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Abstract: This paper present an implementation of “modified cubic B-spline differential quadrature method (MCB-DQM)” proposed 
by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numerical computation of Fokker-Planck 
equations. The modified cubic B-splines are used as set of basis functions in the differential quadrature to compute the weighting 
coefficients for the spatial derivatives, which reduces Fokker-Planck equation into system of first-order ordinary differential 
equations (ODEs), in time. The well known SSP-RK43 scheme is then applied to solve the resulting system of ODEs. The efficiency 
of proposed method has been confirmed by three examples having their exact solutions. This shows that MCB-DQM results are 
capable of achieving high accuracy. Advantage of the scheme is that it can be applied very smoothly to solve the linear or nonlinear 
physical problems, and a very less storage space is required which causes less accumulation of numerical errors. 
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1. Introduction

Fokker-Planck equation (FPE) (1) was introduced
by Risken [1] to describe the Brownian motion of 
particles, has broad application in engineering and 
natural science such as solid-state physics, theoretical 
biology, circuit theory, quantum theory, chemical 
physics etc.  
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where ( , ),W x t
 
υ  are the distribution function and 

velocity for the particle of mass m  at time 
,t respectively. γ →  Fraction, K →  Boltzmann’s

constant and T →  temperature of fluid. FPE in 
more general form can be expressed as [1] :  
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with the initial condition 
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( ) ( ),0 , ,u x x x Dψ= ∈    (3) 

and boundary conditions 

( ) ( ) ( ) ( ], ,    , 0, ,u x t x x t D Tξ= ∀ ∈∂ ×   (4)

Where { }:D x a x b= < <
 
and D∂  is its

boundary, ,ψ  ξ  are known, and ( , )u x t
 

is 

unknown. In Eq. (2): ( )A x →
 
drift coefficient and

( )( )0B x > →  diffusion coefficient. These
coefficients may be function of time t  as: 
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   (5) 

Eq. (1) is a special case of the FPE, where ( )A x
is linear and ( )B x

 
is constant. Eq. (2) represent the

motion for the distribution function, ( ),u x t
 

is
referred to as forward Kolmogorov equation. Similar 
nonlinear equation has been introduced by Risken [1] 
as:  
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Eq. (6) is backward Kolmogorov equation, a more 
general form of FPE. Nonlinear FPE appeared in 
several areas such as plasma physics, population 
dynamics, biophysics, engineering, neurosciences, 
nonlinear hydrodynamics, polymer physics, lasar 
physics, pattern formation, psychology and marketing 
[2]. The nonlinear FPE has the following form: 

( ) ( )
2

2, , , , .u A x t u B x t u u
t x x

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

  (7) 

The numerical and analytical approximate solutions 
of the FPE have been intensively studied since the 
work of Risken [2]. The fundamental aspects of 
nonlinear FPE have been studied by Frank [2]. 
Harrison [3] has been obtained numerical solution of 
the Fokker Planck equation for the probability density 
function of a stochastic process by using finite 
element method. Recently, numerical solutions of 
fractional FPE have been solved by iterative Laplace 
Transform method [4]. 

Lakestani and Dehghan [5] has been applied cubic 
B-spline method to solve FPE and found that 
implementation of cubic B-spline method is easy and 
gives very accurate results. Palleschi et al. [6] has 
been used a fast and accurate algorithm to obtain the 
numerical solution of FPE, and he also studied the 
stability and convergence of the algorithm analytically. 
Further, a fast and reliable algorithm for the numerical 
solution of unidimensional Fokker-Planck equations 
has been proposed by Palleschi & Rosa [7]. Kazem et 
al. [8] have been applied two meshless methods to 
obtain the numerical solutions FPE based on radial 
basis functions using collocation method. The first 
method is based on the Kansa’s technique while 
another technique is based on Hermite interpolation.  

Sadighi et al. [9] have been introduced 
homotopy-perturbation method (HPM) and variational 
iteration method (VIM) to obtain the exact solutions 
of FPE. Tatari et al. [10] used Adomian 

decomposition method while Hesama et al. [11] used 
differential transform method to find the analytic 
solutions of FPE.  

