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Abstract: This paper proposes a new method for extracting ENF (electric network frequency) fluctuations from digital audio 
recordings for the purpose of forensic authentication. It is shown that the extraction of ENF components from audio recordings is 
realizable by applying a parametric approach based on an AR (autoregressive) model. The proposed method is compared to the existing 
STFT (short-time Fourier transform) based ENF extraction method. Experimental results from recorded electrical grid signals and 
recorded audio signals show that the proposed approach can improve the time resolution in the extracted ENF fluctuations and improve 
the detection of tampering with short alterations in longer audio recordings. 
 
Key words: Audio forensic authentication, electric network frequency fluctuations, autoregressive modeling, tampering and 
discontinuity detection. 
 

1. Introduction 

ENF (electric network frequency) signals are 

increasingly being used in the field of forensic digital 

audio authentication. Indeed, it is nowadays often 

possible to detect alterations made in audio recordings 

or to determine when and where a recording was made. 

In order to achieve this, a solution was proposed by 

taking into consideration the analysis of ENF signals 

embedded within an audio file and then comparing it to 

a reference database constructed by recording the ENF 

fluctuations of the electrical grid directly from a power 

outlet [1-3]. In Ref. [1] the extraction process of the 

ENF component was done either by implementing a 

STFT (short-time Fourier transform) method for long 

recordings (i.e., 1 hour or longer) or by using a 

zero-crossings method to tackle shorter recordings (i.e., 

15 minutes or less), where the zero-crossings method 

measures the time differences between every two 
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consecutive crossings in the time waveform of a band 

pass filtered signal around the ENF frequency. For the 

case of long audio recordings, the STFT method 

provides good performance. For shorter signals or short 

alterations in long signals, the STFT cannot provide 

good performance because of the use of long windows 

and the resulting poor time resolution (this will be 

illustrated in this paper). The zero-crossing method can 

provide good results for short audio recordings, but it 

was found to suffer from two shortcomings. Firstly, it 

has to operate at a high sampling frequency (e.g. 44.1 

kHz or at least 8 kHz). By comparison, the STFT 

method employed in this paper works at a 

downsampled sampling rate of 0.2 Hz, which greatly 

reduces the computations and required memory. 

Secondly, the zero-crossing method was reported in 

Ref. [1] to be sensitive with results that can vary 

significantly depending on the analysis window size, 

window overlap, etc. The method is also non-linear in 

the sense that different results can be obtained when 

different sampling rates are used, unlike the STFT 
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methods which produce similar results at different 

sampling rates (as long as the Nyquist sampling criteria 

is met). The focus of this paper is to implement an AR 

(autoregressive) modeling method that works at the 

reduced sampling rate of 0.2 Hz. Under some 

conditions such AR methods are known to produce a 

“super-resolution”, i.e., a better frequency resolution 

than SFTF methods when a small number of samples 

are available, or alternatively an equivalent frequency 

resolution using less samples than STFT methods (thus 

improving the time resolution). 

This paper is organized as follows. Section 2 will 

present the basics of ENF fluctuation extraction and 

STFT methods. An outline of the proposed AR 

modeling method is presented in Section 3. Section 4 

discusses the recording of the electrical grid signals for 

our experiments. Section 5 presents some extraction 

results with the STFT and AR methods, while Section 

6 provides a conclusion. 

2. Overview of ENF Fluctuations Extraction 
and STFT Extraction Methods 

Generators rotating at the speed of 60 cycles per 

second in North America and 50 cycles per second in 

Europe produce an AC (alternative current) that travels 

along transmission lines. Ideally the frequency is fixed 

at a constant value of 60 Hz or 50 Hz, depending on the 

region. However, since electricity production is 

contingent on power demand, it must be generated 

accordingly. Higher demand will cause the frequency 

to drop while lower demand will cause the frequency to 

rise momentarily. As an example, the Canadian 

territory is divided into three major transmission lines: 

the Western interconnection, the Eastern 

interconnection and the Quebec interconnection [4, 5]. 

The fluctuations introduced in the grid are random, 

non-predictable and are most importantly uniform 

throughout the entire transmission line. For our work, 

an ENF database was built by capturing the electrical 

signal directly from a power outlet via a probe based on 

the design in Ref. [6], and connecting the probe to a 

computer and a sound board for recording purposes. 

