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Abstract: It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly 
at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If 
the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of 
solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a 
multiplicative Ito-type time – space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that 
no explosion is possible in the presence of any intrinsically slow time – space white noise of Ito – type as manifested in the resulting 
stochastic Fokker- Planck delay differential equation. Time – space white noise has a role to play since the solution of the classical 
nonlinear equation without it still exhibits explosion. 
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1. Introduction

A search through the extensive literature on the

theory of differential equations reveals that a 

sufficient condition for existence and uniqueness of a 

solution to an ordinary differential equation (ODE), 

delay differential equations (DDEs) and stochastic 

differential equations (SDEs) as well as their delay 

counterparts is that the drift and the diffusion 

coefficients must satisfy the Lipschitz condition and 

perhaps the linear growth condition. See for instance 

Arnold (1974), Oksendal (1992), Mao (1997), etc. 

More specifically, consider the stochastic delay 

differential equation 
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dx t f t x t x t r g t x t x t r dB t
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where r is a constant time lag, : ,f 
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:g  ,  B t  is a one-dimensional

Brownian motion defined on a complete probability 

space     ,,, 0ttFF . with a filtration   0ttF ,

which is right continuous and contains all P-null sets. 

Theorem 1: 

Assume that there exist constants 0, KC  such 

that 

         
 

2 2

0

, , , , ,

, ,

i f x t f y t g x t g y t C x y

for all x y t t T

    

 

(Global Lipschitz condition) 
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(Linear growth condition) 

Then there exists a unique solution  tx  to Eq.

(1). 

Proof: [See Mao (1997), Arnold (1974)] 

A serious deficiency is that this solution may grow 

at such a rate that it may become unbounded after a 
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small lapse of time. Consequently, the solution may 

explode or blow up. One may observe that linear 

growth conditions such as (ii) in Theorem 1 above are 

not required for existence and uniqueness of solutions 

of differential equations. However, their absence may 

result in the sample paths of the solution blowing up 

or exploding in a finite time. Even at that, the global 

linear growth condition such as (ii) bounds f and g 

uniformly with respect to  Ttt ,0  and allows at 

most a linear increase of these functions with respect 

to x . It is usual to request that the coefficients of a 

stochastic differential equation should only be locally 

Lipschitz. More specifically, a function 
nm :  is said to be locally Lipschitz if for 

any integer N > 0, there exists a constant NK  such 

that 

    ,

.

Nx y K x y

x N and y N

   

  
 

This request becomes necessary because globally 

Lipschitz functions grow linearly whereas; locally 

Lipschitz functions do not behave like the global ones 

and as such reduce the possibility of explosion in 

solutions of SDEs. 

A lot of research articles have been written on the 

explosion or blow-up time attempting to provide 

answers to certain questions such as: ‘When does a 

solution explode? What is the rate at which solutions 

of dynamical systems explode? What are the sufficient 

conditions for explosion to occur? What is the 

distribution of explosion times? What are the 

conditions for continuity of explosion times?’ See for 

instance the interesting works of Leon et al (2013), 

Groisman and Rossi (2007), Mackane (1969), Jordan 

(2008) and some of the references therein. 

This recent attraction towards research interest in 

blow-up time of solutions of both ordinary and partial 

differential equations is as a result of the fact that 

blow-up time is applicable in different areas of life. 

For example, blow-up time is applied in fatigue 

cracking to detect fatigue failure in solid materials 

such as aluminum and steel. The explosion time is 

generally a random time depending on the particular 

sample path and corresponds to the time of ultimate 

damage or fatigue failure in the materials. [See 

Kloeden and Platen (1992), Sobezyk and Spencer 

(1992). For results on the distribution of explosion 

times of solutions of stochastic differential equations 

and convergence of explosion times, the reader is 

referred to the article of Leon et al (2013) and 

Groisman and Rossi (2007) which are referenced in 

this paper. The foundation work on attempting to test 

for explosion times of SDEs was carried out by Feller 

(1952). Later, Hasminskii (1960) extended the results 

of Feller. 

Bai and Li (2011), stochastically perturbed a 

non-linear deterministic differential equation with two 

Brownian noise feedbacks and studied how the noise 

can reduce explosion in solution and ensure the 

exponential stability of the system. Appleby and Kelly 

(2004) studied a class of functional differential 

equations and analyzed the effects of noise 

perturbation in the prevention of explosion in 

solutions of such equations. Other beautiful works on 

explosion of solutions of differential equations include 

those of McCarthy (2011), Malolepszy and Okrasinski 

(2008), Nie and Mai (2007). From all these research 

efforts, one sees that not much attention has been 

directed towards the study of the contribution of Ito – 

type noise perturbation to the explosion of solutions of 

stochastic delay differential equations (SDDEs) to the 

best of the author’s knowledge. 

