
Journal of Communication and Computer 13 (2016) 351-365 
doi:10.17265/1548-7709/2016.07.004 

 

Saarbrucken Synthetic Image Database - An Image 

Database for Design and Evaluation of Visual Quality 

Metrics in Synthetic Scenarios 

Christopher Haccius and Thorsten Herfet 

Telecommunications Lab, Saarland University, Saarbrucken 66123, Germany 

 

Abstract: This paper presents a new image database, SSID, which provides images for evaluation and design of visual quality 
assessment metrics. It currently contains 1,688 images, 8 reference images, 7 types of distortions per reference image and 30 
applications of the distortion types with varying parameters. The distortion types address image errors arising in visual compositions 

of real and synthetic content, thus provide a basis for visual quality assessment metrics targeting augmented realities and other 

scenarios where synthetic objects are added to existing scenes. In over 17,000 subjective experiments Mean Opinion Scores for the 
database have been obtained. These MOS can assist the evaluation of existing and design of novel image quality metrics for 
scenarios including synthetic content. The evaluation of several existing and widely used quality metrics on the SSID database is 
included in this paper. The database is made freely available, reproducible and extendable for further scientific research. 
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1. Introduction 

Assessment of image quality is essential in several 

areas of image processing and coding. Whenever 

visual media is processed impairments can reduce the 

perceived quality of this information. Processing steps 

include all steps from the acquisition to the 

reproduction of the visual information. The perceived 

quality can be impaired by camera settings at 

acquisition time already (e.g., blur due to wrong focal 

settings, dark noise due to wrong exposure settings), 

due to further image processing steps (e.g., intensity 

cropping after brightness changes, artistic filters and 

modifications), and often images are coded lossy for 

storage which introduces further artifacts. 

As quality degradation depends largely on human 

perception it is important to measure and quantify 

quality degradations. The best available metric for 

perceived image quality is derived from human beings 

directly. Subjective tests can gather quality opinions 
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human observers have about image degradations, and 

from multiple such experiments MOS (mean opinion 

scores) can be calculated. While subjective tests lead 

to the best results, they are both time and resource 

expensive. It is therefore desirable to design 

algorithms which assess the quality of visual data 

conforming to the human perception. 

Existing quality metrics (like SSIM [1] or 

HDR-VDP [2]) already offer decent solutions to 

approximate a subjectively generated MOS 

algorithmically for classical image errors, like random 

noise, illumination change or blocking artifacts. Novel 

scenarios leading to visual output, however, create 

novel sources of errors. Today, an increasing number 

of visual content are combined from real and synthetic 

sources or purely synthesized. 

Images generated from synthetic content pose a 

new challenge to image quality metrics, as perceived 

image qualities do often correspond only very little to 

the image statistics. If, exemplary, an object is 

synthetically shifted slightly in a scene, a human 

observer might not notice the change at all. A metric 
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based on image statistics however will detect wrong 

image values everywhere where either original or new 

object is placed, and assign a large error, thus a low 

quality to the evaluated image. 

In order to design and evaluate image quality 

metrics prepared for novel image contents and suitable 

for purely synthetic and augmented reality scenarios 

we propose this synthetic image database, which 

includes a new source of image distortions: errors  

that occur during the scene composition, before 

rendering. 

This paper extends and fully details the synthetic 

image database which was introduced to the scientific 

community in Ref. [3]. 

2. Related Work 

The first widely used image database with image 

distortions was the LIVE Image Quality Assessment 

Database developed by Sheikh et al. in 2004, with a 

second release published in 2005 [4]. The LIVE 

Database features a variety of photos distorted by 

compression artifacts (JPEG2000 and JPEG 

compression with different quality levels), white noise 

of varying standard deviations, Gaussian blur with 

kernels of varying size and artifacts created by a fast 

fading Rayleigh channel for data transmission. 

In 2008, Ponomarenko et al. [5] created the TID 

(Tampere image database) which was updated in 2013, 

now including 3,000 distorted images created from 25 

reference images with 24 different distortion types. 

The 24 different distortion types include different 

kinds of additive noise, quantization-, compression- 

and transmission errors, blurs, intensity shifts, contrast 

and saturation changes. TID and LIVE database use 

the same set of images from the Kodak Photo CD [6] 

as their reference images, but TID exceeds LIVE with 

respect to the number of distortions and subjective 

assessments. 

