
Computer Technology and Application 7 (2016) 173-195

doi: 10.17265/1934-7332/2016.04.001

TransJ: An Abstract Independent-Framework for

Weaving Crosscutting Concern into Distributed

Transactions

Anas M. R. AlSobeh
1
 and Stephen W. Clyde

2

1. Department of Computer Information Systems, Yarmouk University, Irbid, Jordan

2. Department of Computer Science, Utah State University, Logan, UT 84322, USA

Abstract: Implementing crosscutting concerns for transactions is difficult, even using aspect-oriented programming languages such

as AspectJ. Many of these challenges arise because the context of a transaction-related crosscutting concern consists of

loosely-coupled abstractions like dynamically-generated identifiers, timestamps, and tentative value sets of distributed resources.

Current aspect-oriented programming languages do not provide joinpoints and pointcuts for weaving advice into high-level

abstractions or contexts, like transaction contexts. To address these problems, we propose an extension to AspectJ framework, called

TransJ, that allows developers to define pointcuts in terms of transaction abstractions and that automatically keeps track of context

information for transactions. This paper describes TransJ as an abstract independent framework for weaving crosscutting concerns

into high-level runtime abstractions, with which developers can implement transaction-related crosscutting concerns in modular,

cohesive and loosely coupled transaction-aware aspects. Finally, this paper presents eight different ways in which TransJ can

improve the reuse with preserving the performance of applications requiring transactions. Informally, these hypotheses are that

TransJ yields (1) better encapsulation and separation of concern; (2) looser coupling and less scattering; (3) higher cohesion and less

tangling; (4) reduces complexity; (5) improves obliviousness; (6) preserves efficiency; (7) improves extensibility; and (8) hastens the

productivity. A brief discussion of experiment to test the hypotheses is provided, but the details of the experiment are left for another

paper.

Key words: AOP, AspectJ, transaction, joinpoint model, context, crosscutting concern, encapsulation, high-level abstractions,

modularity, reuse.

1. Introduction

DTPSs (Distributed transaction processing systems)

can be unnecessarily complex when crosscutting

concerns, e.g., logging, concurrency controls,

transaction management, and access controls, are

scattered throughout the transaction processing logic

or tangled into otherwise cohesive modules. A

challenge with the implementation of DTPS is that

some properties and functionalities cannot be easily

encapsulated and localized into loosely coupled

abstractions, which increases the complexity of the

system. Other challenges stem from the essential

Corresponding author: Anas AlSobeh, Ph.D., assistant

professor, research fields: aspect-oriented programming and

distributed systems.

complexity in the nature of the data, operations on the

data, or the volume of data, and accidental complexity

comes from the way that the problem is being solved,

even using common transaction frameworks [1].

OO (Object Orientation) encourages encapsulation

of design decisions and therefore leans towards

distributing responsibilities across the various types of

objects. OO has proven to be effective in modeling

common hierarchical behaviors, but falls short in

modeling behaviors that span (i.e., crosscut) multiple

unrelated modules (i.e., contexts) [2]. Attempts to

implement such crosscutting concerns in OOP

(Object-Oriented Programming) often result in

systems that are difficult to reuse or maintain: this is

where AOP (Aspect-Oriented Programming) comes in

D
DAVID PUBLISHING

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

174

Ref. [3]. AOP encapsulates crosscutting concerns in

first-class software components, called aspects [3]. An

aspect is an ADT (Abstract Data Type) and very much

like a class in OOP and an aspect instance is like an

object, except that an aspect defines special methods,

called advices, which are automatically woven into the

core application according to specifications, called

pointcuts. A pointcut identifies a set of joinpoints—a

logical intervals in the execution flow of the system

where and when weaving of advice takes place. Each

joinpoint begins and ends relative to static places in

the source code, called shadows [4]. Weaving is the

process of composing core functionality modules with

aspects, thereby yielding a working system [3].

However, the difference between AOP and OOP is

that AOP offers better abstractions for separating

crosscutting concerns from core functionality that do

require core functionality to dependent on crosscutting

concerns in any way. An AO (Aspect-Oriented)

developer should be able to add/remove aspects

to/from a project without changes to any other code.

Some authors refer to this as a principle, called

obliviousness [6].

AspectJ is an extension to the JPL (Java

Programming Language), which provides separate

mechanisms for defining an aspect and specifying its

interaction with an underlying system [7]. It allows

application programmers to weave advice for the logic

of crosscutting concerns into the execution of

code-based contexts, such as constructor

calls/executions, method calls/executions, class

attribute references, and exceptions [8]. AspectJ, like

many other existing AOPLs (AOP Languages) and

frameworks, suffers from the lack of capabilities that

would handle high-level runtime abstractions;

therefore, it does not directly allow behaviors to be

woven into more abstract contexts, such as

transactions. The transaction represents a major

crosscutting concern in DTPSs because it is difficult

to encapsulate and modularize with current

technologies. Even though transactions core concepts

in many distributed systems, they are rarely treated as

a first-class programming concept. Consequentially,

the logic for transactions is, in general, scattered or

spread across several units of the DTPS [12]. Thus,

when changes occur to that logic, there can be a large

ripple effect on the whole system.

A transaction is a set of operations on shared

resources, such that its execution results in either the

successful completion of all operations or the

completion of no operation. Besides this

all-or-nothing property, called atomicity, transactions

are consistent, isolated, and durable, meaning that

persistent data will only change from one valid state to

another; that other concurrent transactions cannot see

the effects of a transaction until it is completed; and,

that effects of a transaction become persistent after

completion, even if there is system failure. Together,

Atomicity, Consistency, Isolation, and Durability are

often referred to as the ACID properties [6].

Distributed transactions are transactions, but their

operations execute on multiple host machines, ideally

with improved throughput. From a logical perspective,

a distributed transaction can be a flat sequence of

operations or a hierarchy of sub-transactions, also

known as nested transactions. In the latter case, nested

transactions may execute concurrently and

sequentially.

Regardless of whether a distributed transaction is a

flat or nested transactions, it is an ephemeral concept

that spans multiple execution threads and operations

and may use a variety of distributed resources.

Therefore, from an execution-timeline perspective, it

may seem non-contiguous and unevenly spread out. A

transaction’s context is not tied to code constructs,

like constructors and methods, in a single thread of

execution; rather, it consists of loosely coupled

abstractions like dynamically generated identifiers,

timestamps, and tentative value sets for distributed

resources. This makes it very difficult for

aspect-oriented developers to localize and encapsulate

crosscutting concerns that apply to transactions as

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

175

execution units.

