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Abstract: Analysis of transient heat in a stockpile of combustible material modelled in a spherical domain is considered in this 
article. The sphere loses heat by convection to the atmosphere due to exothermic chemical reaction taking place in the reactive 
stockpile. The complicated chemical reaction taking place in this problem is tackled by assuming a one-step finite rate irreversible 
Arrhenius kinetics. The differential equation governing the problem is solved numerically by using the FDM (finite difference 
method) that is very essential for spatial derivatives discretization. The transient heat is analyzed for various thermo-physical 
parameters embedded in the system and the results are discussed accordingly. 
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1. Introduction 

Spontaneous self-heating in as stockpile of reactive 

material is due to exothermic chemical reaction where 

oxygen reacts with carbon containing material in 

which carbon dioxide is emitted. The emission of 

carbon dioxide is of environmental importance and 

previous studies showed that about 80% of carbon 

dioxide emitted due to self-heating contributes to 

Greenhouse effect [1-3]. Generally all municipal 

dumping sites have stockpiles of combustible 

materials and if these are not well managed, 

self-heating may take place to give fires that are 

hazardous to living species, environment and industry 

[4, 5]. Most of reactive stockpiles have materials such 

as wool, cotton, hay, industrial wastes and other 

carbon containing substances. Self-heating due to 

exothermic chemical reaction is a complicated process 

that involves many radicals [6, 7]. The complicated 

chemistry taking place is tackled using a one-step 

decomposition kinetics [8, 9]. The mathematical 

modelling provides necessary understanding into this 

phenomenon, and due to nonlinear interactions or 

reacting species, it is practically not possible to obtain 
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exact solution to the differential equation governing 

the problem [10, 11].  

Analysis of transient heat in a reactive slab was 

investigated in Ref. [12], and in Ref. [13] the analysis 

was studied in a long cylindrical pipe. The latter 

applied regular perturbation technique coupled with 

computer-extended series and a special type of 

Hermite-Pade’ approximation to solve the governing 

equation numerically. This article considers transient 

heat analysis in a spherical domain of combustible 

material. The governing equation is solved by using 

FDM (finite difference method). The mathematical 

formulation in this work is done in Section 2 and the 

numerical method applied is presented in Section 3. 

Section 4 gives detailed discussion of results and 

graphical solutions to the problem due to various 

thermo-physical parameters embedded within the 

system. 

2. Mathematical Formulation 

A stockpile of combustible material modelled in a 

spherical domain with constant thermal conductivity k, 

is considered in this study. The stockpile is assumed 

to be subjected to a one-step Arrhenius kinetics with 

the possibility of heat loss to the ambient. Fig. 1 depicts 
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Fig. 1  Geometry of the problem.  
 

the geometry of the problem. 
Neglecting the reactant consumption, the 

one-dimensional governing equation where the sphere 

of radius r a with temperature, initially at 
0T T , 

is given by Refs. [11, 12] 
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The initial condition is 
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Here T is the sphere’s absolute temperature, T0 the 

initial temperature of the sphere and Tb the ambient 
temperature. p is the density, cp the specific heat at 

constant pressure, k the thermal conductivity of the 

material, Q the heat of reaction, A the rate constant and 

C the reactant concentration. We also have K as the 

Boltzmann’s constant, v the vibration frequency, l the 
Planck’s number, E the activation energy and R the 

universal gas number. m represents the numerical 

exponent and takes the following values, -2 for 

sensitized, 0 for Arrhenius and 0.5 for bimolecular 
kinetics and   is the heat loss parameter [1-3, 11, 

12].  

The following dimensionless parameters are 

introduced to Eqs. (1)-(3). 
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Eqs. (1)-(3) take the following forms: 
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The initial condition is 

0( ,0) ,r              (6) 

and boundary conditions are 

(0, ) 0; (1, ) 0,t t
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where   is the dimensionless temperature,  0  is 

the dimensionless initial temperature,    is the 

Frank-Kamenetskii parameter, also called the rate of 
reaction parameter,    is the activation energy 

parameter,  r  is the dimensionless radial distance 

and   is the heat loss parameter.  

