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Abstract: In this work we study one problem of mathematical interest for their applications in several topics in Applied Science. We 
study simultaneous controllability of a pair of systems which model the evolution of sound in a compressible flow considered as a 
transmission problem. We show the well posed of the problem. Furthermore provided appropriate conditions in the geometry of the 
domain are valid and suitable assumptions on the fluid, is possible to conduce the pair of systems to the equilibrium in a 
simultaneous way using only one control. 
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1. Introduction

In this work, we considered an equations system to
describe an evolution of the wave sound or 
compressible fluids. A linear model well know is 
given by a system [7] 
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where ( )p p x t= ,  is acoustic pressure, 

1 2 3( )u u u u= , ,  and ( )j ju u x t= ,  are fluid
velocity field, 0α >  is the density of equilibrium 
and 0β >  is the compressibility factor of fluid. 
Here Ω  is an open subset of 3IR  with regularity
boundary conditions 0 1S S∪ = ∂Ω  and 

0 1S S∩ = ∅ . 
To solve the simultaneous controllability we 

considered a system given by 
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where 0γ >  and 0τ > . Q  and P  in (1) and (2),
respectively; these are control functions. In 1986 , 
D.L. Russell [11] and J.L.Lions [8] proposed to solve 
a exact controllability problem for an evolution model, 
using only one control function. They called that 
problem as simultaneous controllability. The absences 
of dissipative effects as in (1) and (2), the problem 
present difficulties for the solution, see the examples 
[4], [5] and [8], where they perturbed the multipliers 
used for the controllability. 

The problem of simultaneous controllability for the 
systems (1) and (2) is to take a control for both of 
system using only one control function, i.e., given 

0T >  any initial condition, 0 0 0 0( )u p v q, , , , and 
final 0 00 0( )p qu v, , , 

   in appropriate functional space,
find ( )P x t,  and ( )Q x t,  such that 

A solution { }u p v q, , ,  of (1) and (2) satisfied in T
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0 00 0( ( ) ( ) ( ) ( )) ( )u T p T v T q T p qu v., , ., , ., , ., = , , , 

   
The control function, ( )P x t, , for (2) was given in 

terms of ( )Q x t, . 
A method to solve the controllability problem is 

Hilbert Uniqueness Method (H.U.M) proposed by 
J.L.Lions, it is a construction of an appropriate 
structure for the Hilbert space in the initial conditions 
space. 

These structure are connected by uniqueness 
properties. An important contribution to the 
controllability problems (1) and (2) were made by 
Kapitonov et. G. Perla Menzala [5]. In [5] the author 
answered positively for a simultaneous control and 

They showed that the control P Qβ
γ= −  could be 

use to solve a problem. In this work we study a 
controllability problem of these systems with a 
perspective for applications as a problem of 
transmission; this is described below. 

1m >  and 1 2k m= , , , . For each k , look at 
kb  uan open and connected subset with regular 

boundary and such that 1 0kb σσ ⊆ ⊆ , 1k kbb +⊆ . 
place 10 1 1,  ,kk kb b bω σ += Ω =   

1 2 1k m= , , , −  e 0 mm bω σ=  . 

Given 0σ  and 1σ  open limited subset and 
connected in 3ir , with 1 0σσ ⊆ . Also 

10ω σ σ=  , we denoted 0 0 1 1s sσ σ∂ = , ∂ = . 
And fixed an integer 1m >  and 1 2k m= , , , . For 
each k , kb  is an open subset and connected, with 
regularity in the boundary such that, 1 0kb σσ ⊆ ⊆ , 

1k kbb +⊆ . We put 0 1 1bω σ=  , 1 kk kb bω +=  , 
1 2 1k m= , , , −  and 0 mm bω σ=  . and, 

0
m
j jω ω== ∪ , for i j≠ , we take i jω ω∩ = ∅  

and 0 1s sω∂ = ∪ . Examples for this decomposition 
is showed in Fig 1. 

We need a solution defined by part on each sub 
domain; for that, we considered the systems (1) and (2) 
rewrite on sub domains kΩ , and 
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Fig. 1  Case 0m =  and 3m = . 
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(4) 
0 1 2k m= , , , , . 

with boundary conditions (1) and (2). The interfaces 
of transmission conditions k kΓ = ∂Ω , given by 
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(6) 
for the systems (3) and (4), respectively. 