This paper provides a foundation for developing an

extension to AspectJ, called TransJ, that allows

application programmers to weave aspect behaviour

for transaction-related crosscutting concerns into a

DTPS in a productive, modular and reusable way,

while preserving performance, core functionality and

obliviousness to crosscutting concerns. TransJ offers a

framework, independent the underlying transaction

framework that allows Aspect-Oriented developers to

treat transactions as first-class concepts into which

compilers can weave transaction-related crosscutting

concerns. Specifically, it defines interesting time

points/places for when/where the crosscutting

concerns might augment an application’s core

functional or the underlying transaction processing

system. To establish this extension, we captured key

transaction events and context information in a

conceptual model, called UMJDT (Unified Model for

Joinpoints of Distributed Transactions) [15]. The

implementation perspective of TransJ utilizes the JTA

(Java Transaction API) standards, which is the de

facto standard in the Sun Java Enterprise Edition

(J2EE) for handling distributed transaction

development today. Section 2 provides a high-level

overview of a conceptual model that provides a

theoretical foundation for TransJ, namely its

transaction jointpoints and contexts. Section 3

provides a high-level explanation of TransJ

architecture. Section 4 discusses the lower-level

design, implementation of TransJ, base aspects central

to core TransJ’s implementation. To validate TransJ,

we have created a library of reusable aspects for

common transaction-related crosscutting concerns and

have applied them to a variety of sample systems and

then it discusses how application programmers can

write their own transaction aspects. Based on initial

theoretic notions, we hypothesize that developers

should see reuse improvements while preserving the

software performance relative to eight hypotheses

discussed in Section 6. Related work is presented in

Section 7. Finally, Section 8 summarizes the current

state of TransJ and outlines our future work.

2. A High-Level Overview of Umjdt

Fig. 1 shows part of the UML model, called the

UMJDT (Unified Model for Joinpoints in Distributed

Transactions). It describes a common conceptual

understanding about transactions to encapsulate any

complex relationship, which can exist in a DTPS, and

Fig. 1 Part of the Unified Model for joinpoints in distributed transactions.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

176

captures the key ideas for new transaction joinpoints

and related context information. Specifically, it unifies

DTPS concepts related to (a) transactions in general,

(b) the kinds of information that comprise their

context, and (c) events that represent interesting time

points/places for when/where the crosscutting

concerns might augment an application’s core

functional or the underlying transaction processing

system.

Overall UMJDT describes transaction-related

joinpoints and context information that make the most

sense for DTPS’s, therefore, it’s considered as a

foundation for weaving transaction aspects into

high-level abstractions, i.e., transactions, in TransJ.

The implementation of TransJ included an

implementation of UMJDT that provided the ability to

weave advice into transaction program execution

before, after, or around complete transactions or

individual transaction operations.

In general, UMJDT serves as a base for formalizing

transaction joinpoints, which fall into three general

categories: transaction joinpoints, operation joinpoints,

and concurrency control joinpoints. They are

represented five new types of joinpoints for DTPS’s:

outer transaction, inner transaction, resource locked,

locking, and operation joinpoints. These joinpoints

represent alogical intervals of time in a flow of

execution and have a beginning and an end. Each type

of joinpoint is referenced to a specific context that

holds all the relevant statics and runtime information

for it. For more details on the UMJDT design and

examples are given in Ref. [15].

3. A High-Level Overview of TransJ’s

Architecture

TransJ represents a set of principles that provide an

independent abstract framework, which enables

separating of complex transaction concerns into

manageable, cohesive and coherent concepts. Fig. 2

shows an architectural block diagram of TransJ, in

which the colored blocks represent relevant

conceptual layers, and arrows depict dependencies

among these layers. It describes the TransJ’s design at

a higher level, with adopting a strategy of top-down to

the design of the TransJ with a layered architectural

design [16], in which each layer embodies a reusable

function or the logical component and provides

services to the layer above it and uses the services of

the layer below it. Thus, TransJ enables

aspect-oriented developers to treat transactions as

first-class concepts into which AspectJ framework can

weave crosscutting concerns in a modular way, i.e.,

transaction aspects. This promotes greater

enhancements, obliviousness, localization along with

Fig. 2 The architectural pattern to TransJ.

Base Advices

Core TransJ Infrastructure

Pointcuts

Base Aspects

Context Tracking Joinpoint Tracking

JTA UMJDTAspectJ
Application Server

Application-Level Aspects

Reusable Aspects

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

177

code reusability while preserving the performance.

The following sub-sections provide some necessary

details about each of the layers in the order from top

to bottom, that will ultimately set the stage to assess

whether the benefits are achieved. The following

sub-sections provide some necessary details about

each of the layers.

3.1 Application-Level Aspect Layer

This layer is an abstraction layer that contains a set

of common transaction-related aspects, which

encapsulate base-application requirements. The

aspects of this layer are aspects of aspects. In other

words, we can build application-level aspects either by

extending the abstract aspects provided by the

reusable aspects or/and base aspects in core TransJ.

Application-level aspects can use directly either the

base aspects or the abstractions provided by TransJ to

access metadata that related to transactions, operations

and the affected resources that are pulled by context

trackers. This type of information can describe the

expected behavior of the transaction with respect to

the context in which it is running such as lock context,

operation context, or transaction context [15].

In [@@reference@@], we show that

application-level aspects that are easy-to-code, more

reusable, understandable, predictable, flexible and

modular than similar concerns, which programmed in

AspectJ or OOP approach.

3.2 Reusable Aspect Layer

The definition of the reusable layer within the scope

of TransJ is a layer responsible for providing a set of

helpful aspects that encapsulate common

transaction-related crosscutting concerns and exposing

relevant context data that application aspects must

consider once weaving advices. Overall the reusable

aspects represent general crosscutting concerns

commonly found in applications with significant

transaction requirements, and therefore can be woven

in DTPSs where a transaction-related concern is

applicable. In other words, this layer represents a

toolkit-like collection of transaction aspects that

developers should find useful for in several of DTAs

(Distributed Transaction Applications). These

reusable aspects depend on a set of the core TransJ

aspects that can decrease the development time to

program application-level aspects, and make them

more understandable, reusable, predictable, and

oblivious. To ensure that is done effectively, we need

appropriate, precise specifications of such aspects that

can then be used to understand the behavior of the

DTPSs and introduce behaviors into complex like

nested distributed transactions. The core TransJ

provides specifications for reusable aspects. This kind

of aspect is conceptually inspired from the key

transaction joinpoints defined in the UMJDT.

3.3 Core TransJ Infrastructure Layer

The core TransJ is a library that introduces a

transaction JPM on top of AspectJ JPM. It consists of

components for tracking transaction contexts and

joinpoints; base aspects that core transaction

abstractions; and a collection of pointcuts for

transaction events and operations. The base aspects

include base advices that embody and augment the

behavior of a transaction; and a collection of pointcuts

for gathering context information that can be used in

the advice code.

We specify the behavior of transaction aspects in

terms abstraction concepts that to any DTPS built

using JTA and XA specifications [18]. These abstract

aspects define one or more pointcuts and items of

advices that will execute when transaction reaches

joinpoints matching these pointcuts.

The Context and Joinpoint tracking (i.e., trackers)

encapsulate hooks into the underlying transactions

subsystems, such as JTA transaction and UMJDT

transaction, in which pull relevant context information

for transaction base aspects and keep track the start

and end points of the joinpoint. If those changes, one

only needs to replace or extend these trackers. The

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

178

base aspects make use of the context information

provided by the context tracking and allow reusable or

application-level aspects specific to individual

transactions. The joinpoints defined in the TransJ core

infrastructure give the reusable aspect and

application-level aspect convenience, reusable

pointcuts for transactional joinpoints. A software

developer that wants to use transaction-related aspects

simply has to include this library in the project.

