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Spatial Probabilistic Model of Block Failure Capacity of
Piles in Clay

Indra Djati Sidi
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Abstract: A probability based model of block failure capacity of pile foundation in clay soil under axial load is developed. The model
was based on the first order second moment method. Instead of using point variability, the soil inherent variability is modelled as
random field model. Based on this model, a reliability based factor of safety for designing pile group foundation, taking into account
bock failure mechanism, is proposed. Furthermore, using simplified lognormal model, the relationship between the factor of safety
used in design practice and target reliability may be derived explicitly.
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1. Introduction Dy L
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When a pile group is not very large, both theory and d
and,
experience have shown that a pile group may fail as

B oL
one unit by breaking into the ground before the load for O = L L q,(x,y)dxdy (3)

each individual pile reaches its allowable design load. ) ) ) .
~ where, Dyis the depth of foundation; B is the width of
[1, 2]. Sowers et al. [1] have shown that the minimum . ) ) .
. . group piles; L is the length of pile group; f(x,y) is the
spacing to prevent group failure ranges from 1.75 ) o ] ) ]
i ] ] inherent variability of shear resistance of soil per unit
diameters to 2.5 diameters, depending on the number of o o
o . area. For the case of homogeneous soil with negligible
piles in the group. Nevertheless, block failure may be . . o .
. . . inherent spatial variability, i.e., fi(x,y) will reduce to f;
encountered for pile spacing at even 3 diameters to 6
and g4, and Eq. (3) becomes:

Ou=Dr(2B+2LYfi+ qaBL ()
The shear resistance f; may be assumed equal to

diameters [3, 4], where the pile and the confined mass
of soil work like a rigid unit. It is therefore necessary to

investigate this group (or block) failure as an additional .
. undrained shear strength, and ¢, may be evaluated
failure mode. ) ] )
using the equation suggested by Terzaghi and Peck [2],

2. Block Failure Formulation that is
ga=12¢'N.+ yDyN, + 0.4)BN, )

The ultimate bearing capacity O, of a pile group for b N N and N T hi beari ,
where, N, an are Terzaghi bearing capaci
the undrained condition is sufficiently modelled by o 7 & g. p Y
. L. . factors; ¢ is the undrained shear strength of soil; yis the
superposition of the friction group capacity, Qg and i ) . . .
. . unit weight of soil. In the case of cohesive clay soil
the base group capacity, O, (Fig. 1), as: . i o
Oun= 0+ O 0 with angle of internal friction ¢ equal to zero,
b S A Skempton [5] has proposed the following simple
where, . . . .
expression for bearing capacity of a rectangular footing,

D, ¢B
O, = ZIO ' _[0 fs(x,y)dxdy + as a function of soil shear strength and the dimension of
the foundation itself:
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Fig. 1 Block ultimate capacity of a pile group.
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qa ( BJ( Lj (6)

Furthermore, he showed that the net base resistance
qa becomes practically constant for values D/B greater
than 2.5, and may be taken equal to 9¢. Both Egs. (5)

and (6) are widely used in the design practice.

3. Probabilistic Model on Block Failure
Mechanism

Applying the first order analysis [6, 7] to Egs. (2)
and (3), the expected value of Qg due to inherent
spatial variability of the undrained shear strength may

be expressed as [5]:

E[Qq] = Dr[2B + 2L-E[f] + B-L-E'[q4]  (7)

Q
af

gb

Assuming that Ogrand Qg are independent random

variables, the variance of Q,, becomes:

VAR[Qgu] = VAR[Og] + VAR[Og]  (8)

where,
Dy

VAR[ng]:4VARUO [ fs(x,y)dxdy}+z

4VAR [ [ REACSY) dxdy} ©)

and,

VARIQ,,]1= VAR UOB [,y dxdy} (10)

Consider the first term of Eq. (9), let

a=["7 fpddy  an
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The variance of 4 can be shown to be

varAl=["[" '] p(z.z)

VAR[ f.(x, )] dx, dx, dy, dy, (12)

where, 7 and 7, are spatial distances in directions X
and Y, respectively (Fig. 2) and p(7,7) = correlation
function of the undrained shear strength separated at
distances 7 and 7, in X and Y axis, respectively [8].

A 2-dimensional variance function, I;(Dy,B) ,
which relates the variance of spatial average within an
area and the point variability may be defined for f;(x,y)
as

1—‘2(l)f >B):

LDfJff LBI: p(7,,7,) dx, dx, dy, dy,
D;B’

(13)

Hence, Eq. (12) becomes
VARLA)= D} B>T* (D, B)VARLS, (x, )] (14)

For the special case where the correlation structure is
separable [9], the 2-dimensional correlation and

variance function can be expressed in term of products

Y

of the respective one-dimensional function, namely,
A1, %) = () 1) (15)

and

I*(D;B) = TX(D)T*(B) (16)
allowing considerable mathematical simplification.
Both triangular and double exponential correlation
functions exhibit this “separable” property. Similarly,
the second term of Eq. (9) and the variance of Qg
(Eq. (10)) can also be derived.