Audio recordings were made using a battery-powered 

Olympus WS210S audio device. Since audio recording 

devices also capture some ENF interference from 

nearby appliances via electromagnetic fields, 

obviously the closer the recording device was to the 

emitting appliance the higher the ENF component was 

in the audio file. But this was not found to be an 

important factor in our system, since the level of ENF 

signal was always found to be sufficient to perform 

ENF extraction. The capturing of the reference 

electrical grid signal was done in a computer room at 

the University of Ottawa and the audio files were 

recorded in an apartment room located at a distance of 

about 2 km from the University campus. In Ref. [1] the 

STFT method and the FFT (fast Fourier transform) 

method were presented as two distinct methods but 

they can also be seen as equivalent, since they only 

differ in the presentation of the results (i.e. spectrogram 

for STFT vs. spectrum magnitude for the FFT). Both of 

them are based on a discrete Fourier transform and 

windowing of the signal, and are computed with FFTs 

in practice. In this paper we define the STFT as simply 

being the magnitude of the FFT taken on windowed 

portions of the signal, with a window of 200 seconds 

length moved in order to cover the whole signal as 

shown in Fig. 1. The number of windows required to 

scan the entire signal depends on the signal length N, 

the window size L and the window shift M applied 
between each consecutive window: ( ) /N L M M  .  

In our implementation of the STFT ENF extraction 

approach, we first downsample the recording’s original 
 

 
Fig. 1  STFT method with sliding window. 
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rate (i.e. usually ranging from 8 kHz to 44.1 kHz) to 

approximately 140 Hz, which is a bit higher than twice 

the 60 Hz component (to respect the Nyquist sampling 

criteria). Furthermore, a narrowband zoom or 

downsampling to 0.2 Hz around the ENF frequency of 

interest is performed, resulting in a FFT applied on the 

downsampled signal with a window of 40 samples (i.e. 

equivalent to 200 seconds), yielding a computational 

resolution of 5 mHz on a range of 0.2 Hz (normally 

from 59.9 Hz to 60.1 Hz although this may vary 

depending on the sampling clock frequency bias of the 

recording device). Fig. 2 shows an example of the 

resulting spectrum obtained from a STFT, resulting in 

40 frequency points over a 0.2 Hz range. A weighted 

average can be computed over the 40 frequency points 

to extract the ENF sample, or alternatively the 

frequency of the maximum value can be taken as the 

ENF sample. A single ENF sample is thus produced for 

each analysis window. The process described was 

implemented for each consecutive window subject to a 

5 seconds interval shift. This shift value could be 

increased up to 100 seconds or even 200 seconds to 

reduce the computational complexity and the data size, 

but using a smaller shift of 5 seconds was convenient 

because it also corresponds to the window shift used in 

the AR method to be described later in Section 3, 

allowing a better comparison and compatibility 

between the extracted ENF signals from the two 

different methods. 
 

 
Fig. 2  FFT magnitude of the first window from STFT. 

3. Autoregressive Approach 

As previously mentioned, the AR approach was 

developed to cover the case of short audio recordings 

(e.g. less than 15 minutes) or short alterations in longer 

recordings. The zero-crossings method is the method 

that has previously been developed for such cases [1], 

however it requires much higher sampling rates (e.g. 8 

kHz or 44.1 kHz as opposed to 0.2 Hz) and the 

computing complexity and storage capacity required 

are high so an alternative method is needed. A parametric 

model is defined on the assumption of a particular 

structure (“model”) for the signal being analyzed. This 

is in opposition to non-parametric methods that do not 

assume any structure in the signal, e.g. Fourier 

transforms which are applicable to any signals. 