3.4 JTA (Java Transaction API)

JTA is another foundation part of TransJ

architecture. It offers a procedural interface to

transactions and resources, including several methods

that allows an application programmer to start, join,

commit, and abort transactions [18]. Begin operation,

which starts a new transaction or a nested transaction

within an already ongoing one; commit operation,

which attempts to commit the current transaction;

abort operation, which forces the transaction to

rollback, and more. In addition, it provides

multithreaded transaction models provide additional

operations to allow threads to join an ongoing

transaction (join operation), which allows the calling

thread to join the transaction with the current

transaction context. TransJ’s pointcuts tied to the JTA

constructs.

4. Design and Implementation of a TransJ

Tool Set

Fig. 3 shows a UML paradigm that represents the

general architecture of TransJ along with some

fundamental transaction-related concepts and

functions. Specifically shows low-level aspects—a set

of small well defined aspects that providing a specific

cohesive sub-functionality, high-level joinpoints,

high-level contexts, and trackers. The following

subsections provide the details.

4.1 Transaction Joinpoints and Contexts

The motivation for the Joinpoints in TransJ rests on

offering places and times where/when advice can be

executed [15]. In AspectJ, they correspond to

constructors, methods, attributes, and exceptions. In

TransJ, they correspond to abstractions that may span

into interleaved multi-threaded, modules or distributed

hosts. The UMJDT serves as a foundation for

formalizing transaction joinpoints, which fall into

three general categories: transaction joinpoints,

operation joinpoints, and concurrency control

joinpoints. These categories refer to three different

contexts: transaction context, operation context, lock

context, respectively [15].

Fig. 3 presents a general joinpoint that is labeled by

TransJP that encompasses the logical connection

between transaction-event joinpoints. It is carried out

generic transaction joinpoints, such as creating

transaction-event joinpoints and finding where a

specific transaction is involved. Each event can be

associated with many other events, with at most one

thread. One transaction can have multiple threads, and

a host can process multiple transactions concurrently.

For example, in a distributed nested transaction

system, a transaction T1 can begin executing on the

thread Th#1 which corresponds to a begin event, and

then allows the transaction to commit or abort for

some other thread Th#2.

The green boxes in the figure are TransJ classes

that implement joinpoints for different kinds of

contexts. Such joinpoints offer a natural abstraction in

term of events, enable the explicit definition of

complex crosscuts by means of event pattern, and

accommodate very general behaviors of a transaction.

Overall TransJP represents a joinpoint for the entire

execution transaction, as well as joinpoints for a

sequence of sub-transactions within a transaction

scope, for a sequence of operations within an

operation scope, and for lock/release concurrency

operations within a lock scope. TransJP defines three

event types: begin event, commit event, and abort

event. The begin event is when something happens at

a particular point, i.e., begin point, related to the setting

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

179

Fig. 3 Part of the TransJ Event, joinpoint, context and aspects.

up of transaction flow control. The commit or abort

event is when something happens at a particular point,

i.e., commit or abort point, related to the end of the

transaction execution flow. These events are mapped

to three event joinpoints, respectively: BeginEventJP,

CommitEventJP or AbortEventJP. Each one

implements a single joinpoint for an individual

transaction event. BeginEventJP represents an

execution point of the code into which advice can be

woven, when TransJP related to the begin event of the

transaction occurs in the transaction system.

CommitEventJP or AbortEventJP represents an

execution point of the code into which advice can be

woven, when TransJP related to the commit or

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

180

rollback event transaction, respectively, occurs in the

transaction system. TransJP is specialized into five

types of joinpoints: InnerTransactionJP,

OuterTransactionJP, LockingJP, ResourceLockedJP,

and OperationJP. InnerTransactionJP represents the

region of code or period during which a specific

transaction code is executed, where advice can be

woven in, when TransJP occurs after the begin event

and before the commit/abort event (prior the end of

the transaction execution flow.) OuterTransactionJP

represents the region of code or period during which a

specific transaction code is called, where advice can

be woven in, when TransJP occurs before the begin

event and after the commit/abort event (after the

transaction has completed.) Inner/Outer transaction

joinpoints have direct access to the target transaction’s

context, where the woven advices occur before, after

or around these joinpoints. They refer to a transaction

context concept, i.e., TransactionContext, which

contains the relevant transaction information that is

delivered at execution time to a proper transaction

knowledge, as shown in Fig. 3.

The UMJDT states that every commit or abort

event must have a corresponding begin event. In other

words, a begin event can exist without a commit or

abort event, but not conversely. The events of these

kinds of joinpoints are capable of keeping track of

transactions that occur in multiple threads within

distributed transactions.

LockingJP represents a joinpoint for acquiring the

resources used to perform a particular transaction

operation. In other words, it represents the region of

code or the period during which a specific transaction

code region is executed, where advice can be woven

in, starting when a begin lock request event is sent to

the resource manager/lock manager and ending when

the lock request event is granted or refused. The

beginning and end of the lock request code are

associated with two events that are capable of keeping

track of the lock request within the lock context, as

shown in Fig. 3. BeginLockEventJP represents an

execution point of the code, where advice can be

woven into, when LockingJP runs before executing a

set lock event for acquiring the specified resource

within the lock context associated with the target

transaction. EndLockEventJP represents an execution

point of the code, where advice can be woven in,

when LockingJP runs in place of a set lock event to

get the lock that has been granted or refused for the

specified resource within the lock context associated

with the target transaction.

ResourceLockedJP represents a joinpoint for

complete a lock is held. Therefore, it is the region of

code or the period during which a specific transaction

code region is executed, where advice can be woven

in, when a hold event occurs after setting the lock and

end before releasing the lock. The demarcation points

of the resource locked joinpoint correspond to two

events that are capable of tracking the status of locked

resources associated with a target transaction within

the lock context. HoldEventJP represents an execution

point of the code, where advice can be woven in,

when a ResourceLockedJP occurs the after executing

a set lock event to hold the specified resource within

the lock context associated with the target transaction.

ReleaseEventJP represents an execution point of the

code, where advice can be woven in, when a

ResourceLockedJP occurs before executing a release

event to unlock the specified resource within the lock

context associated with the target transaction.

OperationJP represents a joinpoint for complete a

transaction operation. In other words, it represents the

region of code or period during which a specific

transaction operation code region is executed, where

advice can be woven in, when a transaction occurs

invoking any transaction method, (i.e., a method is

annotated with a transactional annotation) from within

the scope of a transaction, which indicates whether a

method will be executed within an operation context

associated with the target transaction. This joinpoint

contains BeforeOperationEventJP and

AfterOperationEventJP for keeping track of the status

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

181

of all transaction operations. BeforeOperationEventJP

represents an execution point of the code, where

advice can be woven in, when an OperationJP occurs

before executing a reflective access to the information

about a transaction operation associated with the

target transaction. AfterOperationEventJP represents

an execution point of the code, where advice can be

woven in, when an OperationJP occurs after executing

the reflective access to the state available and

information about a transaction operation within the

operational context associated with the target

transaction.

