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Abstract: Some of the seemingly important contributions made by Russell, Cantor and Gödel regarding the foundations of 
mathematics lose credibility when addressed at a more fundamental level which assumes language consists of symbols devoid of what 
they mean. Such an approach can reveal neglected assumptions which are of consequence when made explicit and which, in particular, 
mean that Hilbert in fact had no need to heed Gödel’s revolutionary results regarding the foundations of mathematics. 

Key words: Paradox; self-reference; foundations of mathematics 

1. Introduction

This paper seeks to expose the assumptions implicit
in the use of a symbolic language by taking as 
primitive not, as invariably one does, the meaning of 
the expressions of Russell’s set of all sets, or of 
Cantor’s set of all numbers, or of Gödel’s constructed 
sentence, but rather the expressions themselves 
regarded as, to use Hilbert’s phrase, ‘marks on paper’. 
The transition from such marks to their meaningful 
use is central to the argument here, and hence a 
questioning critic is invoked to justify the sequence 
involved.  

In what follows this transition is considered for 
each of the above authors in turn and shows how their 
use of self-referential expressions in the context given 
is, in effect, meaningless. Hence in this respect their 
conclusions have no validity. 

2. The Errors

2.1 Russell’s Paradox 

Consider the set S of all sets which are not 
members of themselves. Russell asked if S is a 
member of S? For if it is then it is not and if it is not 
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then it is. 
To answer this question by beginning at the 

primitive level mentioned we first need to consider the 
following: 

a) The critic is unlikely to object if we start with the
assumption that when addressed the paradox consists 
of marks on paper in an arrangement recognised as the 
words of a natural language.  

b) But obviously the marks themselves – and they
are all that is available – tell us nothing about sets or 
anything else. The words are not pictograms; they 
themselves contain no information regarding what 
they mean. They are simply codes for something other 
than themselves, and hence (as with a formal language) 
when used require interpretation to provide meaning. 

c) So the critic then points out we need an
assumption that will allow us to infer knowledge other 
than words from an expression of natural language. 
We can do this by assuming it has an author (in this 
case Russell) who has used the expression to convey 
the author’s knowledge. The critic then asks how the 
reader can be aware of such knowledge. 

d) The answer is a deceptively simple general
principle: if that for which the author would use the 
expression ‘A’ includes that for which the author 
would use the expression ‘B’ then the author can say 
‘A is B’, which allows the reader to infer the author’s 
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knowledge. Notice however the critic can make the 
salient point that for the reader, who may not know A 
is B, this principle means the interpretation of ‘A’ 
requires the interpretation of ‘B’.  

For example, if for an author what is named by the 
single expression ‘Paris’ includes it being a city, then 
for an audience to infer the author’s knowledge from 
his saying ‘Paris is a city’, the interpretation of the 
subject term ‘Paris’ also requires the interpretation of 
the predicate ‘is a city’.  

Of course steps a), b), c) and d) may appear obvious 
and unduly pedantic; so much so in fact that 
familiarity with language means that the steps can 
normally, for everyday use, be safely ignored and not 
even realised.  

If now we return to Russell’s question, the critic 
reminds us that in a) and b) above we have maintained 
that words are simply codes which mean something 
other than themselves – just as the meaning of word 
‘red’ should not include the word ‘red’. 

As a result Russell’s question is impossible to 
decode since, given d), in order to infer the author’s 
knowledge the interpretation of the subject term ‘S’ 
for the reader requires the interpretation of ‘S’ in the 
predicate. 

Thus Russell’s ‘Paradox’ is not a paradox but a 
syntactically correct, meaningless (in the above 
context) sentence. 

The same observation can be made of other 
self-referential paradoxes. For example consider the 
classic liar paradox ‘this sentence is false’. 

Here we assume the context requires that ‘this 
sentence’ is the sentence ‘this sentence is false’, in 
which case ‘this sentence’ cannot be interpreted for its 
interpretation would require the interpretation of ‘this 
sentence’ in ‘this sentence is false’. 

Of course there are other contexts where the 
sentence would be valid. I could for example point to 
some false sentence on the blackboard and use the 
demonstrative ‘this’ to say ‘this sentence is false’. 

Paradoxes like the liar had a role in Gödel’s 

formulation of his first incompleteness theorem [1] 
although if the forgoing is correct this was 
unwarranted. 

Furthermore without the handicap of the Russell 
Paradox, Frege’s set axioms were not inconsistent and 
there is no objection to the use of a property to define 
a set [2]. 