With the growing demand for image quality 

assessments of synthetic image contents the ESPL 

Synthetic Image Database was created by Kundu et al. 

in 2014 and updated in 2015 [7]. The ESPL Database 

covers image distortions comparable to the distortions 

introduced in LIVE and TID (High Frequency Noise, 

Interpolation-, Banding- and Ringing-Artifacts, 

Gaussian Blur and JPEG compression artifacts). Other 

than LIVE and TID the ESPL database uses synthetic 

images and not photos as reference images. 

Our proposed database contains images distorted 

with classical error sources, to include elements 

comparable to LIVE, TID and ESPL. In addition, we 

include image distortions that are due to faulty scene 

compositions before rendering. This requires that our 

reference images are rendered synthetically, thus we 

only include synthetic images, as ESPL. 

Table 1 gives a direct comparison of the main 

characteristics between LIVE, TID, ESPL and our 

proposed SSID. Here the number of error assessments 

is the number of assessments of the same image 

distortion on one reference image. While our database 

has less per-image evaluations than the other 

databases, due to the finer granularity of distortion 

levels we have more user assessments than LIVE and 

ESPL for the analysis of the effect of a certain error 

type on a given reference image. 

3. Proposal for a Novel Image Database 

Novel scene compositions cause new kinds of image 
 

Table 1  Comparison of existing and our proposed image databases.  

 LIVE TID ESPL SSID 
# of reference images 29 25 25 8 

# of distortions 5 24 5 7 

# of test images 1000 3000 525 1680 

# of assessments 30.000 250.000 25.000 17.000 

# of assessments per image 20‐30 350 50 10 

# of error assessments 100 1.000 200 300 
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errors to appear. Core to these new image distortions 

are errors created by misplaced or misaligned syn-

thetic objects in 3D scenes. This motivates the use of 

fully synthetic scenes as reference scenes. Fully 

synthetic scenes come with the benefit of a complete 

ground truth scene description in three spatial 

dimensions, allowing the modification of individual 

objects, which is a necessary requirement for the 

creation of synthetic image errors. In addition to that 

synthetic scenes can be used to generate further data 

like depth maps. Here we focus on image errors 

caused by object transformations, which are 

translation, rotation and scaling in 3D space. We 

therefore propose the use of eight synthetic scenes 

(shown in Fig. 1). All of these scenes are publicly 

available and may be modified and redistributed. 

Central elements of the scenes, e.g. the car, bowling 

ball or alarm clock, can be modified by affine 3D 

transformations to simulate possible scene 

composition errors. 

The existing databases, LIVE, TID, and ESPL, have 

some image distortions in common. These are JPEG 

compression artifacts, blur and Gaussian noise. For 

comparison reasons among the existing and novel 

databases it is advisable to include these distortions 

into novel databases as well. 

We therefore propose to deteriorate the reference 

scenes by seven different error sources, which are 

JPEG and JPEG2000 compression artifacts, blurring, 

Gaussian noise, object translation, object rotation and 

object scaling. All images are rendered at the same 

size of 1,920 × 1,080 pixels, thus representing a 

realistic rendering resolution for many currently used 

applications. 

Each of the image distortions is defined by a set of 

parameters (as explained in the following sections). 

For each scene and each distortion we apply 30 

different parameter choices, which are normally 

distributed with mean chosen such that a parameter 

equal to  results in no error. Exemplary, for 

translation = 0 results in the reference image, but for 

scaling = 1 is the parameter leading to a duplicate of 

the reference image. 

The whole dataset then consists of 8 reference 

images + (8 scenes × 7 errors × 30 parameters) = 

1,688 images. For each error image the parameter 

choices are recorded in an “info”-file, which is 

available both in text and in Matlab format. 

For image manipulation and the implementation of 

image errors Matlab [8] provides a suitable 

environment. For the novel image errors which require 

rendering of 3D content the open-source 3D computer 

graphics software Blender [9] was used, and we 

employed Python [10] to automatize the content 

manipulation and rendering steps. The following 

sections describe the different error sources, their 

mathematical background as well as their 

implementation. 