TransJ can add transactions to the list of possible

contexts, which consist of loosely-coupled

abstractions. These contexts include various pieces of

interesting data and metadata that woven advice might

use, e.g., identifier, status, sets of tentative values,

rollback logs, snapshots, lock information, timestamps,

and other kinds of metadata. Each context includes the

location of the joinpoint and runtime information

about the transaction objects involved.

Fig. 3 presents the context as a composite class that

maintains a collection of sub-contexts in term of a tree

structure to represent part-whole hierarchies:

Transaction Context, Lock Context, and Operation

Context. These contexts represent concrete primitive

contexts; for example a lock context or an operation

context can be part of a transaction context, which in

turn can be part of the parent transaction context.

TransactionContext encapsulates the transaction

information that have to be shared among all the outer

and inner transaction joinpoints, such as transaction

identifier, starting time, commit time, abort time,

sub-transactions, status, timestamp, tentative values

for resources, etc. LockContext encapsulates the lock

information related to underlying resources along with

their transactions, such as a locked time, a released

time, time-out, status of shared resources, lock mode,

lock result, lock owner, tentative values to the update

resource, etc. This information has to be available to

the LockingJP and ResourcelockedJP.

OperationContext encapsulates information about the

sequence of the transaction operations in the

transaction’s body, and operations in progress, etc.

This information has to be available to the

OperationJP.

TransJ considers events of joinpoints as largely

independent, while a context considers them as

interrelated through its call transaction concepts that

would lead to a more reusable and robust

implementation. These events keep track and record

the transaction identifying information, e.g., the TID

(transaction identifier), for all types of joinpoints.

When advice executes, it can access the context

information about the joinpoint at which it was

invoked. Thus, the TransJ’s context is a dynamic and

depends on the target transaction objects involved in

the joinpoint.

4.2 Registry for Contexts

Transaction aspects dynamically gather context

information for all TransJ joinpoints. Advices can be

executed before, after, or around various contexts,

which can access joinpoint objects to obtain context

information, like a transaction’s start time, identifier,

status, or the underlying lock information. This task

can be facilitated if every context maintains a list of

all the transactions that have accessed it.

ContextJPRegistry provides this functionality by

keeping a list of all transaction-related contexts that

have interacted with the target transaction. On this,

ContextJPRegistry represents a repository for all

transaction-related contexts, which provide relevant

information for advices associated with the target

transaction at execution time.

For instance, when a joinpoint event occurs, e.g.,

BeginEventJP, TransJ creates an instance of a

joinpoint class, e.g., InnerTransactionJP, that further

correlates it with other events in the same joinpoint

associated with a target transaction, and then adds the

instance of the joinpoint to a relevant context, which

contains a collection of joinpoints of the target

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

182

transaction, and then adds the context to the registry,

which contains a collection of contexts, i.e.,

ContextJPRegistry. When a joinpoint aspect, e.g.,

InnerOuterTransactionAspect, discovers a relevant

transaction joinpoint and correlates it with other

appropriate joinpoints that belong to the same

transaction as shown in Fig. 3.

4.3 Trackers

Behind the scenes, TransJ uses context gathering

mechanisms, namely joinpoint tracker aspects, that are

based on context-aware transaction abstractions and

employed joinpoint events to dynamically gather the

relevant information. The trackers work as monitors

[19] that perform pattern matching on transaction

events, to track individual events and to organize them

into high-level transaction-related contexts. Since the

monitoring of transactions is itself a crosscutting

concern, trackers are implemented as aspects that

weave the necessary monitoring logic into places

where a transaction event may take place. TransJ can

support many different kinds of transaction joinpoint

trackers, Figs. 4 and 5 show two special types of

trackers, namely TransactionJoinPointTracker and

ConcurrencyControlJoinpointTracker.

TransactionJoinPointTracker is an aspect that hides

transaction-related abstractions in the core transaction

application. It crosscuts begin, commit, abort, and

transaction operation “@transactional” abstractions

and defines a set of elegant and parameterized

pointcuts. These provide benefits for sharing states

between advices while overcoming the syntactic and

semantic variations, defined on standard JTA and

Arjuna pre-built libraries, i.e., javax.transaction and

com.arjuna.ats.arjuna. These pointcuts are rich enough

to encapsulate abstractions for transaction-related

concepts of the client and server sides, e.g.,

UserTransaction and TransactionManager,

respectively.

This aspect discovers a relevant joinpoint of the

transaction based on the knowledge of access

transactions, i.e., access to external transactions or

access to internal transactions. Hence, TransJ creates

seven clean, well-encapsulated transaction-related

abstractions for all kinds of types begin, commit,

rollback, and transactional annotation (shown in Fig.

4), summarized as follows: Transaction pointcuts for

begins: These pointcuts unify syntactic and semantic

variations in JTA libraries, i.e., JTA API and Arjuna

API, and crosscut outer and inner transaction begin

abstractions. Transaction pointcuts for commits and

aborts: These pointcuts unify syntactic and semantic

variations in JTA libraries, i.e., JTA API, and Arjuna

API, and crosscut outer and inner transaction commit

and abort abstractions, respectively.

ConcurrencyControlJoinpointTracker is an aspect

that hides concurrency control abstractions in core

transaction applications. This aspect crosscuts the

syntactic and semantic variations exist on standard

JTA like pre-built Arjuna library and unifies them into

a set of parameterized pointcuts in set lock and release

lock abstractions. These pointcuts are rich enough to

encapsulate and manage all concurrency-related

abstractions and styles related to the locking and

unlocking of shared resources in distributed

transactions. Hence, TransJ provides two clean,

well-encapsulated transaction-related abstractions for

setlock and doRelease constructs (shown in Fig. 5).

These are summarized as follows: Concurrency

Control pointcut for setlock: It crosscuts setlock

operation for the lock managers in Arjuna API while

requesting to hold a specified resource to the

associated transaction. Concurrency Control pointcut

for doRelease: It crosscuts doRelease operation

for the lock manager in Arjuna API while releasing a

lock of a specified resource from the associated

transaction.

4.4 Base Transaction Aspects

TransJ implements transaction-related crosscutting

concerns as aspects derived from transaction aspects

that cut through their respective joinpoint trackers.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

183

Fig. 4 A code snippet of TransactionJoinPointTracker.

Fig. 5 A code snippet of ConcurrencyControlJoinPointTracker.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

184

These aspects are derived from abstract

TransactionAspect, which provides high-level

concrete pointcuts that dynamically track different

transaction abstractions, as shown in Fig. 6.

The pointcuts in the TransactionAspect take a list of

objects as parameters, because this is how concrete

aspects based on these pointcuts can access

transaction-related context information. We bind

context data to pointcut variables, which can then be

used to parameterize advices. This allows concrete

aspects to be parameterized and configures different

joinpoints, which enable reusable aspects to be

customized in different contexts and thus increase the

reusability of aspects.

The base aspects consist of three distinct abstract

aspects correspond to three different kinds of contexts,

as mentioned earlier, and extend TransactionAspect

with pointcut abstractions that are meaningful to those

contexts (see Fig. 6). On this, developers can create

their own application-level transaction aspects that

inherit from these aspects and include advice based on

these pointcuts.