Autoregressive parametric models or pole-only 

models are suitable for signals with peaks or resonance 

frequencies, thus they are a good fit for the ENF 

modeling. The parameters or filter coefficients in an 

AR model can be estimated by finding the coefficients 

of a filter whose purpose is to predict the current 

sample of a random process by using a finite number of 

previous samples from the same process. As shown in 

Fig. 3, a signal x[n] modeled by an AR process is 

produced by the output of an all-pole IIR (infinite 

impulse response) filter H(z) of order M, with a white 

noise input v[n] with zero mean v. The filter response 

in the z-transform domain is described by Eq. (1) and in 

the time domain the system is described by the 

difference equation of Eq. (2): 
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Fig. 3  Basic model for an AR process. 
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In general, the main objective of AR modeling is to 

compute the AR coefficients wk in order to obtain an 

estimation of the PSD (power spectral density) Sxx (e
j) 

of the output signal, which can be directly evaluated 

using Eq. (4) knowing the coefficients wk and thus the 

resulting filter H(z) in Eq. (1) and its magnitude 

frequency response |H(ej)|2. The variance 2
v  of the 

white noise input signal v[n] is found from Eq. (5), 

producing the flat PSD Svv (e
j) for the input signal of 

the model: 

2
( ) ( ) ( )j j j

xx vvS e S e H e    (3)

2

1
( ) (0) ( )

M
j

vv v x k x
k

S e r w r k 


     (4)

From Sxx (e
j) the ENF frequency can be found by 

evaluating the peak position. Note that in order to 

extract the ENF frequency the knowledge of Svv (e
j) is 

not required, i.e., knowing |H(ej)|2 or |H(ej)| is 

sufficient. In our implementation a model of order M = 

1 was found to be appropriate in order to detect a single 

peak at the final downsampled rate of 0.2 Hz. Many 

methods could be implemented for the parametric 

approach (e.g. Levinson-Durbin recursion) but for the 

purpose of our simple M = 1 model a direct 

programming of the Yule-Walker equations was 

performed. In this implementation, the sequence of 

samples x[n] (in our case a window of 4 samples or 

equivalently 20 seconds) is used to determine the 

autocorrelation rx[n]. These autocorrelation values are 

used in the set of Yule-Walker equations defined below. 

The size of the autocorrelation matrix Rx and the 

number of AR coefficients represented by the 
coefficient vector  1 2w

T
Mw w w   are 

dependent on the filter order M: 
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R w rx x  (6)

1w R rx x
  (7)

with  (1) (2) ( )r
T

x x x xr r r M  . The following 

simple experiment illustrates how the ENF signal is 

extracted with the AR method. A digital audio 

recording of 5 minutes was sampled at 8 kHz, then 

downsampled to a rate of 0.2 Hz around the ENF 

frequency and analyzed with a window of 20 seconds 

(i.e., 4 samples at 0.2 Hz) with shifts of 5 seconds (i.e., 

1 sample at 0.2 Hz). The magnitude frequency response 

of the filter produced by the AR model for the first 

window of 20 seconds is shown in Fig. 4. The 

frequency at which the maximum peak is located 

determines the ENF fluctuation sample. The algorithm 

was then executed for all the available windows, 

producing 57 ENF samples from the 5 minutes of audio 

recording, as depicted in Fig. 5. Comparisons between 

ENF signals extracted using the STFT method and the 

AR method will be presented in Section 5. 
 

 
Fig. 4  Magnitude frequency response of the AR model for 
the first window (20 seconds of data). 
 

 
Fig. 5  Extracted ENF signal of 57 samples from 5 minutes 
of audio recording, using AR method. 
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4. Grid Signal Database 

In order to build an electrical grid signal database, 

the grid information was captured via a probe and 

stored on a PC using a basic sound board. The grid 

database   serves   as   a   reference   mark   in   the 

authentication process of a digital audio recording. The 

reference files constructing the database were saved in 

blocks of 12 hours. Even though the AR method is 

intended for short recordings, it is of course capable of 

handling longer signals. To illustrate this, proceeding 

with the same steps as the ones described in the 

previous section for an audio recording, the 60 Hz ENF 

signal extracted from 12 hours of grid reference signal 

is depicted in Fig. 6. If each original electrical grid data 

sample has 2 bytes, with mono-channel recording and a 

44.1 kHz sampling rate (typical sound board setting), a 

day of recorded grid signal will require 7.6 GB of 

storage. Over one year this would require 2,774 GB. 