In this paper, we implement MCB-DQM [12, 22, 23] 
for numerical computation of Fokker–Planck 
equations, and Kolmogorov equations. The efficacy of 
the method has been confirmed by taking three 
examples having their exact solutions, which shows 
that MCB-DQM results are acceptable and in good 
agreement with earlier studies available in literature.  

The paper is organized into five more sections 
which follows this introduction. Sect. 2: describes 
MCB-DQM. Sect. 3: implementation procedure is 
illustrated. Stability of the method is studied in Sect. 4. 
Numerical examples are given to establish the 
applicability and accuracy of the method in Sect. 4. 
Conclusion of the article is given in Section 5. 

2. Description of MCB-DQM 

Differential quadrature method (DQM) was 
introduced by Bellman et al. [13] to approximate the 
spatial derivatives of a function using the weighted 
sum of the functional values at certain discrete points. 
In DQM, the weighting coefficients are computed by 
using several kinds of test functions: spline function, 
sinc function, Lagrange interpolation polynomials and 
Legendre polynomials [14-20] etc. This section 
redescribes MCB-DQM [13] to complete our problem. 
It is assumed that the N  grid points 

1 2 ,..... Na x x x b= < < =
 are distributed uniformly 

with 1i ix x h+ − = . The first & second order spatial 

derivatives [14] of ( ),u x t
 
at ix  are defined by  
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Where 1, 2, , ;N N∆ =   
( )
ij

rw ( )1,2r =  are the 

weighting coefficients of rth-order derivative. 
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The cubic B-spline [14] is defined as follows:  
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where { }0 1 1, ,..., ,N Nϕ ϕ ϕ ϕ +  is a basis over [ ],a b . 

The values of , ,j j jϕ ϕ ϕ′ ′′  at the nodal points are 
given in Table 1. 

Modified cubic B-splines [12] are defined as:  
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where { }0 1, ,..., Nφ φ φ  forms a basis over [ ],a b . 

Approximate value of 
( ),iu x t

x
∂

∂
 at thi node is 

( ) ( )1

1
,  

N

k i ij k j N
j

x w x kφ φ
=

′ = ∈ ∆∑     (12) 

From Eq. (12) and Table 1, Eq. (10) is reduced into 
a tridiagonal system of equations as 

[ ] [ ](1) ,   ,NAw i R i i= ∀ ∈ ∆




      (13) 

where A  is the coefficient matrix is given as: 
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is the weighting 

coefficient vector corresponding to ix , and the 

coefficient vector [ ]R i


 corresponding to ,i Nx i ∈ ∆  

is computed as 
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 (15) 
The system (13) is solved by using Thomas 

algorithm for (1) , , .ij Nw i j ∈ ∆  (2) , , ,ij Nw i j ∈ ∆  are 

determined as in [16]: 
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Table 1  Let ( ),j j xϕ ϕ=  then , ,j j jϕ ϕ ϕ′ ′′  at jx
 

 2jx −  1jx −  jx  1jx +  2jx +  

( )j xϕ  0  1 4  1 0  

( )j xϕ′  0  3 / h  0  3 / h−  0  

( )j xϕ′′  0  26 / h  212 / h−  26 / h  0  
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3. Implementation of Method 

On substituting the approximate values of the 
spatial derivatives computed in Section 3, FPE (7) can 
be re-written as  

( ) ( )
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1 1
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B w u x u w B i N
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 ∂
= − + ∂  
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∑ ∑
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where ( ) ( ), , , , , .ij i i ij i iA A x t u B B x t u= =  Eq. (17) 

reduced into a set of first order ODEs: 

( ) , ,  i
i N

du L u i
dt

= ∈ ∆          (18) 

with initial condition (3), where L is a nonlinear 
differential operator. We use the well known 
SSP-RK43 scheme [21] to solve the resulting system 
(18) through the following steps: 
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(19) 

4. Numerical Experiments and Discussions 

In this section, three examples of FPE having their 
exact solutions considered. The accuracy/efficiency of 

MCB-DQM is measured by in terms of 2L
 and L∞  

error norms: 

( )
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∑

∑
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Example 1. Consider FPE as in [4, 11] 

2

2 .u u u
t x x

∂ ∂ ∂
= +

∂ ∂ ∂
           (21) 

The initial and boundary conditions are extracted 
from the exact solutions (21): 

( ), .u x t x t= +             (22) 

The computational domain is [0,1]. MCB-DQM 
results are compared with the exact results, in Table 2. 