InnerOuterTransactionAspect extends

TransactionAspect with pointcuts for transaction

beginnings and the transaction ends as shown in Fig. 7.

It involves begin, commit and abort joinpoints to

demarcate the transaction scope. It defines six

pointcuts: iTransactionBegin
1
, iTransactionCommit,

iTransactionAbort, oTransactionBegin
2

,

oTransactionCommit and oTransactionAbort. These

pointcuts crosscut TransactionJoinpointTracker to

establish a transaction context on the client application

and the application server sides of each executed

transaction. The oTransactionBegin creates an

OuterTransactionJP and instantiates a transaction

context. The oTransactionCommit or

1 The transaction pointcut is initialized with a lowercase letter

that indicates where the joinpoint is located, (i) stands for inner

transaction; iTransactionBegin means inner begin transaction.
2 The transaction pointcut is initialized with a lowercase letter

that indicates where the joinpoint is located, (o) stands for outer

transaction; oTransactionBegin means outer begin transaction.

oTransactionAbort retrieves the matching

OuterTransactionJP from the target

TransactionContext in ContextJPRegistry and ends a

transaction after a client or transaction manager

invokes a commit or abort joinpoint event. The

iTransactionBegin creates an InnerTransactionJP and

starts a transaction when a client or transaction

manager executes a begin event, and then retrieves the

matching target TransactionContext from the

ContextJPRegistry and adds the InnerTransactionJP.

The iTransactionCommit or iTransactionAbort

retrieves the matching InnerTransactionJP from the

target TransactionContext in the ContextJPRegistry

and adds the commit joinpoint event or abort joinpoint

event, respectively, as shown in Fig. 8. Developers

can use this kind of aspect to weave advice before, after,

or around entire transactions, either from a transaction

application client or application server perspective in

different transaction models (flat or nested).

OperationAspect extends TransactionAspect with

pointcuts for transaction operation as shown in Fig. 9.

They provide a way for applications to capture

arbitrarily complex operations, which define the

sequence of transaction operations that comprise the

transaction body. This aspect defines pointcuts to

demarcate the transaction operation scope, namely

BeforeTransactionOperation and

AfterTransactionOperation. The

BeforeTransactionOperation creates an OperatoinJP

and instantiates an OperationContext as shown in

Fig. 10. It exposes the before-operation event

joinpoint to the OperationJP and then adds the

OperationContext to the ContextJPRegistry. The

AfterTransactionOperation retrieves the matching

OperationJP from the OperationContext for the

current transaction in the ContextJPRegistry, and

exposes the after-operation event joinpoint to the

OperationJP. Developers can use this aspect to weave

advice before, after, or around a transaction operation.

LockAspect is derived from the TransactionAspect

and thereby inherits the locking and resource-locked

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

185

Fig. 6 A code snippet of TransactionAspect.

Fig. 7 Extended parametrized-pointcuts in InnerOuterTransactionAspect.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

186

Fig. 8 A code snippet of InnerOuterTransactionAspect.

Fig. 9 Extended parameterized-pointcuts in TransactionOperationAspect.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

187

Fig. 10 A code snippet of TransactionOperationAspect.

pointcuts, as shown in Fig. 11. It involves

setlock-event and release-event joinpoints to associate

and disassociate the specified resource to/from the

target transaction. It defines pointcuts

BeginRequestlock, EndRequestlock, HoldingResource,

and ReleasingResource that crosscut

ConcurrencyControlJoinpointTracker to establish the

lock context. BeginRequestlock creates an instance of

LockingJP, exposes BeginlockEventJP to it,

instantiates a lock context, and then adds the context

to the ContextJPRegistry, as shown in Fig. 12. The

EndRequestlock retrieves the matching LockingJP

from the target LockContext in the ContextJPRegistry,

and exposes the EndlockEventJP to the LockingJP

when the request lock is granted or refused. The

HoldingResource creates a ResourceLockedJP and

exposes the hold-event joinpoint to it. It also retrieves

the matching lock context from ContextJPRegistry

and then adds the ResourceLockedJP to the lock

context in ContextJPRegistry. The ReleasingResource

retrieves the matching ResourceLockedJP from the

target LockContext in the ContextJPRegistry and then

exposes the release-event joinpoint to the

ResourcelockedJP and ends the locked resource.

Developers can use this aspect to weave advice before,

after, or around the entire locking perspective.

In DTPSs, the nested and concurrent transactions

may occur with multiple other hosts, i.e., transaction

in progress, which are also involved in a

multi-threaded process. The aspects can apply for a

transaction and keep track of the multiple concurrent

transactions by maintaining a collection of contexts. A

context for each transaction is maintained in terms of

its own current context and association with the

in-progress transaction.

5. Reusable and Application-Level Aspects

A developer can implement crosscutting concerns,

define transaction-related pointcuts, and weave advice

into any of above joinpoints by specializing the

corresponding abstract TransJ aspects that are shown

in yellow boxes in Fig. 3. TransJ implementation

provides generic advices in the base aspects that

follow the template method pattern [20]. Therefore,

the base aspects are implemented as abstract aspects to

contain the actual implementation of the template

advices and pointcuts. This allows developers to

quickly adapt them to the specific needs of their

application by reusing and integrating them into

existing or new applications. TransJ has to contain a

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

188

Fig. 11 Extended parameterized-pointcuts in LockAspect.

Fig. 12 An aspect code snippet of Lock Aspect.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

189

reusable aspect library that supports AO features

derived from the base aspects. As an example, this

section describes the implementation of a reusable and

an application-level aspect that weaves performance

measurements in the distributed transaction

applications.

Aspect developers implement reusable aspects by

specializing the base aspects in TransJ. The reusable

aspects represent general crosscutting concerns

commonly found in distributed applications with

significant transaction requirements as mentioned

above. Table 1 lists the aspects currently in the

reusable aspects library and Fig. 13 shows part of the

implementation of one of them. This is called Total

Turn Around Time Monitor. TransJ provides a library

of reusable aspects for transaction-related crosscutting

concerns, like TransctionTurnAroundTime, that helps

programmers measure the responsiveness time. These

aspects allow programmers to adapt the reusable

aspects to new demands and to cope with the specific

needs of their application by overriding these methods.

TransJ library offers other reusable aspects the make

use of this and other reuse techniques to integrate

them easily into existing or new applications. We

expect that reusable aspects will continue to grow as

new generally-applicable transaction aspects are

discovered, implemented, and documented.

For discussion purposes, assume that the

performance measurements are a throughput and an

average-transaction response turnaround time statistic.

TransctionTurnAroundTime is an extension that

measures some performance-related statistics for

transactions between a client and application server

(e.g., JBoss Application Server). Also, assume that the

core application considers a transaction to be the

completion a set of sub-transactions. Consider a

transaction involving three sub-transactions. So, we

can measure throughput for a unit of time, 60 seconds,

by simply counting the number of these transactions

completed in that period. The average response

turnaround time is the average of time spans from

transaction begin times to transaction commit or abort

times.