2.2 Cantor’s Theorem 

Here as is the case with Russell’s Paradox it will be 
shown that Cantor’s theorem is invalid because of 
overlooked assumptions regarding the use of language 
– in this case the language of arithmetic. 

In simplistic terms Cantor proved there are a larger 
sets than an infinite set. He did this by showing that 
the real numbers were not denumerable because if we 
put an infinite list of the real numbers in a one to one 
correspondence with the infinite set of natural 
numbers there will always be a number which will be 
absent from the original list of [all] real numbers.  

Hence we will have a ‘larger’ set than the infinite 
set of natural numbers. 

To do this Cantor showed that if we assemble a list 
of all real numbers, we can construct a number that 
differs from the first number on the list by making its 
first decimal place different from that of the first listed 
number. Similarly we can construct a number different 
from the second listed number by making it different 
in its second decimal place... and so on. In this way 
we get a real number that is an infinite decimal and is 
different from any number on the list. 

Cantor's technique can be readily seen when applied 
to the list, L, of real numbers below. 

3.23056... 
2.11345… 
1.57222… 
0.72852... 
2.42318... 
6.121262... etc. 
Here the diagonal, D, 3.17816… is shown in bold. 

Each number of D is then changed – say by 
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subtracting 1 from each number – to give a number, D', 
2.06705...  

D' cannot be the first number on the list since it 
begins with 2, nor the second number since its second 
digit is 0, nor the nth number on the list since its nth 
digit is not the nth digit of the nth number on the list. 

The above is a brief outline of Cantor's proof, but 
the error is not with the logic of the proof itself but 
with the use of so-called numbers. 

Just as the words of natural language are marks on 
paper which tell you nothing of what they mean so are 
the numerical digits of the language of arithmetic. 

Such digits can only represent numbers and the 
number they represent must be known or assumed to 
be known before they are used. I say assumed to be 
known because, as with natural language, familiarity 
and expertise with mathematical language often mean 
that digits are conveniently addressed as numbers 
(which, it will be noticed, I have done here). In this 
case the assumption of prior number representation 
remains implicit rather than explicit. 

But there is a crucial difference between regarding 
some digital sequence as representing a particular 
number and assuming a particular number is 
represented by a digital sequence. In the former case, 
for the reader, the digital sequence determines the 
number represented whilst in the latter, for the author, 
the number determines the digital sequence. 

Failure to acknowledge this difference can result in 
number properties being wrongly attributed to digital 
sequences, and this is where Cantor erred. 

For example consider the digits 1, 2, 3 arrayed as 
123. Depending on the context it would be quite 
normal practice to address the array as the number 123. 
But that context should not prohibit the implicit 
assumption that '123' has been used (by an author) to 
represent a number. 

Note the mild restriction here. Rarely will we go 
astray by referring to numerals or digits loosely as 
numbers as long as the context allows such latitude. 
That is we must always be able to assume there is a 

number (and even the unrealised idea of a number is 
sufficient for the assumption to hold) which has been 
represented by the digits; without such an assumption 
we can only address digits and not what they mean. 

To make the point quite clear, we could not regard 
'123' as a number in a context where it was typed at 
random by, say, a monkey, for it cannot be assumed 
that '123' represented, as it must, the author's 
knowledge of a number. 

So what has this to do with Cantor's proof? 
Well, as indicated above, Cantor constructs a 

number which he shows cannot be found on a list 
assumed to be of all real numbers. But that 
constructed 'number’ is in fact a sequence of digits, D', 
defined by changes to the digits of the diagonal 
sequence, D. 

No matter, one might say. We have produced an 
infinite sequence of digits by Cantor's construction, so 
let us simply assume, as we invariably do, that the 
sequence of digits represent a real number, in which 
case the Cantor construction shows this number will 
not be found on the list. 

But this will not do. 
The nth digit of D' is a function of the nth digit of D 

which in turn is the nth digit of the nth number, Ln, of 
the list L. 

Thus the Cantor construction provides the sequence 
of digits D' as: 

(not 1st digit of L1), (not 2nd digit of L2), (not 3rd 

digit of L3)… (not nth digit of Ln) … 
We now need the assumption mentioned earlier 

which will enable us to remove the commas and so 
allow D' to represent a number, and therefore one 
which will not be found in L. 

But we cannot make such an assumption. Why? 
Because until the conclusion of the proof any number 
we introduce must belong to L, for L was necessarily 
(otherwise we would assume the conclusion) required 
to be a list of all real numbers. 