3.1 JPEG Compression Artifacts 

JPEG compression is described extensively in the 

literature. A thorough description is, for example, 

 

 
Fig. 1  Images with synthetic content for generation of synthetic errors.  
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provided by Wallace [11]. The JPEG algorithm for 

lossy image compression operates on image blocks of 

8 × 8 pixels. In the context of compression    

artifacts the quantization of the 64 frequency 

components calculated by a Discrete Cosine 

Transform is the major contributor. This quantization 

is influenced by multiplication of the frequency 

components by a percentage: Multiplication by q = 

100% does not influence the quantized values, but 

multiplication with a low value causes many of the 

frequency components to be rounded to zero after 

quantization [12]. A quantization matrix Qk,l with   

0 < k, l < 8 is modified by quality parameter q as 

follows: 

′
,

, · 50

100
 50

, · 200 2 · 50
100

 50

                      

JPEG coding artifacts can be produced by running 

the JPEG encoding process and observation of the 

results. MATLAB offers a function to write images  

in many desired file formats, among them JPEG. 

When writing to a JPEG file MATLAB can take   

the image quality q as an additional parameter.  

Listing 1.1 gives the source code necessary to create 

the desired image distortion. An example of such 

JPEG  artefacts for the extreme case of quality q = 0 

is given in Fig. 2. 

Listing 1.1. Generating JPEG Compression 

Artifacts 

 
 

3.2 JPEG2000 Compression Artifacts 

JPEG2000 is described by ITU-T Recommendation 

T.809 [13] and —similar to JPEG —discussed in 

several publications [14-16]. Most significant 

differences between JPEG and JPEG2000 are the 

following. JPEG applies a 8 × 8 discrete cosine 

transform on image macro blocks of size 16 × 16, 

while JPEG2000 uses a wavelet transform and 

partitions the image into macro blocks in the wavelet 

domain, thus reducing blocking artifacts significantly 

and achieving higher coding gain and scalable coding, 

main design criteria for JPEG2000 [17]. While 

compression artifacts in JPEG mostly result from the 

quantization step (see Section 3.1), in JPEG2000 the 

bit stream assembler subsequent to domain 

transformation and quantization is the main source of 

artifacts. 

Similar to artifacts created for JPEG, JPEG2000 

coding artifacts can also best be modeled by encoding 

image data with a JPEG2000 encoder for different 

bit-rates and reconstructing the encoded image. 

MATLAB considers target data reduction rates r in its 

JPEG2000 encoder, as shown in Listing 1.2. 

Significant reduction rates are necessary to result in 

visible artifacts. For example, Fig. 3 was reduced with 

a target compression rate of r = 1000 resulting in a 

size of only 0.05 bits/pixel. 

Listing 1.2. Generating JPEG2000 Compression 

Artifacts 
 

 
Fig. 2  Blocking artefacts created by JPEG compression of 

Quality q = 0.  
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3.3 White Gaussian Noise 

White noise is noise that occurs uniformly over all 

frequencies, which means it has a constant power 

spectral density. Gaussian noise is noise that can be 

statistically described by a probability density 

function p(x) of a normal distribution 

1

√2
·

2
      (2) 

with mean  and standard deviation  . White 

Gaussian Noise is therefore noise with constant power 

spectral density and distribution according to Eq. (2). 

The imnoise-function which MATLAB provides to 

generate such noise (see Listing 1.3) internally 

generates a matrix of normally distributed noise N and 

calculates 

·          (3) 

where 2 is the variance, which is given as an input 

parameter to the imnoise- function. Fig. 4 illustrates 
white Gaussian noise, here with a mean of  = 0 and 

variance 2 = 1. 

Listing 1.3. Modeling White Gaussian Noise 

 
 

In 1928 the physicists H. Nyquist and J. Johnson 

published the theoretical background confirming that 

“thermal agitation of electric charge in conductors” 

[18] and “thermal agitation of electricity in conductors” 

[19] can be modeled as white noise, which became 

known as Johnson-Nyquist noise. As thermal noise is 

omnipresent this is an important image distortion 

model. 

3.4 Gaussian Blur 

Image blur is an image distortion often caused by 

objects being out of focus, a too shallow depth of field 

or either moving camera or moving object during the 

exposure time. Blurring is achieved by filtering an 

image with a 2D Gaussian kernel. Extending the 1D 

Gaussian distribution from Eq. (2) to 2D it is 

,
1

√2
·

2
(4) 

where [x, y ] is the mean (or center) of the 2D 

Gaussian bell. For filter design a mean offset is 

 
Fig. 3  Compression artefacts created by JPEG2000 
compression of compression rate r = 1,000.  
 