First, notice how this advice is derived from

InnerOuterTransactionAspect and in doing so, it can

reuse its implementation of the transaction turnaround

time concept directly. Fig. 14 shows a snippet of code

that presents the implementation of measuring the

total turnaround time and throughput for a nested

transaction at the application level. As mentioned, the

developers can implement and add application-level

aspects into core application logic by reusing reusable

aspects or extending base aspects in TransJ. Second,

notice how the aspect is derived from Transaction Turn

Table 1 Sample reusable crosscutting concerns in transactions.

Aspect name Description

Optimizer
Tracks workload based on the most likely behaviour of a transaction. It helps programmers to determine the

most efficient way to execute a transaction by considering the possible behaviours on shared resources.

Performance

anylazer

Helps the programmer to analyze the vast amount of transaction resource accesses for improving the

application performance.

Notification Allows the developer to activate alarms for critical errors, exceptions, time-based expiration, and invalid state.

Authenticator Tracks consistent and secure transactions for handling authentication permissions in transaction domain.

Audit trail

Records a history of actions executed by transactions and users. It includes a chronological list of steps that are

required in order to begin a transaction, as well as bring it to completion. It records information such as who

has accessed a transaction, what operation was performed on it, when it was performed, and how the state was

changed.

Logging By

transaction
Logs transaction context operations in a developer-defined format and domain.

JustIntime
Provides virtual helper methods for a transaction which help programmers share context information across

hosts when necessary.

Total turn around

time monitor

Provides virtual helper methods for transactions which help programmers measure the responsiveness time by

overriding their aspects in application level.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

190

Fig. 13 A reusable-aspect code snippet of TransactionTurnAroundTime.

Fig. 14 Performance measure crosscutting concern.

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

191

Around Time aspect and in doing so, it can reuse its

implementation of the transaction turnaround time

concept directly. Then, it adds some additional

behavior at the end of a transaction to compute the

average of the transaction responsiveness time

per-minute (60 seconds), i.e., efficiency.

6. Experimental Hypotheses

The theoretical ideas that underpin TransJ lead to

the eight concrete hypotheses. All of these hypotheses

have the same premise and refer to the metrics that

will be defined in a new extended quality model for

distributed applications. To determine whether TransJ

improves reusability without sacrificing performance,

the authors will conduct an experiment that tests the

following hypotheses:

(1) If transaction-related crosscutting concerns are

effectively modularized and encapsulated in TransJ

aspects, then the software has better encapsulation and

SoCs (Separation of Concerns) and less scattering

than equivalent systems developed with AOP design

techniques, especially AspectJ;

(2) If transaction-related crosscutting concerns are

effectively encapsulated in TransJ aspects, then the

software has a lower coupling than equivalent systems

developed with AOP design techniques, especially

AspectJ;

(3) If transaction-related crosscutting concerns are

effectively encapsulated in TransJ aspects, then the

software has higher cohesion and less tangling than

equivalent systems developed with AOP design

techniques, especially AspectJ;

(4) If transaction-related crosscutting concerns are

effectively encapsulated in TransJ aspects, then the

software is not significantly larger or complex than

equivalent systems developed with AOP design

techniques, especially AspectJ;

(5) If transaction-related crosscutting concerns are

effectively encapsulated in TransJ aspects, then the

software is significantly more oblivious than

equivalent systems developed with AOP design

techniques, especially AspectJ;

(6) If transaction-related crosscutting concerns are

effectively encapsulated in TransJ aspects, then the

software would preserve or improve runtime

performance compared with equivalent systems

developed with AOP design techniques, especially

AspectJ;

(7) If transaction-related crosscutting concerns are

effectively encapsulated in TransJ aspects, then the

extension part, i.e., crosscutting concern, of the

software would require a smaller number of changes

to reuse compared to equivalent systems developed

with AOP design techniques, especially AspectJ;

(8) If TransJ provides a better modularization of

transaction-related crosscutting concerns, then the

development transaction system would be less

complicated and more readable. Thus, software

development efficiency would be increased, so that

the system would be created faster than equivalent

systems developed with AOP design techniques. In

other words, the total programmer’s working time

should be shorter than the development time of

analogous systems developed with AOP techniques,

especially AspectJ.

For the moment, proposing the complete

implementation of an extension to AspectJ that

performs the expected weaving and tracks

transaction-related context information—the abstract

independent framework for basic weaving into

high-level abstractions—are sufficiently interesting

and potentially beneficial to dominate our immediate

attention. Our next steps are to test the stated

hypotheses through performing a preliminary

experiment to validate whether each hypothesis is true

or false.

7. Related Work

All ideas, concepts and approaches investigated in

this section intersect with a broad spectrum of

research projects on transactional systems,

transactional aspects, reusable AO frameworks,

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

192

application-level aspects and interactions. We offer

some relevant research in this section.

Kiczales et al. [3], introduced the idea of weaving

logic for crosscutting concerns into core applications

was introduced over 15 years ago, and their work

stems from even earlier research with inheritance,

aggregation, and mix-ins [2]. Like all great ideas, the

heart of the weaving solution is relatively

straightforward—modularize concerns into first-class

constructs, find the right place(s) to introduce

appropriate logic from those constructs, and the either

insert code that executes the new logic unconditional

(because it can be determined to always be needed) or

insert code that makes a final decision about executing

the new code at runtime. Raza et al., present the

design and implementation of a new AOPL

framework, called CommJ, which is an extension to

AspectJ for enabling programmers to encapsulate

communication-related crosscutting concerns in

modular, cohesive and loosely coupled aspects [21].

CommJ allows developers to weave crosscutting

concerns into IPC (inter-process communications) in a

modular and reusable way, while keeping the core

functionality oblivious to those concerns. This is in

many respects, we found some conceptual similarity

with this design approach to our work, but we have a

different goal in that it addresses how to weave

transaction-related crosscutting concerns into

high-level runtime abstractions, i.e., distributed

transactions. Additionally, TransJ framework

provides low-level distributed aspects that perform the

expected weaving and track of context information.

We believe this to be feasible because it is similar to

the technique used by CommJ to add

communication-related aspects to AspectJ. It also

clearly defines transaction primitives for the DTPS

that defines interesting joinpoints relative to

transaction execution and related contexts for the

woven logic of crosscutting concerns. Therefore, we

believe our work that is concerned to pave the way for

the weaving of crosscutting concerns into high-level

program abstractions that span multiple threads of

execution and may be interleaved with concurrent

execution of similar the abstraction. It also can define

more reusable aspects, which not only can be

extended, but can also be combined to build more

complex types of transaction concerns.

Implementing transaction-related crosscutting

functionality do not fit efficiently into OOP, which

leads to an unnecessary code duplication, a complex

code, a decrease in software quality, and an increase

in product errors and bugs [40]. Several research

works are currently underway to explore the

feasibility of AOP techniques to deal with the

concepts of transaction in various scenarios [5], such

as Ref. [37]. The case study proposed in Ref. [24],

promises to be a perfect candidate that may serve as a

benchmark for evaluating the new AOP approaches,

the expressivity of AOP languages, the performance

of AOP environments, and the suitability of AO

modeling notations. This research presents a language

independent decomposition of the ACID (Atomicity,

Consistency, Isolation and Durability) properties of

transactions into a set of fine-grained aspects, i.e.,

base aspects, each one providing a well-defined

reusable functionality. It then shows how these

aspects can be configured and composed in different

ways to achieve various concurrency control and

recovery strategies for the transactional object.