In which case the all-important assumption (that the 
constructed sequence represented a number) would 
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entail the contradiction that the nth digit of D' was 
necessarily the nth digit of Ln yet, by construction, was 
not the nth digit of Ln. 

So D' simply has to remain a sequence of digits not 
representing a number in L. Of course this is not to 
say there is no number represented by the D' sequence. 
There are an infinite number of other permutations of 
L all of which for whom D' would not be a function of 
the diagonal and hence there would be no problem in 
supposing it represented a number.  

But whatever the order of L, the Cantor diagonal 
method would always be blocked by the necessary 
requirement (before the end of the proof) that no 
digital sequence of the changed diagonal can be 
assumed to represent a number not belonging to L. 

Thus it would seem the diagonal construction 
cannot show the set of real numbers is ‘larger’ than 
the infinite set of natural numbers. This set remains a 
denumerable infinite set. 

2.3 The Gödel Sentence 

In an outline of Gödel’s argument Nagel and 
Newman [3] observed that Gödel constructed a 
formula, G, in a formal language which was uniquely 
associated with a certain number g (its Gödel number) 
and whose meta-mathematical rendering was ‘The 
formula that has Gödel number g [i.e. Formula G] is 
not demonstrable’. 

But again, as with Russell’s Paradox, this resort to 
self-reference results in a meaningless statement. 

To see why this should be so consider the following 
informal representation – call it F – of the Gödel 
formula G: 

Formula G says there is no proof of formula G. 
Here, given d) in 2.1, the reader has to assume that 

what the author called ‘Formula G’ in the informal 
representation also included the property called by the 
author ‘says there is no proof of formula G’. But that 
cannot be coherent for it would mean the 
interpretation of the subject ‘Formula G’ would 
require the interpretation of ‘Formula G’ in the 

predicate. Hence the reader must conclude that F is 
meaningless. 

However, if F is meaningless but, nevertheless, 
faithfully translates the formal sentence G, then 
correspondingly one would expect Gödel’s 
construction of G in the formal language to be in 
error. 

And this is the case, since to translate G as referring 
to itself, albeit indirectly, Gödel had to adopt [4] the 
innovative strategy of assuming the proof sequence 
was not of a formula with Gödel number n, say, but 
was of that formula when n had been substituted for 
its free variable – that is the proof was of the 
‘diagonalisation’ of the formula with Gödel number n. 

This procedure, however, has a restriction on the 
values of n [strictly the numeral for n] which can be 
substituted for the free variable. Gödel numbers are 
defined by association with the symbols and 
subsequent formulae of a language of logic. And 
because of the Gödel strategy n must be the Gödel 
number of a formula whose diagonalisation was then 
proved. 

But this requirement cannot be observed when the 
Gödel number is defined, as is the case here, by a 
formula constructed before diagonalisation since this 
would mean that the value of n when substituted for 
the free variable would not be valid under the 
self-referential interpretation, for it would simply be 
the Gödel number of a formula and not of a formula 
prior to diagonalisation. 

This last sentence could well be the source of 
Gödel’s error for it warrants some attention.  

Certainly n can be defined as indicated, and certainly 
the defining formula can then be diagonalised. So why 
are we saying n cannot be defined as the Gödel 
number of a formula which is subsequently 
diagonalised? The answer is because it cannot be 
known before n is substituted for the free variable of 
the formula that the latter will be diagonalised. 

We have the order: constructed formula, its Gödel 
number (n), diagonalisation of constructed formula G, 
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proof of G. This order means we can only refer 
retrospectively, after diagonalisation, to n being the 
Gödel number of a formula which is subsequently 
diagonalised; and n cannot be defined retrospectively. 
Thus Gödel’s strategy for self- reference mentioned 
above is not possible. 

Hence the claim at the beginning of this section - 
that the meaningless of the informal interpretation of 
G was mirrored in the formal construction – is 
justified by revealing the time-ordering invalidity of a 
formula in the construction of G. 

3. Conclusions 

This paper has shown that because natural language, 
including the language of arithmetic, is solely a 
language of symbols devoid of any meaning, their use 
must follow and not precede what they represent. And 
what they represent has been assumed to be an 
author’s knowledge which is inferred by the reader of 

the symbols. It is the use of language in a context 
where the order mentioned cannot occur or is not 
observed, that has resulted in the claim of meaningless 
for some of the well-established statements of Russell, 
Cantor and Gödel which were a source of 
consternation for Hilbert’s programme. 

Such a claim, if upheld, means that Hilbert was 
vindicated in his approach to the foundations of 
mathematics. 
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