Table 1 illustrates the required storage space for 

different  sampling  rates.  The  database  size  can 

obviously be greatly reduced if the sampling rate of the 

recording process is lowered, i.e., if the sound board or 

recording device supports lower sampling rates, or if  
 

 
Fig. 6  Extracted grid ENF signal of 8,637 samples from 12 
hours of recording, using AR method. 
 

Table 1  Comparison of required storage for different 
sampling rates. 

Sampling rate 
Data size for 1 day 
of recording 

Data size for 1 year 
of recording 

44.1 kHz ~7.6 GB ~2.8 TB 

32 kHz ~5.5 GB ~2 TB 

8 kHz ~1.3 GB ~0.5 TB 

further offline downsampling processing is done. The 

use of a high sampling rate is only required if the 

method of zero-crossing is to be used. 

5. Testing and Results 

5.1 Correlation Approach 

Correlating the ENF signal extracted from an audio 

signal with the ENF signal extracted from the grid 

database determines the audio ENF signal’s “best 

match” in the grid ENF signal. Normalizing the 

correlation by the square root of the product of the total 

energy from both matching segments will produce a 

normalized correlation value between + 1 and – 1. A 

strong correlation between the audio ENF and the grid 

ENF means that the correlation value will be close to + 

1, whereas a value closer to 0 represents a weak 

correlation between the signals. A correlation value 

close to – 1 would mean similar ENF waveforms with 

opposite signs, which is not an acceptable match in our 

application. Therefore, for our application it is only 

required to look for the maximum positive correlation 

coefficient value, indicating the location at which the 

best possible match occurs. The time where the 

maximum correlation value occurs is extracted in hours, 

minutes and seconds. This information can be used to 

obtain the exact date and time at which the audio 

recording has been made, by adding the detected 

maximum correlation time to the timestamp of the 

corresponding grid ENF signal (the timestamp was 

created by the recording computer and saved along the 

reference grid signal file, when capturing and recording 

the grid signal). If reference ENF signals from different 

electrical grids are available, it is then also possible to 

determine from which region the audio recording was 

made. 

5.2 ENF Discontinuity Detection Technique 

One of the most common ways of altering audio files 

is by applying the technique of “butt-splicing” [7, 8], 

removing a small audio part somewhere within the 

original digital audio recording and replacing it with 
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another. In Ref. [8] it is stated that when an audio 

waveform is butt-spliced, the amplitude of the sample 

either side of the splice point is unlikely to be in 

equilibrium producing an abrupt change or 

discontinuity. However, meticulous alterations and 

manipulations render the audio signal hard to classify 

as unauthentic by simply looking at the time waveform 

or listening to the audio file. Although correctly 

butt-splicing a recording in the time domain is feasible, 

correctly placing an ENF frequency component can be 

much more laborious and burdensome. Moreover, 

combining signals recorded from different recording 

devices having different frequency bias will yield an 

ENF signal that is “discontinuous” in frequency at the 

time of the edit, therefore allowing detection of the 

butt-splicing. A basic first difference approach was 

implemented to detect sudden jumps in amplitude 

between two consecutive ENF samples. In this 

approach, Eq. 8 is applied on the audio ENF samples 
[ ]x n  of length N  and [ ]x n  are the first difference 

values: 

'[ ] [ ] [ 1]x n x n x n    2 n N   (8)

As an example, a first difference signal obtained 

from an audio signal that has been butt-spliced is 

depicted in Fig. 7 where the unusual peak corresponds 

to a sudden change in amplitude between two 

consecutive ENF samples. If the difference is larger 

than a set threshold the algorithm will label the audio as 

unauthentic. If several such altered segments are 

detected, a list of segment locations as well as the most 

likely alteration (highest first difference value) is 

provided. The audio recording is labelled as unaltered 

when the amplitude never exceeds the threshold. More 

results are presented in the next section. 

5.3 Experimental Results Comparing STFT and AR 

Methods  

5.3.1 Case 1: Unaltered Audio Recording, 60 

Minutes Length 

The correlation graph for the ENF signals extracted 

 
Fig. 7  Example of a first difference signal from an audio 
signal that has been butt-spliced for 10 sec. at approx. 5 
minutes 30 sec. 
 