Therefore, this framework enables the design of

various concurrency control and recovery concerns

through the configuration and composition of these

new aspects. However, other concerns, such as

transaction life-cycle management, are only primarily

supported and badly modularized, and as a result, their

functionality cut through the design of the other

aspects of the framework. Motivated by these, Kienzle

was taken the case study one step further. In Refs. [23],

he presents a language-independent framework that

provides the runtime support for transactions, called

AspectOptima. It uses AO technology to decompose

transaction models and their implementations into

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

193

many individual reusable aspects. In other words, it

consists of a collection of ten base aspects that can be

configured to guarantee the ACID properties for the

transactional object [33]. However, this purpose of

this research is not produced implementations for a

specific transaction standard like JTA, or a reference

implementations.

In comparing with AspectOptima, the TransJ

discusses the composition of transaction abstractions

by separating out the definition of transactions from

the definition of other aspects using general-purpose

abstract transaction concepts, i.e., high-level

abstractions, each one providing a well-defined

reusable functionality. We believe our work enables

better reuse, encapsulation and obliviousness for

transaction-related crosscutting concerns. On the other

hand, TransJ serves for a more practical purpose. It

provides a transaction joinpoint model, which is not

the only contribution of this research. In addition, it

proposes a new context concept to act as meta-data

model for encapsulating the transaction-related

information. Furthermore, the research adds new

abstract concepts, which correspond to the transaction

primitives in JTA and AspectJ frameworks, enable the

design of various application-level aspects through the

configuration and composition of reusable and base

aspects. In short, TransJ the only work required by

developers to acquire the functionality provided by

application-level aspects are to bind their application

classes to the appropriate aspects. This requires no

knowledge of the inner working of TransJ.

In Ref. [25], Sadat-Mohtasham provides a design,

and implement Transactional Pointcuts as a

realization of the new model in the AspectJ language.

He also proposes a new joinpoint model, based on the

pointcut-advice model and a new construct, transcut,

which selects sets of interrelated joinpoints and reifies

them into higher-level joinpoints that can be advised.

The authors have extended abc’s existing joinpoint

matching infrastructure for transcut matching by

implementing the appropriate subclasses (for the new

type of shadow, new pointcuts, etc.,) and by advising

the right joinpoints to adapt the behavior of some of

the existing components in the context of transcut

matching. If a transcut matches a shadow, an advice

application object is created to be applied to the

shadow in the weaving phase. All three major types of

advice (i.e., around, after, and before) are supported

for transcuts. There are some differences between

transactional pointcut model and our work.

Transactional pointcut relies on static analysis only

and, therefore, is inherently imprecise. Our model uses

an interval joinpoints (execution-time joinpoint model)

to determine when an advice should stratify. Also, the

TransJ designation and advice model complies with

the existing dynamic pointcut-advice model in

AspectJ, which made it possible for integration and

interaction with an AOPL, such as AspectJ.

On the other hand, the authors discuss dynamic

meta-model annotations to add well-separated

concerns. The authors share some design similarities

for TransJ that is joinpoints in transcut is identified as

part of a bigger context and in relation to other

joinpoints. TransJ design principles include a similar

concept for implementing transaction patterns using

AspectJ, but the TransJ handles transactions in

high-level transaction abstractions rather than

low-level abstractions. It allows to encapsulate the

transaction concerns from core application

functionality with writing reusable and

application-level transaction aspects as explained in

TransJ. In addition, it already provides a set of

reusable aspects and has the ability to compose and

configure the application-level aspects.

8. Conclusion and Future Work

This paper took the necessary steps to introduce the

notation of transaction-aware aspects to incorporate

transaction-related crosscutting concerns into an

AspectJ framework, namely TransJ. TransJ is an

independent abstraction framework that uses aspects

as main abstractions and proposes a model for

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

194

distributed transaction aspects and transaction

joinpoints for weaving crosscutting concerns into

transaction abstractions. Thus, it allows developers to

encapsulate transaction-related crosscutting concerns

in reusable modules, i.e., the reusable library that

consists of reusable transaction aspects and doubles as

a proof of concepts, since these aspects can be directly

applied to a wide range of existing transaction

applications. It then shows how these reusable aspects

can be configured and composed in different ways to

encapsulate new concerns at application-level.

We believe that TransJ is capable of encapsulating

a wide range of transaction-related crosscutting

concerns in aspects. We hope to get empirical

evidence of the TransJ’s value by increasing the

number of aspects in the reusable aspects and by

continuing to expand the number and types of

applications that use TransJ.

Our next steps are to perform a preliminary

experiment that we hope will provide evidence of

improvement in reuse without sacrificing the

performance. To measure the reuse and performance,

we will define an extension to existing quality models

to be adapted for transactional applications with

following new factors: Understandability,

Extensibility, Localization of Design Decisions,

Obliviousness, Efficiency, Predictability, and

Scalability. Each factor is related to well-established

software-engineering principles: Separation of

Transaction Concerns, Coupling (dependency),

Cohesion, Code size and Complexity, Tangling,

Scattering, Aspects/Obliviousness, Throughput,

Transaction Volume, Transaction Velocity, and

Productivity. In order to achieve this as an ambitious

goal, we plan to setup an experiment methodology,

involving eight quality hypotheses and data collection

from the extended quality model for transactional

application. We hope the results of the preliminary

investigation will provide sufficient evidence on

hoped-for benefits to verify hypotheses. Hence, we

can conclude that TransJ is capable of encapsulating a

wide range of transaction-related crosscutting

concerns and that it can provide better reusability to

refine the core TransJ Infrastructure, increase the

number of aspects in the reusable layer and continue

to expand the number and types of applications that

use TransJ.

References

[1] Brooks, F. P. Jr. 1987. “No Silver Bullet, Essence and

Accidents of Software Engineering.” IEEE Computer 20

(4): 10-9.

[2] Booch, G., and Maksimchu, R. M. 2007.

“Object-Oriented Analysis and Design with Applications.”

Addison-Wesley Professional, third edition. Boston:

Published April 1st.

[3] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Lopes, C. V., Loingtier, J. M., and Irwin, J. 1997.

“Aspect-Oriented Programming.” In Proceedings of

ECOOP '97, Springer Verlag, 220-42.

[4] Gradecki, J., and Lesiecki, N. 2003. “Mastering AspectJ.”

Wiley Publishing Inc., 456. ISBN: 978-0-471-43104-6.

[5] Rosenhainer, L. 2004. “Identifying Crosscutting

Concerns in Requirements Specifications.” In

Proceedings of OOPSLA Early Aspects. October 2004,

Vancouver, Canada. http://

trese.cs.utwente.nl/Docs/workshops/oopsla-early-aspects-

2004/.

[6] Clifton, C., and Leavens, G. T. 2003. “Obliviousness,

Modular Reasoning, and the Behavior Subtyping

Analogy.” In Proceedings of the Workshop on Software

Engineering Properties of Languages for Aspect

Technologies (SPLAT), Workshop at AOSD, 1-6.

[7] Kiczales, G., and Mezini, M. 2005. “Aspect-Oriented

Programming and Modular Reasoning.” In Proc. 27th Int.

