
Journal of Civil Engineering and Architecture 10 (2016) 894-900 
doi: 10.17265/1934-7359/2016.08.005 

Parameter Variations of Identified Model for Static 

Deformation Analysis of Arch Dam  

Jiann-Shiun Lew 

Center of Excellence in Information Systems, Tennessee State University, Tennessee 37209, USA 

 

Abstract: The structural health monitoring of a dam is important for maintaining the safe operation and longevity of the dam system. 
The structural health of a large dam can be monitored from the measured static deformation. This paper presents an investigation of 
the parameter variations of the identified model of the measured long-term static deformation for the structural health monitoring of 
Fui-Tsui Dam, which is located in a very active seismic zone of Taiwan. The measured static deformation is characterized as a 
function of the measured physical parameters, including the effects of hydrostatic pressure and temperature variation. The identified 
parameters, associated with the effects of hydrostatic pressure and temperature variation, change with environmental factors, such as 
flooding, earthquake and foundation change.  
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1. Introduction 

Large dams are exposed to environmental, 

geomechanical and hydraulic factors, such as flooding, 

earthquake, water level, temperature and foundation 

change. All of these affect structural behavior. 

Therefore it is a challenging task to develop a reliable 

SHM (structural health monitoring) system for large 

dams.  

The structural health monitoring of civil 

infrastructures, such as bridges and dams, is important 

for the safe operation, hazard prevention, and the 

longevity of the system [1, 2]. Significant 

developments in SHM of civil structures have 

originated from major construction projects, such as 

large dams and long-span cable-supported bridges. 

Regular inspection of dams became a legal 

requirement in the UK after the failure of a 30-m 

embankment dam claimed the lives of 254 people near 

Sheffield, UK in 1864 [3]. The traditional procedure 

for the evaluation of the structural health condition of 

dams is through visual inspection. However, visual 
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inspections have some shortcomings such as 

significant labor demands and inaccessible critical 

locations. The problems of visual inspections can be 

addressed with field tests, which are conducted to 

monitor the dynamic and static characteristics of 

structures [4-6]. For a large dam, it is a challenging 

task to excite structural vibration. Significant 

vibration measurement data are available only when 

earthquakes occur. Thus, the structural health of the 

dam cannot be continuously monitored based on the 

variation of structural vibration. The use of static 

deformation measurement is an alternative way to 

continuously monitor the structural health of a dam. 

Various methods, based on dynamic and static tests, 

have been developed to address structural health 

monitoring and damage identification [4]. Uncertainty 

in SHM systems, such as environmental and 

operational variations, may significantly affect the 

measurements and reduce the reliability of damage 

identification with false indications of damage [7, 8]. 

Therefore, it is necessary to develop robust and 

reliable approaches to identify accurately damage 

status and provide an early warning threshold before a 

disaster occurs. 
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Various modeling techniques have been developed 

that use the measured long-term static deformation for 

structural health monitoring of dams. A concrete dam 

is subjected to hydrostatic load and thermal model. 

The statistical and identification procedures [9, 10] 

have been widely applied to model long-term 

deformation as a function of hydrostatic load, which is 

expressed as the polynomials of water level, and 

thermal model, which is expressed as a sinusoidal 

function of seasonal temperature effect. A linear 

least-squares technique is applied to minimize the 

difference between the measured static deformation 

and the identified model to get a linear statistical 

model. Recently, a nonlinear modeling technique [11] 

was developed for the measured static deformation of 

Fei-Tsui Dam (Fig. 1), which is located in Taiwan. 

The results demonstrate that the identified nonlinear 

model well represents the measured static deformation. 

This identified model also gives a precise prediction 

of the future long-term static deformation for 

structural health monitoring of Fei-Tsui Dam. The 

results of the previous study demonstrate that the 

identified parameters of the nonlinear model change 

with environmental factors, such as flooding and 

drought. This paper presents a thorough investigation 

of the identified parameter variations based on a 

modified approach of this nonlinear modeling 

technique.  

2. Measurement of Fei-Tsai Dam 

Fei-Tsui Dam (Fig. 1) is 122.5 m high and the dam 

crest is 510 m in length. It is designed with a double 

curvature arch along the height of the dam. The 

capacity of this reservoir is about 400 million m3. 

Since this dam is located in a very active seismic zone 

of Taiwan, both dynamic and static monitoring 

systems of the dam are deployed in this structure [6]. 