2L
 and L∞  errors, at different times, for various mesh 

sizes h  with 0.0001t∆ = , are reported in Table 3.  
Table 2, 3 confirms that the proposed results are 

accurate. In addition to the quantitative comparisons 
between the MCB-DQM solutions and exact solutions 
presented, qualitative comparisons between the 
analytical and MCB-DQM solutions have been carried 
out at 1.0t =  with 0.02, 0.0001h t= ∆ =  in Fig. 1. 

Example 2: Consider the following backward 
Kolomorov equation [11] 

( )
2

2
21 .tu x x e u

t x x
 ∂ ∂ ∂

= − − − + ∂ ∂ ∂ 
   (23) 

 

Table 2  Comparison with exact solutions by taking 0.04h = , 0.0001t∆ = . 
t  x  MCB-DQM Exact. 

0.01 

0.2 0.21012 0.21010 
0.4 0.41010 0.41010 
0.6 0.61010 0.61010 
0.8 0.81012 0.81010 

0.1  

0.2 0.30007 0.30000 
0.4 0.50005 0.50000 
0.6 0.70006 0.70000 
0.8 0.90008 0.90000 

1.0 

0.2 1.20020 1.20010 
0.4 1.40020 1.40010 
0.6 1.60020 1.60010 
0.8 1.80020 1.80010 
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Table 3 2L , L∞ errors in MCB-DQM numerical solutions of Ex. 1 at different time levels for various mesh sizes 

h , 0.0001t∆ =  

t  2L  L∞  2L  L∞  2L  L∞  

0.04h =  0.06h =  0.1h =  
0.25 9.1384E-05 9.8985E-05 9.0160E-05 9.8399E-05 8.8094E-05 9.7410E-05 
0.50 9.7451E-05 9.9919E-05 9.6291E-05 9.9873E-05 9.4325E-05 9.9793E-05 
0.75 9.7938E-05 9.9994E-05 9.6782E-05 9.9990E-05 9.4825E-05 9.9983E-05 
1.00 9.7976E-05 9.9999E-05 9.6821E-05 9.9999E-05 9.4865E-05 9.9999E-05 
 

 
Fig 1  Analytical and MCB-DQM solutions of Ex. 1 at time 1.0t = for 0.02h = , 0.0001t∆ =  
 

The initial and boundary conditions are extracted 
from the exact solution (24) 

( ) ( ), 1 .tu x t x e= +          (24) 

In this problem, we have taken the computational 
domain over the region [0,1].The numerical and exact 
solutions have been shown for various values of 
x and t  with 0.04h = , 0.0001t∆ =  in Table 4. 

2L , L∞ errors at different times for various mesh 
sizes h  with 0.0001t∆ = are reported in Table 5. It is 
found that the MCB-DQM results are accurate.  

In addition to the quantitative agreement between 
the approximate and exact solutions reported, 
excellent qualitative agreement between the analytical 
and MCB-DQM solutions have been seen at 1.0t =  
with 0.04, 0.0001h t= ∆ =  in Fig. 2. 

Example 3: Consider the following nonlinear 

Fokker-Planck equation [4] 

( ) ( ) ( )
2

2

4 ,
, , ,

3
u x tu x u x t u x t

t x x x
  ∂ ∂ ∂

= − − +  ∂ ∂ ∂   

 
(25) 

The initial and boundary conditions are extracted 
from the exact solutions of (25): 

( ) 2, , 0.tu x t x e t= ≥          (26) 

The numerical solutions and exact solutions are 
compared for domain [0,1] in terms of 2L , L∞  errors, 
see Table 6. The computed and exact solutions have 
been shown for various values of ,x t  with 0.04h = , 