 
Fig. 4  Average White Gaussian Noise with Mean  = 0 

and Variance 
2  = 1.  
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(usually) not desired, therefore x = y = 0. In MATLAB 

filters can be generated with the fspecial-function, 

which for the Gaussian kernel only requires the filter size 

and the standard deviation a of the normal distribution. 

A 2D Gaussian blurring kernel of 3  3 pixels with 

 = 0.5 is given in Fig. 5. Blurring of an image with a 

filtering kernel is generated by convolution of the 

image with the filter. 

The MATLAB implementation for generating 

image distortions using Gaussian blur is given in 

Listing 1.4. A visualization of this distortion for filter 

size s = 30  30 and standard deviation  = 10 is 

shown in Fig. 6. 

Listing 1.4. Modeling Gaussian Blur 

 
 

3.5 Object Scaling 

Adequate object scaling is necessary to integrate 

computer generated objects into a real scene.  

Scaling of objects is achieved by moving the object 

vertices in 3D according to a scaling factor. This 

scaling factor can be freely chosen along the object 

axes, which leads to three independent scaling  

factors, sx, sy and sz along the x-, y- and z-axis 

respectively. A vertex position p is than scaled to 

vertex position p＇by multiplication with the scaling 

matrix S 

′ ·              (5) 

where S is defined by 

0 0 0
0 0 0
0 0 0
0 0 0 1

          (6) 

Object scaling implemented in Python to be used in 

a rendering software is given by the lines of code 

given in Listing 1.5. The values of x, y and z are the 

original dimensions of the input object, which are 

scaled according to a normally distributed random 

variable with mean  =1 and variance 2 = 0.33. As 

negative scaling factors are not defined, the absolute 

value of the scaling factors are taken for scaling. With 

sx = 0.9, sy = 0.9 and sz = 0.9 the car shown in Fig. 1 is 

scaled to the version shown in Fig. 7. 

Listing 1.5. Object Scaling Error 

 
 

3.6 Object Translation 

The position of an object in a scene is a crucial 

factor for the realistic appearance of the rendered 

scene. Deviations from the correct position can have 

several effects: objects can merge into other scene 

objects, they can loose contact from surfaces or shift 

on a surface. Spatial translation in 3D can be expressed 

by the translation summands tx, ty and tz, which cause 

translations along the x-, y- and z-axis respectively. A 
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0.011 0.084 0.011 
0.084 0.619 0.084 
0.011 0.084 0.011 

Fig. 5  2D Gaussian Kernel of size 3  3 with  = 0.5.  
 

 
Fig. 6  Gaussian Blur with s = 30  30 filter size and 

standard deviation  = 10.  
 

 
Fig. 7  Car scaled with Sx = 0.9, Sy = 0.9 and Sz = 0.9.  

vertex position p is therefore shifted to position p! by 

multiplication with the translation matrix T: 

′ ·                                      (7) 

where T is defined as 

1 0 0
0 1 0
0 0 1
0 0 0 1

                                (8) 

The lines of code implementing object translation in 

Python to generate translated objects in Blender are 

given in Listing 1.6. The translations summands are 

determined in relation to the original object position. 

A translation summand of 0 implies no change in 

position; positive and egative summands cause an 

object translation in the corresponding direction 

according to the coordinate axes. Fig. 8 shows that  

has been used for the previous example as well, this 

time translated by the summands tx = 0.0, ty = -0.1 and 

tz = 0.1. 

Listing 1.6. Object Translation Error 

 
 

3.7 Object Rotation 

Most objects are not rotationally invariant. For 

these objects it is crucial to not only determine their 

position and scale, but also their alignment with the 

environment. Alignment is possible with respect to the  

 

 

three coordinate axes. Different from scaling and 

translation the rotation needs to be defined per axis in 

a single matrix. For rotational angles ax, ay and az 

around x-, y- and z-axis respectively the rotation 

matrices Rx, Ry and Rz are defined as 
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Fig. 8  Car translated by tx = 0.0, ty = -0.1 and tz =0.1.  
 