There are several static measurement systems in this 

Feu-Tsui Dam. One of the important static 

measurement systems is the monitoring of dam 

deformation. There are five measurement points along 

the dam height (at levels 172.5 m, 150 m, 115 m,   

90 m and 57.5 m) to measure the radial deformation 

(Y direction) of the dam [6]. The daily dam 

deformations and water level were measured at a fixed 

time in the morning. These static deformation 

measurements were collected automatically with the 

use of the laser beams starting from January 1, 1987, 

and they were recorded to the unit of 0.1 mm with the 

initial deformation set as zero. The daily maximum 

and minimum temperatures at the dam site were also 

measured. The data were not recorded during dam 

maintenance time, so the data were unavailable for 

these days. 

Fig. 2 plots the water level and the measured static 

deformation at two locations (90 m and 172.5 m) 

along vertical line NPL2 (one of three vertical lines  
 

 
Fig. 1  Areal photo of Fei-Tsui Dam.  
 

 
Fig. 2  Recorded water level and static radial deformations 
of Fei-Tsui Dam along plumb NPL2 vertical line.  
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for static deformation measurement) [6]. The abscissa 

of Fig. 2 indicates the number of the point (from 

1/1/1987 to 12/31/2008, a total of 7,600 data points). 

The magnitude of the deformation increases as the 

height of the measurement point increases, and it is 

relatively insignificant at the height of 90 m. The 

signatures of the deformations at different heights are 

very similar to each other [11]. 

3. Modeling Technique 

From a large amount of the measured data, the 

statistical and identification procedures have been 

applied to characterize the static deformation as a 

linear regression model [9]. This analytical model is 

the sum of three terms:  

 the effect of hydrostatic pressure;  

 the effect of temperature variation;  

 the effect of time.  

The model of deformation is expressed as 

)()()()( iditihim dydydydy      (1) 

where, yh(di), yt(di) and yd(di) are the effects due to 

hydrostatic pressure, temperature variation and time at 

the ith measurement date di. The effect of hydrostatic 

pressure is expressed as the polynomials of water 

level [9]: 
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where, h(di) is the measured water level. The 

temperature effect is the combination of the seasonal 

temperature effect, expressed as a sinusoidal function 

with a period c1 (close to 365 for a year), and the 

effect of daily temperature fluctuation as: 
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where, t(di) is the measured temperature. The time 

effect can be expressed as: 
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For any period c1, a cost function is formed as a 

quadratic function of the parameters ai as: 
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where, y(di) is the measured static deformation with 

the chosen data prints from n0 to n1, and ya(di) is the 

sum of the three terms in Eqs. (2)-(4). This is a linear 

least-squares problem, and a unique solution of 

parameters ai can be obtained by minimizing the cost 

function J. The minimum cost function is computed as 

Ja, and it can be expressed as a function of parameter 

c1 as Ja(c1). The problem is to find a solution of 

parameter c1 to minimize the model error as: 

)(min 1
1

cJa
c

    (6) 

The MATLAB program “fminsearch”, which is 

based on the Nelder-Mead simplex (direct search) 

method, is applied to get the solution of this 

optimization problem. The error of this identified 

model is computed as: 

)()()( iimie dydydy    (7) 

4. Results and Discussion  

Next, this paper will investigate the results of the 

application of the proposed approach to the static 

deformation measurements of Fei-Tsui Dam. The 

investigation in this paper is based on the analysis of 

the measured static deformation at location 

NPL2Y172.5 (at level 172.5 m), which is always 

above water level as shown in Fig. 2. 

4.1 Seasonal Temperature Effect 

The previous study shows that the identified 

optimal period c1 varies with the data length n1  n0 + 

1 (Eq. (5)), and the measurement time interval, n0~n1. 

Next, examples are used to demonstrate the variations 

of the identified period and model error under two 

variables, the data length and the measured time. 

These two variables are defined as: 

1
2
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tl

n
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where, nt represents the middle point of the chosen 

data for modeling. Fig. 3 shows the results of the  
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Fig. 3  Identified optimal periods c1 of various cases     
(*: nl = 600; o: nl = 800; +: nl = 1,000).  
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Fig. 4  Standard deviations σ of the identified model errors 
of various cases (*: nl = 600; o: nl = 800; +: nl = 1,000). 
 

identified optimal period c1 for three chosen data 

lengths and the measured time nt from 1,000 to 3,000 

with an increment of 100. Fig. 4 shows the results of 

the standard deviation σ of the identified model error 

ye for the cases in Fig. 3. To demonstrate the results, 

Table 1 lists the mean value, the maximum value, and 

the minimum value of the results in Figs. 3 and 4. 