The aim of this article is to study the effect of an Ito 

– type time – space white noise on the explosive 

behavior of solutions of a non- linear delay differential 

equation. The resulting system after perturbation is a 

stochastic Fokker – Planck delay differential equation. 

It is established that even if the solution of classical 

non-linear delay differential equation blows up, this 

can never happen in the presence of the Brownian 

noise in the new stochastic Fokker - Planck delay 
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differential equation so formed. We are of the brilliant 

hope that this article will add to the few already 

existing research efforts on explosion of solutions of 

differential equations in the English Language 

literature. 

2. Preliminaries and Supporting Results: 

The classical non-linear delay differential equation 

studied is of the form 

           
     

| , , , , 0,

, ,0

x t p t x t q t x t x t r t T

x t t t r

    


   
 (2) 

where      ,0,,0, Cqp , The function p  and 

q  in Eq.(2) are locally Lipschitz continuous, that is, 

for any positive integers N and M respectively, there 

are constants NK  and MH  such that 
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, , , ,for all x N y N and x H y H x y      

  ,0r  is a constant time lag. The local Lipschitz 

continuity  satisfied  by   0xp   and   rxxq ,0  

guarantees that there is a unique solution of Eq. (2) up 

to the explosion time. A time –space white noise of 

Ito-type is applied to stochastically perturb the 

nonlinear scalar system in Eq.(2) into a stochastic 

Fokker – Planck delay differential equation (SFPDDE) 

described by a state variable X  confined to some 

closed interval. These types of equations evolve 

according to the stochastic delay differential equation 

of the form 

              
     

, , , , 0

, ,0

dX t p t X t q t X t X t r dt z X t dB t t

X t t t r





        
   

          (4) 

 

Where 

 :,:,: zqp  

are locally Lipschitz continuous. Eq. (2) and Eq. (4) 

have the same initial function    ,0,rC  

which is an  tF  measurable random3 variable 

such that such that  2 . By    ,0,rC , 

we refer to a family or Banach space of continuous 

functions from  0,r to   armed with the 

supremum norm 
   

,0Sup s r
s 

 
  such that 

   ,0,rC ,    0ttB  is a one – dimensional 

Brownian motion, which represents the time-space 

white noise of Ito-type and whose initial condition is 0 

at time 0t  and characterized by 

    0, . .i B t a s     
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1

0
1...  where ... miL  

means limit in 2L  sense. 

Reason: By the fact that    sBtB   is normally 

distributed with mean zero and variance st  , we 

have that 
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As such it becomes sufficient to establish that 
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which is true since 
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 is a parameter which scales the noise amplitude. 

We mention here without alteration in meaning, 

unless otherwise specified, the use of 

     ,,, 0ttFF , a filtered probability space with 

filtration    0ttF , which is complete in the sense 

that it satisfies the usual conditions, that is,    0ttF  

is right continuous and each    0ttF  contains all 

p-null sets in F  . 

Definition 1: 

A real – valued stochastic process    0ttX  is 

called a strong solution of Eq. (4) if it is a measurable, 

sample path continuous process such that it satisfies 

Eq. (4) and its initial condition. The solution is unique 

if there exists another indistinguishable solution 

   0ttY  such that      10,  TttYtX . 

Definition 2: 

A solution    0ttX  of the Fokker Planck delay 

differential Eq. (4), which is defined on the interval 

 T,0 , grows at a specified rate and obeys 

  


tXLim
t

is said to explode or blow up in a 

finite time  , which depends on the initial datum, if 

its sample path   wtX ,  as  wXt ,0  

or equivalently, if   .


tXLim
t 

 Hence for the 

solution    0ttX ,   is called an explosion or 

blow- up time for X  if either 

  


tXLimorT
Tt

. 

The Fokker – Planck delayed differential equation 

without the instantaneous functional in the drift term 

is more generally represented in the form: 

           
     0,,

0,,,








rtttX

ttdBtXzdtrtXtXtqtdX




                (5) 

 

From Eq. (5), the probability transition function   

is defined by two partial differential equations. 

Renowned mathematicians, Fokker, Planck and later 

Kolmogorov showed that for styx n  ,, , 
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L x t y s
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 (6) 

Eq. (4), Eq. (5) and Eq. (6) are generally called the 

Fokker - Planck equations. In application, in order to 

understand and predict events resulting from large 

fluctuations useful for describing changes of 

complicated disorder in biological and physical 

systems, the Fokker- Planck equation is one of the 

acceptable systems used in accounting for small 

fluctuations in stochastic dynamical systems. 