1 0 0 0
0 0
0 0
0 0 0 1

    (9) 

0 0
0 1 0 0

0 0
0 0 0 1

      (10) 

and 

0 0
0 0

0 0 1 0
0 0 0 1

   (11) 

These rotation matrices can me multiplied to a 

vector p defining an object vertex to rotate this vertex 

to a new position defined by vector p/: 
′ · · ·          (12) 

It is important to note that the transformations are 

not commutative. The order of applying shift, scaling 

and rotations are important, even the order of rotations 

around different axis result in differently aligned 

results. The Python code shown in Listing 1.7 which 

was employed for the creation of the data base with 

synthetic errors executes first the rotation around the 

x-axis, afterwards rotation around the y-axis and 

finally rotation around the z-axis. The sample image 

shown in Fig. 9 shows the car rotated by ax = 0.1, ay = 

0.2 and az = -0.1, where all angle measures are given 

in radians. 

Listing 1.7. Object Rotation Error 

 
 

4. Image Evaluation 

Distorted images can be evaluated subjectively and 

by machines. Subjective evaluations are time 

consuming, but important for the design and 

verification of automatic evaluation algorithms. In the 

following Section we introduce our experimental 

setup to obtain subjective evaluation scores. In the 

succeeding Section we introduce image quality 

Metrics, which we compare our subjective scores to. 

 

 
Fig. 9  Car rotated with ax =0.1, ay = 0.2 and az = -0.1.  
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4.1 Subjective Image Evaluation 

In order to develop and test image quality metrics 

on our proposed database, subjective quality scores 

need to be assigned to the error images. A large group 

of subjects has evaluated the images contained in our 

proposed database, and of the evaluations Mean 

Opinion Scores have been calculated. For a given 

number of N information assessors with their 

individual opinionoifor 1 < i < N the MOS is 

calculated as 

1
           (13) 

Different ways to obtain assessor scores for 

information have been used and researched. Mantiuk 

et al. mention four major methods and compare their 

effectiveness [20]. These four methods are the so 

called “Single Stimulus”, “Double Stimulus”, “Forced 

Choice”, and “Similarity Judgments”. Additionally, in 

2002 Keelan introduced the “Quality Ruler” method 

with the goal to overcome some of the negative effects 

observed in single stimulus methods. All five methods 

differ with respect to the required observations, the 

effort of the experiment and the quality of their results. 

A common part of all subjective studies however is 

the quality score. Different implementations have 

been tested from 5 to 100 quality levels of which the 

assessors where able to choose. A second common 

attribute of all studies is the timing of the individual 

stimuli. Especially with media that has no inherent 

time (like images), this information can be exposed to 

the observer for any amount of time, which might 

again lead to different quality opinions. 

According to Section 2.7 of Recommendation 

ITU-R BT.500-11 a test session should not last more 

than half an hour to prevent fatigue effects. 

Additionally, each session should start with detailed 

experimental instructions and training sequence, 

followed by a break in which sufficient time for 

questions concerning the experiment is given. 

Afterward a series of experiments are run with the 

purpose of stabilizing the experimental outcomes. 

This stabilizing sequence is not used evaluated. 

Subsequent to the stabilizing sequence the main 

experiment starts, of which opinion scores are 

recorded and further processed [21]. The general 

structure of a test session is given in Fig. 10. 

Due to the number of test images and based on the 

ITU recommendations as well as the scenario 

comparison conducted by Mantiuk et al. we designed 

a single stimulus, hidden reference test which was 

made available over the internet. This internet-based 

test on the hand allowed accessing many users all over 

the world, and second enabled usage on a range of 

display devices from smart-phones to TV screens or 

projectors, thus covering a wide range of usage 

scenarios. 

The quality scores in our experiment are chosen on 

an 11-level scale. Rouse et al. have analyzed the 

scores given by assessors on a quasi-continuous scale 

(100 quality levels) [22]. The histogram of the 

recorded scores is given in Fig. 11. With over 23% of 

the assessors directly using one of the five MOS 

categories and over 42% evaluating stimuli quality by 
 

 
Fig. 10  Structure of a test session for subjective quality assessments [21].  
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Fig. 11  Histogram of raw assessor scores on quasi-continuous scale [22].  
 

either the MOS categories or their midpoints, it 

becomes obvious that a continuous scale for quality 

assessment is superfluous. According to the analysis 

of Rouse et al. a quality scale with 9 or 11 quality 

levels — depending on the experimental conditions — 

suffices fully. 

