowledge of area 

of a triangle, the basic polygon is crucial to relate the 

triangle to other pyramids (SAIDE, 2008). 

4. Pragmatic Views of Mathematical 
Knowledge 

Pragmatism arises out of actions, situations, and 

consequences rather than antecedent conditions rigidly 

enshrined in postpositivism and constructivism. 

Instead of focusing on methods, the pragmatists 

emphasize on the problem and implore every available 

strategy to unravel the problem and advance its 

solution. The pragmatist is not committed to any one 

system of philosophy, individuals have the freedom of 

choice, and theoretical lenses are open to multiple 

scenarios to tackle a problem (Creswell, 2014). 

Therefore, most mathematical learning should 

assume the mixture of the two ways of learning 

especially when both are appropriate and useful. For 

instance, it is practically impossible to prove that the 

total surface area of a sphere is A=4πr2 if there is no 

activity to derive it from the area of a circle. And of 

course, getting the area of the circle is instrumental 

whereas extending that knowledge to derive the total 

surface area of the sphere is relational. Stakeholders 

therefore, need to explore various ways of instituting 

integrated models for concepts in mathematics 

(Skemp, 1978).  

4.1 Integrated Design Model for Relational and 
Instrumental Learning 

Concrete materials used to model mathematical 

concepts are important tools for helping children to 

learn and to connect the model to the concept 

represented. And one cannot foster model building 

without having the relationship in mind. Models are 

the pictorial representations of physical concepts, and 

integrated models bring different sets of physical 

phenomena into one meaningful whole to ease a 

common understanding. It is therefore prudent to 

commence model building processes from simple to 

complex relations without loss of generality (SAIDE, 

2008). 

Instrumental learning refers to the ability to 

formulate, organize, and apply algorithms without 
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assigning reasons to the process. The merits of 

instrumental learning are that it is easier to understand, 

the rewards are more immediate, and one often gets 

the right answer more quickly. Relational 

understanding, on the other hand, refers to the ability 

to gather materials, abstract ideas, reorganize concepts 

and contextualize the knowledge to given situation. 

Relational mathematics, on the other hand, is more 

adaptable to new tasks, easier to remember, a goal in 

itself, and organic in quality (Skemp, 1976; Skemp, 

1978; Summit & Rickards, 2013).  

Pesek and Kirshner (2000) bemoan the cognitive 

interference (previous understandings), and the 

attitudinal interference (previously acquired opinions 

and attitudes) block the process of engaging learners 

in undertaking instructional activities. That is why the 

integrated designed model is necessary to cater for 

relational challenges in long time of engagement, too 

difficult to understand, complex transfer of knowledge, 

and heavily dependence on schemas of the learner. In 

most learning situations, relational learning could be 

affected by effects of examinations, over-burdened 

syllabi, difficulty of assessments, and psychological 

difficulty for teachers to re-structuring their existing 

schemas. On the other hand, instrumental could be 

hindered by lack of exploration, inadequate 

investigative discovery, and no interaction of learners 

to maximize learners’ potentials. It is therefore, clear 

that the two types of learning concurrently interplay in 

the classroom setting (Skemp, 1976; Pesek & 

Kirshner, 2000; SAIDE, 2008).  

4.2 Integrated Design Model for Three-Dimensional 

Figures 

In employing the integrated design model, the 

solids are categorized into polyhedra (flat-surfaced 

polygons comprising platonic, prisms and pyramids) 

and non-polyhedra (mix-surfaced figures comprising 

sphere, cylinder and cone). In particular, prism is a 

solid figure whose two bases are parallel and 

congruent polygons, and named according to the 

shape of the base, such as triangular, rectangular, 

pentagonal, and hexagonal prisms to represent three, 

four, five and six-sided prisms respectively. The cube 

is a special rectangular prism whose faces are squares, 

and the cylinder is a special prism whose faces 

connected by parallel curved surfaces. 