 
Fig. 8  Correlation graph obtained with AR method. 
 

from the audio and grid signals using the AR approach 

is presented in Fig. 8, where the maximum value of 

0.967 occurs at a time around 9 hours 14 minutes with 

respect to the start of the grid file. A visual comparison 

of the corresponding grid ENF and audio ENF signals 

is shown in Fig. 9. Due to the visual similarity in the 

waveforms, and if no ENF discontinuity or butt-splicing 

is automatically detected in the audio ENF signal, it can 

be concluded that the audio recording is authentic. The 

correlation graph for the ENF signals extracted using 

the STFT method is shown in Fig. 10 where the 

maximum correlation value of 0.956 occurs again at a 

time around 9 hours 14 minutes with respect to the start 

of the grid file. Due to the longer length of the windows 

used in the STFT method (200 s vs. 20 s), the 

corresponding ENF waveforms will be much smoother 

(i.e., less noisy but also with less details or less time 
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(a) 

 
(b) 

Fig. 9  Grid ENF at 9 hours 14 minutes (top) and audio 
ENF (bottom) obtained with AR method. 
 

 
Fig. 10  Correlation graph obtained with STFT method. 
 

resolution) than the ENF waveforms obtained by 

applying the AR approach, as seen by comparing Figs. 

11 and 9. 

5.3.2 Case 2: Altered Audio Recording, 15 Minutes 

Length, 30 s of Content Modified 

In this scenario, 30 s of audio were altered in a 

recording of length 15 minutes. The alteration was 

done using another segment of the same audio file. The 

ENF extraction from the audio and grid signals was 

first performed using the AR parametric approach. The 

maximum  correlation  value  obtained  is  0.879 

occurring around 18 minutes from the start of the grid, 

as shown in Fig. 12. The lower correlation is already a 

 
(a) 

 
(b) 

Fig. 11  Grid ENF at 9 hours 14 minutes (top) and audio 
ENF (bottom) obtained with STFT method. 
 

 
Fig. 12  Correlation graph obtained with AR method. 
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(a) 

 
(b) 

Fig. 13  Grid ENF at 18 minutes (top) and audio ENF 
(bottom) obtained with AR method. 
 

 
Fig. 14  Correlation graph obtained with STFT method. 
 

perform a valid visual verification from Fig. 15, and 

from this smooth signal the discontinuity detection 

algorithm for butt-splicing also cannot detect any 

alteration. Therefore, we clearly see that for shorter 

audio recordings or alterations the better time 

resolution of the AR ENF extraction produces better 

results that the STFT ENF extraction. From the 

literature, it is expected that results similar to the AR 

ENF extraction method could possibly be obtained 

with the zero-crossings method [1], but as previously 

explained this method would be computationally 

expensive as it would operate at much higher sampling 

rates (e.g., 44.1 kHz or 8 kHz vs. 0.2 Hz for the AR 

method). 

 
(a) 

 
(b) 

Fig. 15  Grid ENF at 18 minutes (top) and audio ENF 
(bottom) obtained with STFT method. 

6. Conclusions 

A new ENF extraction method based on AR 

modeling was developed, implemented and 

experimentally tested with real electrical grid 

recordings and audio recordings. The use of shorter 

windows in the AR method provided a better time 

resolution in the ENF signals and resulted in a better 

detection of short alterations in longer recordings, 

compared to the STFT method which uses longer 

windows. For a complete authentication, it was found 

that a combination of the correlation coefficient value, 

a visual verification of the strong matches between the 

audio and grid ENF signals and the use of a 

discontinuity detection algorithm for butt-splicing was 

required. From the results reported in Ref. [1], the 

zero-crossings ENF extraction method could possibly 

produce similar results to the proposed AR method, but 

it would also require more calculations and storage due 

to the fact that it operates at a high sampling rate (e.g., 

44.1 kHz or 8 kHz vs. 0.2 Hz for the AR method). The 

zero-crossings ENF extraction method is also reported 

to be sensitive to the choice of parameters employed 

for the extraction [1]. Therefore, our proposed AR ENF 
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extraction method can be an interesting alternative for 

extracting ENF fluctuations in audio forensic 

authentication. 
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