Since synthetic renderings often lack the realism of 

photos, before the start of the experiment the reference 

images were presented to the assessors. In order to 

prohibit a direct relation between reference images 

and test images, user information (age, gender, kind of 

device used) was queried after the reference images 

were shown. In a second stage viewers went through a 

2 min testing phase. This testing phase serves two 

purposes: first, assessors familiarize themselves with 

the task of image evaluations. Second, the range of 

image distortions (best and worst cases) are shown to 

the assessor. This prevents cases where a subject gives 

a low score to an image, but later observes an even 

worse image for which he would like to give an even 

lower score. 

The structure of the experiment is outlined in Fig. 

12. First, an introductory text explains the purpose, 

setup and the duration of the experiment. Second, the 

reference images are presented to the observer for 5 

seconds each. Afterward some user data, including 

display size and viewing distance, are requested as 

user input. Additional screen information is queried in 

the background from the browser. We than present an 

instruction for the test phase to the assessor. This 

instruction is followed by 2 minutes of iteratively 

shown test images (3 seconds each) and evaluation 

scales. The 2 minute test phase is followed by a 10 

minute evaluation phase. This phase is again 

introduced by an instruction, followed by 3 second 

test images iteratively with evaluation scales. The  

total experimental time therefore remains at   

roughly 15 minutes, which stays well inside the 

attention span of 30 minutes recommended by   

ITU-R BT.500-11. 

For the MOS achieved in this experiment we 

calculated the least-square fit to an exponential curve 

as the ideal MOS based on the error parameter.    

Fig. 13 shows the different fitted curves for the Mean 

Opinion Scores collected experimentally. It shows a 

clear correlation between the error parameter and the 

ideal opinion scores. Note that for JPEG the quality 

becomes better, the higher the error parameter      

(q = 100 is best quality, q = 0 worst quality) which 

leads to an inverted curve compared to the other error 

kinds, where a larger error parameter directly 

corresponds to a larger error. 
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Fig. 12  Outline of experiment to gather assessor opinions.  
 

 
Fig. 13  Ideal MOS for different Error Types.  
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4.2 Full-Reference Metrics 

Full reference metrics currently still achieve the 

best results for automatic image quality evaluations. A 

common scenario is the encoding of image and video 

information. As the encoder receives an undistorted 

input image, after the encoding process input and 

output can be compared. Therefore, full reference 

metrics offer a valuable contribution to the quality 

analysis of encoded information. 

We have computed image quality scores for our 

image database using three very different but widely 

used image quality metrics. PSNR (peak signal to 

noise ratio), the first full reference image quality 

metric we employ, is purely based on image statistics. 

Statistical methods do not consider the human viewer 

at the end at all: purely deviations of the information 

content are considered. 

More advanced image quality metrics have been 

designed with the Human Visual System in mind. 

Two metrics we employ for comparison are the 

Structural Similarity Index [1] and HDR-VDP-2 [2], 

which was developed based on the SSIM index. 

We compute the PSNR value between reference 

image r with dimensions x  y and test image t with 

the same dimensions as 

, , ,
(14) 

with the Mean Square Error computed as 

1
·

, ,    (15) 

Considering not only image statistics but also the 

Human Visual System Wang et al. have introduced an 

image quality metric based on structural similarity. 

The core idea is that the human visual system is most 

sensitive to brightness changes in an image. 

Brightness changes occurring in all color channels are 

perceived as image structures. With this observation 

Wang et al. postulate the —in 2004 novel— 

philosophy of image degradations corresponding to 

perceived changes in structural information [1]. 

The system proposed by Wang et al. compares three 

different image components: luminance, contrast and 

structure. Structural similarity between a test and a 

reference image SSIM(R, T) is calculated as the 

weighted product of luminance l, contrast c and 

structure s: 

, , · , · ,  (16) 

with 0 < , ß,  [1]. 

Based on the ideas developed by Wang et al. in 

their works on structural similarity, Mantiuk et al. 

have extended this visual model to evaluate image 

qualities in more complex scenarios. A high dynamic 

range visible difference predictor (HDR-VDP) was 

introduced in 2005 [23] and completely overhauled in 

2011, forming HDR-VDP 2 [2]. According to 

Mantiuk et al. the vision model presented in Ref. [2] is 

applicable to a wide range of viewing conditions, 

especially luminance changes [2]. 