A pyramid is a polyhedron whose base is a polygon 

and whose other faces are triangles that meet at a 

common vertex, and are equally named by the shape 

of the base, vis-à-vis triangular (tetrahedron), 

rectangular, hexagonal pyramids, and octagonal 

pyramids. The cone is a special pyramid whose base is 

circular base. A sphere is a three dimensional 

non-polyhedron, which is made up of all points in the 

space, which lie at a constant distance (radius, or r), 

from a fixed point called the centre of the sphere 

(Asiedu, 1997; Asafo-Adjei, 2002; Appau, 2006; 

Ontario Ministry of Education, 2008; The Improving 

Mathematics Education in Schools—TIMES, 2011). 

Any integrated design model should concurrently 

encompass these relations in systematic and sequential 

order to meet the two main groups of learners. In 

polyhedra for instance, the simplest prism is the 

tetrahedron of four triangles, and the simplest pyramid 

is the triangular prism of four triangles. The irregular 

figures provide links between hemispheres and 

spheres, spheres and circles, and cylinders and spheres 

(Asafo- Adjei, 2002; Appau, 2006; Ontario, 2008).  

4.3 Methods 

The main objective in this study was to devise an 

integrated design models for concurrent instructions in 

the mathematics classroom. The researcher 

simultaneously used both models on 122 preservice 

teachers, where the instrumental models served as the 

control. The interval between the instrumental and 

relational was so close to guarantee internal validity 

for the effectiveness of the integrated design models 

(Creswell, 2014).  

In using integrated models, the researcher guided 

the participants to first group the solids into prisms, 
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pyramids and spheres, after which they were again 

guided to recall, memorize and apply routine algorithms 

to solve problems in total areas and volumes. After the 

three hours, they were guided to draw shapes of the 

solids, and derive appropriate relations between any 

two sets of solids to solve concurrent problems in the 

same total surface areas and volumes. The researcher, 

and conjunction with the preservice teachers, constructed 

three separate tables, to synchronize and analyze these 

relations among any pairs of prisms, pyramids and 

spheres so as to compare the knowledge achieved in 

instrumental and the relational learning. The results of 

the pairs were outlined and discussed below. 

4.4 Results 

The results of table 1 show the order in which 

preservice teachers grouped the prisms in the 

integrated design models. They applied the 

instrumental knowledge and extended the useful ideas 

to the relational ones. In the instrumental, participants 

started with cuboids by gathering the formulas for the 

total surface areas of a cuboid of length l, breadth b 

and height h as A=2(lb+bh+hl), cube as A=6l2, and 

cylinder as A=2πr(r + h). The volumes of these 

respective prisms are V=l×b×h, a cube as V= l3, and 

cylinder as V=πr2h. 

In the relational ones, preservice teachers’ built the 

total surface area of the cuboid as the sum of area of 

rectangle 1 (l×h)+area of rectangle 2 (l×b)+area of 

rectangle 3 (l×h)+area of rectangle 4 (l×b)+area of 

rectangle 5 (b×h)+area of rectangle 6 (b×h), and sum 

up to 2(l×b)+2(b×h)+2(l×h) or 2(lb+bh+hl). A cuboid, 

whose length, breadth and height are all equal is called 

a cube of edge 1, and the total the surface area as 

2(l×l+l×l+l×l) or 6l2.  

Instrumentally, the lateral surface area of a cuboid 

A=2lh+2bh or 2(l+b)h or 4×(π r2), and that of the cube 

is A=4l2. Relationally, the curved surface area of the 

cylinder is the area of the rectangular sheet (lxb), 

which is the perimeter of the base of the cylinder×h or 

2πr×h. And the area of the two circular bases is 2πr2, 

and this gives the total surface area of the cylinder as 

A=2πrh+2πr2 or 2πr(h+r). The area of a rectangle is 

denoted by A, the height up to which a number of 

rectangles are stacked is h, and the volume of the 

cuboid is designated as V. This gives the volume of 

the cuboid to be A×h. This means volume of a 

cuboid=base area×height or l×b×h. The volume of the 

cube is the number of cubes of edge of unit length l 

and this translates into V=edge×edge×edge=l3. And 

just as a cuboid or cube is built up with rectangles or 

squares of the same size, the circular cylinder can also 

be built up using circles of the same size. So, the 

volume of a cylinder can be obtained as base 

area×height=area of circular base×height=πr2h.  