0.0001t∆ =  in Table 7. The MCB-DQM solutions 
are very accurate and convergent. The qualitative 
comparisons between analytical and MCB-DQM 
solutions is depicted in Fig. 3 
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Table 4  Comparison of solution of Ex. 2 with exact solutions for 0.04h = , 0.0001t∆ =  
t  x  MCB-DQM Exact 

0.01 

0.2 1.212181 1.212181 
0.4 1.414211 1.414211 
0.6 1.616241 1.616242 
0.8 1.818298 1.818272 

0.10 

0.2 1.326199 1.326205 
0.4 1.547251 1.547239 
0.6 1.768342 1.768273 
0.8 1.989454 1.989308 

1.00 

0.2 3.262500 3.262264 
0.4 3.806286 3.805975 
0.6 4.350074 4.349686 
0.8 4.893862 4.893397 

 

Table 5  2L , L∞ errors in MCB-DQM solutions of Ex. 2 at different time levels for various mesh sizes h  

and 0.0001t∆ =  

t  2L  L∞  2L  L∞  2L  L∞  

0.04h =  0.06h =  0.1h =  
0.25 1.3489E-04 2.4608E-04 1.3262E-04 2.3994E-04 1.2862E-04 2.2956E-04 
0.50 1.9815E-04 3.1880E-04 1.9561E-04 3.1260E-04 1.9039E-04 3.0239E-04 
0.75 2.7058E-04 4.1061E-04 2.6751E-04 4.0349E-04 2.5855E-04 3.9157E-04 
1.00 3.5813E-04 5.2806E-04 3.5337E-04 5.1943E-04 3.3922E-04 5.0419E-04 

 

 

Fig. 2  Analytical and MCB-DQM solutions of Ex. 2 at 1.0t = with 0.04h = and 0.0001t∆ =  
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Table 6  2L , L∞ errors in Ex. 3 at different time levels for various mesh sizes h  and 0.0001t∆ =  

t  2L  L∞  2L  L∞  2L  L∞  

0.04h =  0.06h =  0.1h =  
0.25 1.1218E-04 2.3956E-04 1.9299E-04 3.9602E-04 4.0223E-04 7.7716E-04 
0.50 1.4748E-04 3.0805E-04 2.5720E-04 5.0995E-04 5.4829E-04 1.0051E-03 
0.75 1.9062E-04 3.9553E-04 3.3397E-04 6.5465E-04 7.1667E-04 1.2905E-03 
1.00 2.4553E-04 5.0776E-04 4.3114E-04 8.4012E-04 9.2853E-04 1.6555E-03 
 

Table 7  Comparison for Ex. 3 with 0.04h = , 0.0001t∆ =  
t  x  MCB-DQM Exact 

0.01 

0.2 0.0404060 0.0404060 
0.4 0.1616241 0.1616242 
0.6 0.3636561 0.3636544 
0.8 0.6465474 0.6464968 

0.1 

0.2 0.0442079 0.0442068 
0.4 0.1768446 0.1768273 
0.6 0.3979249 0.3978615 
0.8 0.7074462 0.7073094 

1.0 

0.2 0.1087898 0.1087421 
0.4 0.4350700 0.4349686 
0.6 0.9788895 0.9786793 
0.8 1.7402410 1.7398740 

 

 

Fig 3  Analytical and MCB-DQM solutions of Ex. 3 at time 1.0t = by taking 0.06h = and 0.0001t∆ =  
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5. Concluding Remarks 

This paper explored the utility of a composite 
scheme: MCB-DQM, in space with SSP-RK43 
scheme, in time for solving FPE. The efficiency   
and reliability of the scheme is illustrated through 
three numerical examples. These examples confirms: 

2L
 and L∞  errors in all the cases is very small,   

so, a very good approximations to the exact  
solutions is achieved. It is demonstrates that the 
MCB-DQM solutions of FPE are very close to the 
exact solutions.  

The advantage of this scheme is that it can be 
conveniently used to solve the linear or nonlinear 
physical problems and requires less storage space that 
causes less accumulation of numerical errors. 
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