5. Evaluation and Conclusion 

We have calculated rank correlations between the 

MOS scores obtained experimentally and our ideal 

MOS (the least square fit exponential function), PSNR 

metric, SSIM Index and HDR-VDP2 Metric. 

Correlations are calculated for different error classes 

individually and for all distorted images together. 

Error classes are JPEG, Noise, Transformation, 

Classical, and All. The JPEG class includes JPEG and 

JPEG2000 image compression artifacts. The Noise 

class contains Gaussian white noise and Gaussian blur. 

Transformation includes rotations, scaling and 

translations. The Classical error class is a super class 

of JPEG and Noise errors, and the All-error class is a 

super class of JPEG, Noise and Transformation errors. 

Table 2 gives Spearman’s p for the described correla-

tions, Table 3 gives Kendall’s T for the same. The 

outperforming metric with respect to the calculated 

correlation measure for each error class is marked 

bold in both tables. 
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Table 2  Spearman - Correlation between MOS and existing metrics.  

 JPEG Noise Transformation Classical All 
Ideal MOS p = 0.84 p = 0.88 p = 0.46 p = 0.81 p = 0.83 

PSNR p = 0.72 p = 0.59 p = 0.31 p = 0.69 p = 0.42 

SSIM p = 0.69 p = 0.64 p = 0.36 p = 0.67 p = 0.60 

HDR‐VDP 2 p = 0.51 p = 0.56 p = 0.24 p = 0.52 p = 0.37 
 

Table 3  Kendall - Correlation between MOS and existing metrics.  

 JPEG Noise Transformation Classical All 
Ideal MOS T = 0.65 T = 0.69 T = 0.32 T = 0.64 T = 0.65 

PSNR T = 0.53 T = 0.41 T = 0.21 T = 0.50 T = 0.29 

SSIM T = 0.50 T = 0.47 T = 0.25 T = 0.48 T = 0.41 

HDR‐VDP 2 T = 0.35 T = 0.41 T = 0.17 T = 0.36 T = 0.25 
 

 
Fig. 14  PSNR vs. MOS for Classical and Novel Image Errors. 
 

Analysis of the correlations allows several 

conclusions. First of all, the correlation between MOS 

values and ideal MOS is significant enough to make 

from the subjective experiments. At the same time, the 

correlation could probably be improved: TID for 

example has a Spearman-Correlation of p = 0.99 with 

the Ideal Metric, however at a cost of 250，000 

evaluations (we only have 10，000). Second, the 

correlation between ideal MOS and MOS is smallest 

for the class of new errors, the transformation errors. 

A considerable amount of large error parameters 

seems to lead to a small perceived error, and the other 

way around small error parameters lead to disturbing 

results. A logical explanation is, that whenever objects 

are moved on a surface, scaled uniformly or rotated 

along a symmetry axes these changes remain 

unnoticed, even for larger error parameters. However, 

if objects are shifted through a surface, deformed or 

rotated around a not rotationally invariant axes, small 

parameters already lead to significant results. 

A third observation is that for chosen images under 

“simple” （ constant lighting conditions) external 

conditions PSNR and SSIM produce the best 

prediction results. However, object transformations 

are predicted worst of all error sources, leading to the 

lowest correlation between metric and MOS. 

6. Access to SSID and Future Work 

Our Synthetic Image Database is available for 

download from Ref. [24]. The database is structured 

as presented in Fig. 15: for each type of error there 

exists one  folder,  containing the  distorted  images. In 
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Fig. 15  Structure of our image database.  
 

addition to the distorted images there is one text file 

and one MatLab file per folder, both containing the 

same details which are image name, reference image 

name and error parameter. 

The main folder contains an additional folder for 

reference images. Each reference image is provided 

with the Blender source and settings to render the 

exact reference image. In addition, we provide the 

Python and MatLab source- code to generate the 

distorted images. For all distorted images MOS and 

DMOS, obtained from the subjective evaluations, are 

provided in a MatLab file. 

Further subjective evaluations will be obtained. We 

intend to update the database regularly with MOS and 

DMOS values based on even more subjective tests. 

Furthermore, detailed descriptions of how to generate 

sample scenarios and how to generate distorted 

images are made public as well. We will extend the 

database with further images and further scenes that 

present interesting research scenarios not only for us 

but for the community. 
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