The results of table 2 show the order in which 

preservice  teachers  grouped  the  pyramids  the 

integrated  design  model.  They  started  with  a 

tetrahedron, and extended the ideas to the rectangular, 

and the pentagonal pyramids, and generalize it to any 

pyramid of number of side n. Instrumentally, the total 

surface  area  of  the  tetrahedron  recalled  was 

triangleofareabasebhA 
2

3
, rectangular pyramid 

was glerecofareabasebhA tan
2

4
 , and 

pentagonal pyramid was 

pentagonofareabasebhA 
2

5 . Relationally, the 

total surface area of a tetrahedron was 

bhbhA
2

1

2

3
  or 2bh, the rectangular 

is bhbhA
2

2

2

4
  or 3bh, and the pentagonal was 

2

3

2

5
 bhA  or 4bh, and hence any other pyramid of 

higher dimension was  bhnA 1 . 

The volume of the tetrahedron is AhV
3

1
 , 

rectangular pyramid is )21(
3

1
AAhV  , pentagonal 

is )321(
3

1
AAAhV  , and hence the volume of 

any other higher dimension was 







 



n

i
nAhV

13

1 .



 
 

Table 1  Integrated Models for Prisms. 

Solid figure  Solid net  Solid name Solid instrumental Solid relational 

 

Triangular prism 
A=lb 
V=lbh 







  bwbhbwbwbhbhA

2

1

2

1
2

2

1

2

1

2

1

2

1







  bwbhhAhV

2

1

2

1
2  

 

Rectangular prism (cuboid)
Cube 

A=2lb+2lw+2bw 
V=lbw 
A=l2 

V=l3 

)(2222 lhbhlblhbhlbA    

)(2 lhbhlbhAhV   
2222 6222 llllA   

3** llllAhV   

 

Right 
circular prism 
(cylinder) 

A=2πr (r+h) 
V=4πrh 

)(222 2 rhhrrhA    

hrhAAAV 2)321(   

Source: TIMES (2011) 

 

2πr 

Πr2 Πr



 

  

Table 2  Integrated Models for Pyramids. 

Solid figure Solid net Solid name Solid instrumental Solid relational 

 

Tetrahedron areabasebhA 
2

1
V=Ah 

bhbhbhbhAAAAA
2

1

2

1

2

1

2

1
4321   

triangleofareabhbhbhA 
2

3

2

1

2

3
 

 1
3

1

3

1
AhAhV   

 

Rectangular 
pyramid 

glerecofareabhA tan
2

1


)21(
3

1
AAhV   

54321 AAAAAA   

glerecofareabhA tan
2

4
  

)21(
3

1
AAhV   

 

Pentagonal pyramid
n-sided pyramid 

pentagonofareabhA 
3

5

)321(
3

1
AAAhV   

654321 AAAAAAA   

pentagonofareabhA 
3

5
 

)321(
3

1
AAAhV   

facebaseofareabh
n

A 
2

 









 



n

i
nAhV

13

1  

Source: TIMES (2011) 
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A1
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A

A

A

A
4
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Table 3  Integrated Models for Sphere. 

Solid figure Solid net Solid name Solid instrumental Solid relational 

 

Sphere 
A=4πr2 

V=4/3πr3 

2422 rrrxA    

32

3

4

3

1
)4( rrrAhV  






  

 

Right circular cone 

2rrlA    

hrV 2

3

1  

)(2 rlrrrlA    

Since volume of cylinder, 

hrV 2  

Then, hrV 2

3

1  

Source: TIMES (2011) 

 

 

 

πrl 

Πr2 

 

2πr 
2πr 

r

2πr 
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Table 4  Scores of Integrated Design Model. 