The functions k k kα β γ, ,  and kτ  are the 
restriction for the functions α β γ τ, , ,  on the 
systems (1) and (2), we assumed that those functions 
were constant by parts, strictly positive and we lost 
the continuity only in kΓ , 1 2k m= , , , . 

The objective in this section is to get the estimation 
of 
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For some 0 0T > , 0C >  and 0T T> . The 
inequality (7) is named from an inequality of 
observation which is in the theorem 3 assuming 
geometrical properties on domain Ω  and in the 
interfaces kΓ . Such that, to prove (7) we assumed 
monotonicity conditions in the coefficients of the 

systems (3) and (4). The requirement necessary were 
found by Lions[8] in his study of transmission 
problem. Lagnese[4] used the same hypothesis to 
prove the result of controllability for a hyperbolic 
problem. 

2. Functional Spaces 

Given the Hilbert space 
32 2
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associate to (3). We define an scalar product in 1X , 
given by 1( ) ( )u p u p X, , , ∈  , then: 
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Consequently, we considered 
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define a scalar product in 2X , as 2( ) ( )v q v q X, , , ∈  , 
then: 

{ }
2

0
( ) ( )

k

m
kk k k kk

X
k

v q v q v q dxqvτ γ
Ω

=

, , , = . +∑ ∫  



 

 (9) 
We have considered a total energy to the problem 

(3), (4), (5), (6) and the boundary conditions in (1), (2), 
as 
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Making a rigorously way for the interfaces 
conditions, we can see a lemma  1; for more details 
see Perla et al.[5]. 

Lemma 1. Given Ω  bounded region in 3IR , 
with regularity in the boundary ∂Ω . The application 
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where ( )xη η=  is as exterior unit normal vector in 
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x ∈∂Ω . We can extend by continuity application 

1 2 ( )H H − /→ ∂Ω  

where { }32 2( ) div( ) ( )H u L u L = ∈ Ω , ∈ Ω 
  and 

1 2 ( )H − / ∂Ω  is dual space of 1 2 ( )H / ∂Ω  

To simplify the notation we write ku  as u , kβ  

as β , the same way for all symbols in the region 
kΩ . by the lemma 1 is clearly that the spaces 
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Observe that 1( ) 1 2jC Z j Ω ⊂ , = ,  . Also 

1Z  and 2Z  are dense in 1X  and 2X , respectively. 
Considering the bounded operator 
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Perla et al. [5] showed that operator 1A  is 
skew-adjoint, i.e, 1 1A A∗ = − , the same result was 
proved for 2A . Using the Stone’s theorem, we have 
proved that 1A  and 2A  generate infinitesimally a 
group of strongly continuous unit operators 
{ ( )}j t IRU t ∈ , in 1X  and 2X , respectively. 
Moreover, ( )j jU t w  is strongly differentiable in 
relation to t  and for any ( )j jw D A∈ , 
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3. Inequality of Observability 

Using the multiplier’s theory (see Komornik[3]), 
we make the proof. The multiplier was modified to get 
a good estimates in the boundary. These multiplier 
were used in several works. The invariant of the 
systems (1) and (2), in relations to dilatations groups 
in all variables, see [5]. Given 

1( ) ( )h C C IR: Ω ∩ Ω →  an auxiliary function, 
it will be chosen in the next steps; and, given 
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( )
( )

1 0

2

3

2 ( )

2
2

t
M tp u h p x s ds

M tu p h
M u

α α

β
β

 = − .∇ + ,


= − ∇
 =


∫
 

and ( )u p,  solution of (1), we have the identities 
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The expression above, we make rewrite as 0 div( )A B J
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Now, considered the hypothesis in the domain Ω . 
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The same manner, we obtain the inequality of 
observability for the system (2)-(4) with their interface 
conditions and the monotonicity of the coefficients, 
given by: 
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4. Exact Controllability 
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of (20), we can conclude that ∧  is an isomorphism 
of Y  in  Y ′ . We proved following theorem 

Theorem 1. Assuming the hypothesis of theorem 3. 
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