From the results, the following observations are noted: 

(1) The range of the identified optimal period c1 

decreases as the data length nl increases with more 

data points used, as shown in Table 1 and Fig. 3. The 

identified period c1 increases or decreases during a 

period of time nt, for example c1 increases from 358.6 

to 374.2 as nt is from 2,400 to 2,900 for nl = 800;  

(2) The identified model error increases as the data 

length nl increases with more data points used, as 

shown in Table 1 and Fig. 4. The standard deviation σ  

increases or decreases during a period of time nt, for 

example the standard deviation σ of model error 

increases from 1.136 to 1.495 as nt is from 1,100 to 

1,600 for nl = 800;  

(3) In general, the use of more data points, larger nl, 

provides an identified model with more global 

representation. But the use of more data points 

sacrifices the performance of the identified model and 

produces larger model error. 

Next, the accuracy of the identified model is 

demonstrated by the case with nl = 1,000 and nt = 

1,500. The results of this case are based on the use of 

Eq. (5) to analyze the measured deformation from 

1,001 to 2,000 data points with various period c1.  

Fig. 5 shows the standard deviation σ of model error 

as a function of period c1. The optimal solution of this 

case has the optimal period c1 = 366.63, as shown in 

Figs. 3 and 5, and the standard deviation σ = 1.5034, 

as shown in Figs. 4 and 5. Fig. 6 shows the results of 

the identified model with the optimal period for this 

case. Fig. 6a shows that the identified model well 

represents the experimental data. Fig. 6b shows that 

the predicted deformation, which is estimated based 

on the identified model, is very close to the measured 

deformation.  
 

Table 1  Results of identified models for various cases.  

 
Period c1  
nl = 600 

Period c1  
nl = 800 

Period c1  
nl = 1,000 

σ (model error) 
nl = 600 

σ (model error) 
nl = 800 

σ (model error) 
nl = 1,000 

Mean  365.686 365.609 364.902 1.2309 1.4029 1.5511 

Maximum 381.156 374.153 370.395 1.8815 1.8540 1.9748 

Minimum 352.322 358.578 357.837 1.0112 1.0200 1.2476 
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Fig. 5  Standard deviation σ of model error as a function 
of period c1 for identified models based on data from 1,001 
to 2,000 points at NPL2Y172.5.  
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Fig. 6  Results of deformation analysis: (a) identification 
results; (b) prediction results (―: experimental 
data; ··· identified model). 

4.2 Hydrostatic Effect  

The identified parameters of the effect of 

hydrostatic pressure vary with environmental factors, 

such as drought and flooding. For investigation, the 

effect of the hydrostatic pressure is expressed as a 

function of the first order polynomial of water level 

instead of the second order polynomial in Eq. (2). The 

study is based on the identified models of the data 

with various length nl and the period c1 from 363 to 

367 with an increment of 0.4. The results are based on 

the analysis of the deformation with various length nl 

in the different time intervals from the first 6,000 data 

points with n0 starting from 1 with an increment of 

200. The mean value of the water level for the time 

interval n0~n1, is computed as:  
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Figs. 7-9 show the identified variable a1 as a 

function of the mean water level hm for the cases with 

nl = 1,000, 800 and 600, respectively. The line in each 

figure is a linear least-squares model to represent the  
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Fig. 7  Identified parameter a1 as a function of the mean 
water level hm for the cases with nl = 1,000 and c1 from 363 
to 367.  
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Fig. 9  Identified parameter a1 as a function of the mean 
water level hm for the cases with nl = 600 and c1 from 363 to 
367.   
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Fig. 10  Parameter a1 as a linear function of the mean 
water level hm: ― nl =1000; ··· nl = 800; - - nl = 600. 
 

identified parameters a1 of various cases. Because the 

mean water level hm is the average for a long period of 

time, more than one and a half years, the identified 

line in Fig. 9 relatively well represents the identified 

parameters a1 of various cases with nl = 600. The 

model error between the line and data for the cases 

with nl = 1,000 in Fig. 7 is the largest due to the 

longest number of data points used. The results 

demonstrate that the identified parameter a1 increases 

with water level. Fig. 10 plots the three lines in   

Figs. 7-9. These three lines are very close to each 

other, and the slopes of three lines are almost the 

same. 

5. Conclusions 

This paper presents an investigation of the 

parameter variations of the identified model of the 

long-term deformation of Fei-Tsui Dam. The results 

demonstrate that the identified period of the sinusoidal 

function for the seasonal temperature effect may vary 

significantly. The inclusion of more data points in the 

identified model can reduce the variation of the 

identified period, but it increases the model error of 

the identified model. The results demonstrate that the 

identified model well represents the experimental data 

and the estimated future deformation accurately 

represents the measured deformation. The 

investigation of the hydrostatic effect is based on the 

model with the linear effect (identified parameter a1) 

of the measured water level on static deformation. The 

results demonstrate that the identified parameter a1 

increases linearly with water level, and the increased 

slopes are very close for the cases with various data 

lengths nl. The investigation in this paper furthers the 

development of the reliable and effective structural 

health monitoring system for Fei-Tsui Dam.  
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