Conf. Software Engineering, St. Louis, MO, 49-58.

[8] Eclipse. 2015. AspectJ. [Online]. Available

http://www.eclipse.org/aspectJ/.

[9] Aspectwerkz2. 2015. Plain Java AOP. [Online].

Available http://aspectwerkz.codehaus.org/.

[10] Jboss. 2015. JBoss AOP. [Online]. Available

http://www.jboss.org/jbossaop.

[11] Spring. 2015. Spring AOP. [Online]. Available

http://www.springframework.org.

[12] Gray, J. 1981. “The Transaction Concept: Virtues and

limitations.” In Proceedings of the 7th International

Conference on VLDB Systems, ACM, New York, 144-54.

[13] Gray, J., and Reuter, A. 1993. “Transaction Processing:

Concepts and Techniques.” The Morgan Kaufmann

Series in Data Management Systems. Morgan Kaufmann,

San Mateo, CA, 1993. ISBN-13: 978-1558601901,

TransJ: An Abstract Independent-Framework for Weaving Crosscutting
Concern into Distributed Transactions

195

ISBN-10: 1558601902.

[14] Kohad, G., Gupta, S., Gangakhedkar, T., Ahirwar, U.,

and Kumar, A. 2013. “Concept and Techniques of

Transaction Processing of Distributed Database

Management System.” International Journal of Computer

Architecture and Mobility 1 (8). ISSN 2319-9229.

[15] AlSobeh, A., and Clyde, S. 2014. “Unified Conceptual

Model for Joinpoints in Distributed Transactions.”

ICSE’14. The Ninth International Conference on

Software Engineering Advances. Nice, France. ISBN:

978-1-61208-367-4.

[16] Wikipedia. 2015. Block Diagram. [Online]. Available

http://en.wikipedia.org/wiki/Block_diagram.

[17] Shaw, M., and Garlan, D. 1996. “Software Architecture:

Perspectives on an Emerging Discipline.” Upper Saddle

River. NJ: Prentice-Hall.

[18] Sun Microsystems Inc. 1999. Java Transaction API (JTA)

[Online]. 901 San Antonio Road, Palo Alto, CA 94303.

Available

https://www.progress.com/jdbc/resources/tutorials/unders

tanding-jta.

[19] Douence, R., Le Botlan, D., Noyé, J., and Südholt, M.

2006. “Concurrent Aspects.” In Proc. 5th Int. Conf.

GPCE, Portland, OR, 79-88.

[20] Gamma, E., Helm, R., Johnson, R., Vlissides, J., and

Booch, G. 1995. Design Patterns-Elements of Reusable

Object Oriented Software, 3rd edition. Addison-Wesley.

[21] Raza, A., and Clyde, S. 2013. “Weaving Crosscutting

Concerns into Inter-process Communications (IPC) in

AspectJ.” ICSEA 2013, Venice, Italy, 234-40. ISBN:

978-1-61208-304-9.

[22] Redhat. 2007. Jboss Transaction Manager. [Online].

Available

http://docs.jboss.org/jbosstm/docs/4.2.3/manuals/pdf/jta/P

rogrammersGuide.pdf.

[23] Rashid, A., and Chitchyan, R. 2003. “Persistence as an

Aspect.” In Proceedings of the 2nd International

Conference on Aspect-Oriented Software

Development-Development (AOSD), Boston, MA, USA,

120-9. ACM, New York, NY, USA.

[24] Kienzle, J., and G élineau, S. 2006. “Ao

Challenge-Implementing the Acid Properties for

Transactional Objects.” In AOSD ’06: Proceedings of the

5th International Conference on Aspect-Oriented

Software Development, 202-13, New York, NY, USA.

ACM Press.

[25] Sadat-Mohtasham, H., and Hoover, H. S. 2009.

“Transactional Pointcuts: Designation Reification and

Advice of Interrelated Join Points.” In Proceedings of the

8th International Conference on Generative Programming

and Component Engineering, 35-44. ACM.

[26] Rausch, A., Rumpe, B., Klein, C., and Hoogendoom, L.

2003. “Aspect-Oriented Framework Modeling.” 4th AOM

Workshop at UML’03, San Francisco, CA.

[27] Kienzle, J., and Guerraoui, R. 2002. “AOP: Does it Make

Sense? The Case of Concurrency and Failures.” Proc.

ECOOP'02, 37-61.

[28] Kamble, G. 2009. “Aop-Introduced Crosscutting

Concerns.” Proceedings of 2009 International

Symposium on Computing, Communication, and Control.

Singapore, 140-4. ISBN 978-9-8108-3815-7.

[29] Raza, A., and Clyde, S. 2014. “Communication Aspects

with CommJ: Initial Experiment Show Promising

Improvements in Reusability and Maintainability.”

ICSEA 2014. Nice, France.

[30] Akai, S., and Chiba, S. 2009. “Extending AspectJ for

Separating Regions.” In GPCE, 45-54. ACM.

[31] Alkhatib, G., and Labban, R. S. 1995. “Transaction

Management in Distributed Database Systems: The Case

of Oracle’s Two-Phase Commit.” The Journal of

Information Systems Education 13 (2): 95-103.

[32] Härder, T., and Rothermel, K. 1993. “Concurrency

Control Issues in Nested Transactions.” Journal of VLDB

2 (1): 39-74.

[33] Kienzle, J., Duala-Ekoko, E., and Gelineau, S. 2009.

“Aspect Optima: A Case Study on Aspect Dependencies

and Interactions.” Trans Aspect-Oriented Softw Dev 5:

187-234. Berlin, Heidelberg: Springer-Verlag.

doi:10.1007/978-3-642-02059-9_6.

[34] Sirbi, K., and Kulkarni, P. J. 2010. “Enhancing

Modularity in Aspect-Oriented Software Systems—An

Assessment Study.” (IJCSE) International Journal on

Computer Science and Engineering 2 (6).

[35] Sant’Anna, C., Lobato, C., Kulesza, U., and Lucena, C.

2008. “On the Modularity Assessment of

Aspect-Oriented Multiagent Architectures: A

Quantitative Study.” International Journal of

Agent-Oriented Software Engineering 2: 34-61.

[36] Lopes, C. V., and Bajracharya, S. K. “Assessing Aspect

Modularizations Using Design Structure Matrix and Net

Option Value.” Transactions on Aspect-Oriented Software

Development I. Berlin, Heidelberg: Springer-Verlag.

[37] Rashid, A., and Aksit, M., eds. 2006. “Transactions on

Aspect-Oriented Software Development (TAOSD).” In

LNCS 3880, 1-35.

[38] Shaw, M., and Garlan, D. 1996. “Software Architecture:

Perspectives on an Emerging Discipline.” Upper Saddle

River, NJ: Prentice-Hall.

[39] Douence, R., Fradet, P., and Sudholt, M. 2004.

“Trace-based Aspects. Aspect-Oriented Software

Development.” Addison Wesley, 201-17.

[40] Atomikos. 2015. Extreme Transactions Atomikos

Transactions. [Online]. Available

http://www.atomikos.com.

http://www.atomikos.com/