 Relational  Instrumental  

Mean 46.59 47.50 

Variance 89.02 121.43 

Observations 122 122 

Pearson Correlation 0.525 0.86 

Hypothesized Mean Difference 0 0 

df 121 121 

t Stat 10.36 9.73 

P(T<=t) one-tail 0.000 0.000 

t Critical one-tail 1.72 1.89 
 

The results of table 3 show the order in which 

preservice teachers grouped the spheres in the 

integrated design models. They applied their 

instrumental knowledge in circles and cylinders to 

solve for the spheres and cones. Instrumentally, the 

total surface area of the sphere with radius r is A=4πr2, 

the hemisphere (which is half of the sphere) to be 2πr2, 

and the cone was A=πr(l + r). The volume of the 

sphere was V=4/3πr3, hemisphere V=2/3πr3, and cone 

V=1/3πr2h. 

In deriving the relational models, the total surface 

area of a sphere of radius r was understood to be 4 

times the area of a circle of radius r or 4×(π r2), and 

that of the cone is the sum of lateral side and circular 

or πrl+πr2. The volume of the sphere is obtained by 

filling the container up to the brim with water, 

carefully place one of the spheres in the container for 

some of the water to over flow into the trough, pour 

out the water from the trough into a measuring 

cylinder and measure the water over flowed. It would 

be noted that the volume is nearly equal to the 

measure of the volume of the water displaced (over 

flowed) by the sphere, and which was V=π4/3r3.  

The curved surface area of a hemisphere is half the 

surface area of the sphere, which is 2πr2. That means 

the two faces of the hemisphere, which is the total 

surface area, is A=2πr2+πr2. To find the volume, we 

took spheres, big container, and large trough to place 

the container. Since the volume of a hemisphere is 

half that of a sphere, then we appropriately arrived at 

the volume of the hemisphere V=2/3πr3.  

To find the volume of the cone, we filled the cone 

up to the brim with sand, and emptied it into the 

cylinder. When the cone was filled, and emptied into 

the cylinder for the third time, the cylinder became 

full. This justifies that three times the volume of a 

cone, makes the volume of a cylinder, or V=1/3πr2h. 

The paired-samples t-test was conducted to compare 

the mean scores for the instrumental and relational 

learning models. There was no statistically significant 

difference [p_value = 0.000 < α = 0.05] between the 

models. It is still worthy of critique that the preservice 

teachers’ scores in the relational models could have 

been affected by history, interest in activities, 

self-motivation in the involvement and properly laid 

down instructional algorithms, and was not entirely 

adjudged to be more effective than the instrumental 

models. This argument stems from our observation 

that the instrumental tasks were completed far earlier 

than scheduled, and that could mean the preservice 

teachers understood those models too. It was therefore, 

difficult to superimpose the superiority of particular 

learning models on the preservice teachers. The two 

models are also intrinsically linked and mutually 

dependent on each other. For instance, in deriving the 

nets, preservice teachers conjectured and memorized 

formulas from two-dimensional shapes and figures, 

and this is clearly instrumental. In performing higher 

manipulations, the preservice teachers needed 

practical and systematical instructions to arrive at the 

models, because most of them write down formulas 

before deriving the total surface areas and volumes. 
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5. Conclusions 

The preservice teachers successfully and effectively 

engaged in both instrumental and relational tasks to 

solve problems involving total surface areas and 

volumes of solids. It is therefore, prudent to integrate 

the formulas and fixed procedures with systematical 

and sequential conceptualizing of the prelations. We 

recommended that:  

Classroom instructional discourse should neither be 

aligned to instrumental nor relational; rather 

stakeholders should integrate the two styles to espouse 

all views. 

Relational views is sacrosanct with stocking the 

classroom like a carpenter’s shop, and strictly calling 

for instrumental learning means that the mathematics 

classroom should mimic the tenets of a court room, 

where everybody must provide quotations to back the 

solutions of problems. There must be therefore, be an 

integrated design model to satisfy these dichotomous 

classes of learning.  

Teacher training institutions should encourage 

instructors to devise and improvise integrated 

instructional designs in the processes. By recalling 

and memorizing a formula help in discovering how 

the formula came into being, and the vice versa.  

The curriculum review and development authorities 

or boards incorporate integrated design models in the 

mathematics classroom, and sensor those models. This 

would benefit examination candidates who need little 

relational learning, and equally benefit technical 

candidates who are more oriented in practical 

relational activities.  
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