On the basis of procedures described in the
aforementioned paragraphs, the mean and variance of
pile block capacity due to inherent spatial variability of
the undrained shear strength in a homogeneous soil

deposit may be shown as

E[Q,1=1{D,[2B+21)+y,BLYu. (17)
And
VARQ, 1= 4B*DT*(B)T*(D,)+

4L'D;T* (L)' *(D, )+

Y BLACY(BTX (D)% 1 (18)

c

l QGrour

Fig. 2 Spatial distances in 2-dimensional random field.
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where, 4. and o. are the mean and c.o.v of the
undrained shear strength at a point representing the

point variability of the soil shear sterngth, and 3 is

D
7b:(1+?f][l+§Js (19)

Egs. (17) and (18) are derived based on the

assumption that the correlation structure p(7,7) of the

defined as

undrained shear strength can be sufficiently
represented by a separable type variance function (e.g.,
triangular or quadratic exponential type), and the
contribution of the base to the block capacity is
evaluated based on Skempton’s equation given in
Eq. (6). For the case typical of most pile foundation,

where B =L and D/B >2.5, the c.0.v of O, is given by

Qqu =

82T (B)* (D, )+81T* (B (B)|
(9-4a,)’

J. (20)

in which, o4 is the ratio of Dyto B.
The effect of inherent spatial variability of the
undrained shear strength ¢ on block failure mode has
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been evaluated as functions of the ratio of depth of
penetration (Dy) to the vertical scale of fluctuation of
¢, 6,, and oy as presented in Fig. 3 for the typical cases
of B = L and o > 2.5. The horizontal scale of
fluctuation 6, is much larger than the vertical scale of
fluctuation 6,.

In this study, the ratio of 6,/6, equal to 9 [9] is used
in addition to the c.0.v of 0.4 for ¢, similar to the case
of a single pile, as the depth Dy increases relative to B
and 6,, the averaging area increases, and hence the
c.0.v of Oy, (in this case f1 ) decreases as shown in
Fig. 3. Moreover, for a relatively short pile (e.g., & =
5), the percentage contribution of the base capacity O,
to block capacity O, given by Eq. (1) is higher than
those of a deep pile foundation (e.g., oy = 20); this fact
also contributes to the relatively higher Qquvalues at
smaller oy compared to those of higher ¢y Fig. 3 shows
that designing pile group using point variability data
will lead to a very conservative design, as the
variability of soil parameter would decrease in the case
of pile foundation due the averaging effect.

4. Model Error in Group Capacity

Many assumption and simplification has been made
)
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Fig. 3 The effect of spatial variability of undrained shear strength, c.
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in the formulation of block failure capacity of pile
foundation due to the complexity of mechanic of soil
response. The engineer purposely simplified the
equation to guarantee a direct approach in designing a
block of foundation and introduce a factor safety to
account for imperfection. Hence, a difference between
calculated and measured capacity cannot be avoided.
Sidi [8] introduced random correction factor N, with
mean value of one and coefficient variation of 0.06
may be used in the reliability formulation of block
failure capacity to account for the imperfection. Taking
into account the model error N, the true group capacity
Qg can then be written as:
Oet = N[O+ O]
And the mean value ofQgmay be given by
E-[Qq] = E-[N,-Dy[2B + 2L E{f;] + B-L'E-[44] (22)
And the coefficient variation of O, may be given by

2 2
Q, =2+ Q)

where, Q,, = coefficient of Q,, given by Eq. (20), and

@n

(23)
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£2,, = the coefficient variation of the statistics of true
capacity (g taking into account both the spatial
and the
systematic model error of the block failure capacity,

inherent wvariability of soil parameter

and may readily be used in the reliability formulation.

5. Factor of Safety Based on Lognormal
Model

By assuming the load acting on the pile and the
capacity block failure mode follow independent
lognormal distribution, the safety index g may be
derived as

_ /lgt _ﬂ’L

- JE+E

where, Ao and &, are parameters of lognormal

(24)

distribution of resistance R whereas A, and & are
parameters of lognormal distribution of resistance L,
respectively. By introducing g, as the ratio of nominal

value of resistance used in design (R,) and the mean

6.00
a
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Fig. 4 Variation of factor of safety FS with safety index .
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value of R, s, and ¢y as the ratio of nominal value of
load used in design (L,) and the mean value of L, 4,
and by defining factor of safety F'S as the ratio of R,
and L, given by:

FS=—" (25)
The factor of safety may be deriving as function

safety index £ and the related coefficient variation of R
and L, as

FS= i—thexp[B \/m 1+ 22)Q + gg)] (26)

Eq. (26) shows that the factor of safety depends of
the target reliability § and the variation of Q, and L
represented by its coefficient variation. The bigger the
coefficient variation the bigger the factor of safety
needed to achieve a certain targeted reliability. Of
course if the designer is already taking conservative
values in determining nominal design values of Qg
and L, representing by ag.of less than one and «,
factor of more than one, one will get a smaller FS for a
certain target reliability index [. Fig. 4 shows the
variation of factor of safety with respect of targeted
reliability index. The higher the coefficient variation of
the block failure, the higher factor of safety needed for
achieving a certain targeted reliability index f. Eq. (26)
shows that the factor of safety is a function of both
inherent variability of soil shear strength and
systematic model error of block equation representing
by 4, and the variability of load given by its £

which is readily to use for design purposes.
6. Conclusions

Based on a random field theory, the spatial
modelled
probabilistically taking into account horizontal and

variability of soil shear strength is
vertical correlation representing by its auto correlation
function. Due to the averaging effect with respect of the
area of block capacity, the point coefficient variation of

inherent variability of soil shear strength would

decrease significantly with the size (depth and width)
of the foundation, and hence would lead to a smaller
factor of safety needed to achieve a certain target of
reliability index. By combining with the model error of
block capacity, one could calculate the necessary
traditional factor of safety needed to achieve a certain
target reliability based on first order second moment
method. The model takes into account variability of
resistance governed by inherent variability, systematic
model error, and the variability of the load itself. A
simple lognormal reliability model has been introduced
enabling one to determine the required factor of safety
as a function of safety index or a certain acceptable risk,
variability of soil, and load.
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