Consider the nonlinear scalar differential equation 

of the form 

    
 

| , 0

0

x t p x t t

x t 

  


  
         (7) 



Suppressive Influence of Time – Space White Noise on the Explosion of Solutions of Stochastic Fokker – 
Planck Delay Differential Equations 

 

288

It has been established (See Groisman and Rossi 

(2007) and Leon et al (2013)) that necessary and 

sufficient condition for the existence of a finite time 

explosion or blow up of solutions to Eq. (7) is 

 
1

1



ds

sp
            (8) 

Consider a more general nonlinear differential 

equation with a constant time lag 

       
     0,,

0,|








rtttx

trtxqtxptx


   (9) 

where    ,, Cqp   are  locally   Lipschitz 

continuous   functions   and   the   initial   function 

     ,0,0,rC . It  can  be shown that the 

condition in Eq. (8) is also necessary and sufficient for 

the blow up of the solution of Eq. (9) at a finite time. 

The following is a special case of the result found in 

McCarthy (2011) Theorem 2.2.1: 

Theorem 2: 
Assume that p  is locally Lipschitz continuous 

and satisfies  



1

1
ds

sp
. Let q  be locally 

Lipschitz continuous and      ,0,,TrC . Then 

there exists a finite time 0T  and some 

     ,0,,TrCx  such that x  is monotone 

increasing on  T,0 ; x  is the unique solution of Eq. 

(9) and as such, 

  


txLim
Tt

. 

Proof: 

By hypothesis, x  is continuous on  Tr,  

where   ,0T  is such that   


txLim
Tt

. Since, 

0,, qp  it follows that   0| tx  for 

 Tt ,0 . We request that T which belongs to the 

time horizon   ,0 is such that T . 

Claim that the alternative T  is true. Then 

one has that 

    
suchasandqSince

ttxptx

,0

0,|




      (10) 
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tds
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and
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This contradicts the earlier assertion that   txp  

satisfies 

 



1

1
ds

sp  
It must be that T is finite and since 0, qp , one 

gets that   


txLim
Tt

 where T is the blow – up 

time. 

3. Suppressive Influence of Time – Space 
White Noise: 

In this section, we study the contribution of 

multiplicative noise in suppressing the explosion of 

solution of the SFPDDE (4). In the main result, we 

establish that if there is at most a linear growth in the 

diffusion function under a certain condition on the 

noise scaling parameter and the instantaneous drift 

function, the presence of time –space multiplicative 

noise of Ito-type in the stochastic Fokker – Planck 

delay differential Eq. (4) suppresses the blow-up or 

explosion which might be present in the scalar 

non-stochastic delay differential Eq. (2). 

Assumptions: 

We consider system in Eq. (4) together with the 

following assumptions: 
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Theorem 3: 

Assume that H3 holds and there 0K  such that z 

has at most a linear growth, that is,  

     xxkxz ,1 .  

Furthermore, if 421, HandHH  are satisfied, then 

the solution of the stochastic Fokker – Planck delay 

differential Eq. (4), can never explode or blow up at 

finite time. 

Proof: 
Claim that the general initial condition is uniformly 

bounded, that is, for  0X , we let 

  00
0

MXM  . Introduce a sequence of 

stopping times by   RtXt nn   :inf 11   

for some positive 0MR  , where

  1:inf  RtXt nn  . Also let 

  9:0inf
0

MtXtM  . One gets 
 

                 ,,,,0
0 0

sdBsXszdsrsXsXsqsXspXtX
t t

           (11) 

and as such, 
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sdBsXKdsrsXsXsqsXspXX

M

m

m m

M

T 2

,0 0

2

0 0

222

,

0

0

0 0

0

,,,02

1,,,02





 







 







 



 

 



 

Applying Gronwall’s and noting that 3H  holds, we have 

            ,,,02 0

0 0

22

, 



 m

M
dsrsXsXsqsXspeKTXX CT 






     (12) 

 

We now 0M  which follows that 

  
 X

X
,

and as such,    XX   . 

Again note that   X results from 

 Tas . Therefore, solution of the 

stochastic Fokker – Planck delay differential equation 
(4) cannot explode. 

Final Remark: 

The crucial condition in theorem 3 which prevents 

explosion in Eq. (4) is 3H  in the set of assumptions. 

3H  ensures that the strength of the time –space white 

noise is large enough with respect to the non-delayed 
function p  in the drift term and at that instant, the 

explosion which is prevalent in the solution of the 

non-stochastic deterministic delay differential Eq. (2) 

can automatically be suppressed from occurring in Eq. 

(4). This is as a result of the presence of noise. 
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