3. Numerical Approach 

The partial differential Eq. (5), including its initial 

and boundary conditions, is solved using the FDM 

algorithm. This method uses a mesh of nodes and the 

time coordinate is introduced in addition to spatial 

mesh. The governing equation is approximated by   

the scheme and the resulting system of algebraic 

equations is solved at each time level so that the 

approximated values of the solution are obtained at the 

spatial nodes. The explicit scheme is used in this case, 

where space domain is subdivided into equal size of 

subintervals to give a mesh of points. A mesh of points 

in time is also created. The forward difference 
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approximation is applied for the time derivative and the 

centered difference formula is used for the spatial 

derivatives.  

The second order accurate difference formula for Eq. 

(5) is thus: 
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where ; 1, 2,...ir i N  are called nodal positions 

along the radial direction, 1

2
i

r
  are positions of points 

located half-way between ir  and 1ir  , r  is the 

mesh spacing, and 1,2,...,j M  is the index of 

time.  
Another second order finite difference formula at the 

center of the sphere is obtained by using fictitious node 

located at r r  . Therefore the boundary condition 

at the center of the sphere, using centered differences, 

is thus: 

2 2 0
2

j j

r
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and the last grid point is  

0N                (10) 

The initial condition is expressed as 

0(0)i              (11) 

The FDM algorithm applied to solve Eqs. (8)-(11) is 

built in most of mathematical software, and in this case 

the equations were solved using Maple. 

4. Results and Discussion 

It is assumed that at the initial stage, t = 0, the 

temperature of the sphere is equal to that of the 

surrounding. But at t >0, the temperature of the sphere 

exceeds that of the ambient due to self-heating caused 

by the trapped oxygen reacting with the reactive 

material within the sphere. Figs. 2-5 illustrate the 

behavior of the temperature in response to variation of 

thermo-physical parameters embedded in the system. 

Figs. 2 and 3 illustrate the behavior of temperature as t 

increases while other thermo-physical parameters, 

, ,m  and   , are kept constant. The general trend 

is that the temperature of the sphere is highest along the 

center and lowest at its surface as heat loss to the 

ambient takes place for t >0. We observe also from 

Figs. 2 and 3 that the sphere’s temperature attains its 

steady state value, and once the steady state value is 

reached, no further increase in temperature is 

experienced. In Fig. 4 we observe how temperature 

varies as  , the rate of reaction parameter, is 

increased. An increase in    shows a corresponding 

increase in temperature fields of the sphere due to 

exothermic chemical reaction taking place within the 

system. As a result, we see high values of temperature 

attained, and if keeps on increasing without appropriate 
 

 
Fig. 2  Temperature variation with time, 3-D.   

 

 
Fig. 3  Temperature variation with time.   
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Fig. 4  Temperature variation with .  
 

 
Fig. 5  Temperature variation with .   

 
loss of heat to the surrounding, more heat can 

accumulate within the system to cause self-ignited 

fires. We see the same result of temperature increase 
in Fig. 5 as the activation energy parameter   is 

increased. In this case  has no strong effect on 

temperature behavior as compared to  . If   is 

increased with small values, its effect on temperature 

behavior may not be observed, hence high values 

employed  to show  the effect.  A different  scenario is 

 
Fig. 6  Temperature variation with .  
 

observed in Fig. 6, where an increase in  , the heat 

loss parameter, shows a decrease in temperature fields. 

This parameter indicates that considerable heat loss to 

the ambient encourages the system’s thermal stability 

and that the risk of self-ignited fires is minimized. 

5. Conclusion 

Analysis of transient heat in a stockpile of reactive 

material was investigated in this case. The study was 

modelled in a spherical domain. Thermo-physical 

parameters embedded within the system that have an 

effect on temperature behavior during exothermic 

chemical reaction in a sphere, were identified as 

,   and   for  t >0. It was found that an increase 

on parameters   and   increases the temperature 

of the sphere during the exothermic chemical reaction 

whereas    shows an opposite effect, which is of 

importance to attain thermal stability of the system. In 

general, the thermal stability in a sphere of reactive 

material is far much better as compared to that in a 

cylindrical set up and rectangular slab, and this is 

enhanced by the fact that no effect of the numerical 

index m on temperature behavior is observed in a 

sphere for the values -2, 0 and 0.5. The significance of 

this theoretical investigation of self-igniting processes 

is to provide a cheaper and simpler way of 
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understanding factors that enhance temperature 

increases or vice-versa, by using mathematical 

approach. In this case, the study was simplified by 

considering a one dimensional partial differential 

equation. The study can be extended to more 

complicated situation using a two dimensional or a 

three dimensional setup. 
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