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Abstract: Vibration damping is an important phenomenon in the field of engineering design while predicting the dynamic analysis of 
the most of the structures. It is one of the typical dynamic responses of structural members, which allows the members fail due to 
larger amplitudes. Composite materials are replacing conventional structural materials due to attractive, superior mechanical 
properties such as high strength to weight ratio, high modulus, high corrosion resistance and good fatigue resistance. Composite 
materials possess high degree of material damping compared with conventional materials. One of the advanced technique employed 
to safe guard against the severe intensity of vibrations by controlling the dynamics of the structures is the provision of enhancing 
energy dissipation by the design of a constrain layer. When a constrain layer is made of a non actuating stiff layer of material 
introduced in the structure, say a viscoelastic material called a PCLD (Passive constrained layer damping). In the present work, an 
analytical solution for damping of a FRP (Fiber reinforced polymer) plates with a single or double interleaved viscoelastic layers in is 
obtained. Ritz method is employed to predict the damping nature of the plate under several boundary conditions. Specific damping 
capacity and a loss factor are deduced from the method of energy formulation for viscoelastic layers interleaved in laminated fiber 
reinforced plate. The loss factor of constrain layered plate is calculated as a function of fiber orientation in its orthotropic layers. An 
isotropic constrain layers are configured at midplane, symmetric, asymmetric and outer positions across the thickness of the plate. A 
parametric study also carried out to observe the effect of position of a constant thickness viscoelastic layer on the damping 
characteristics of passively constrain orthotropic plate.  
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Nomenclature 

U: 

 

Energy dissipated 
∆𝑈:  Maximum strain energy 
𝐴𝑚𝑛: Fourier Co-efficient of deflection 
𝑅: Aspect ratio 
𝑒0: Viscoelastic layer of thickness 
a: Length of the plate 
b: Width of the plate 
e: Thickness of the orthotropic lamina 
𝑖𝑄𝑝𝑞𝑣 : Reduced stiffness constants 
𝑑1: Up Distance of VEL from laminate Midplane 
𝑑2: Down of VEL from laminate Midplane 
𝑤0: Transverse displacement 
𝐴𝑖𝑗: Series Co-efficient 
𝐶𝑚𝑖𝑛𝑗
𝑝𝑞𝑟𝑠: Product of integrals I and J 

𝐷𝑝𝑞𝑣 : Time 
E: Young’s modulus 
𝐷𝑝𝑞𝑜𝑟𝑡: Bending Moment in y direction 

                                                           
  *Corresponding author: Dileep Kumar K, assistant professor, 
research field: damping of composite structure. 
 

𝑓𝑝𝑞(𝜃): Orientation function 

Greek Letters 

𝜐 : Poisons ratio of VEM 
𝜓𝑥: Specific Damping Co-efficient 
λm: Boundary values of the plate in x-direction 
γm: Boundary values of the plate in y-direction 
𝜂: Loss factor 
𝛼: Longitudinal modulus 
𝛼1: A constant for VEM position Up Distance 
𝛼2: A constant for VEM position down Distance 

1. Introduction 

Nowadays an increased demand for the control of 
acoustics and vibration in structures had enforced the 
designers to take damping into account even from the 
preliminary design phase. A designer always looks for 
a material which shows superior or optimum 
properties under given operating environment. It is 
very difficult task to search for an optimal material for 
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every new design. In such cases a composite material 
will be the best practical solution owing to reason that 
its properties can be tailored according to desired 
degree of magnitude by providing geometric and 
material symmetry conditions. The advantages of 
composites can be made utilized by the rational choice 
of stacking sequence. In many aerospace, commercial 
and automotive components, sports and structures 
composites have been successfully used. Advanced 
composite materials not only have high stiffness but 
also have greater damping capacity compared to 
metals. For example, in a FRP composite, the 
damping is enhanced due to the internal friction 
among the constituents and interfacial slip at the 
fiber-matrix interfaces, where as the fiber contributes 
to the stiffness. However, the damping capacity of the 
composite laminates can be increased many fold by 
incorporating viscoelastic layers between the laminae 
of the host composite. In this hybrid approach, the 
dominant mechanism of damping is the shear induced 
between the damping layer and the constraining layers. 
The trade-offs in using damping layers are a slight 
reduction in stiffness and a small increase in the 
weight of the composite system. The desirable 
damping characteristics and design flexibility make 
the viscoelastic materials to be embedded as an 
important isotropic constituent layer in the 
composites.  

Adams R D [1] consider the basic elasticity 
relationships for unidirectional composites, together 
with the Adams-Bacon damping criterion, are utilised 
for prediction of moduli and flexural damping of 
anisotropic CFRP (Carbon fiber reinforced polymer) 
and GRP beams with respect to fibre orientation. 
Billups E K [2] works on several two-dimensional 
theories for investigating the SDC (Specific damping 
capacity) of composite materials and theories are 
compared with those of Adams and Bacon, Adams 
and Maheri, Ni and Adams [3] and Saravanos and 
Chamis. No interlaminar effects are considered. The 
analysis considers the variations of Young’s modulus 

and damping of viscoelastic layers with the frequency. 
Finally, the article presents the effects of Young’s 
modulus and the damping of a viscoelastic layer 
interleaved in the middle plane of unidirectional 
laminate by Jean-Marie Berthelot [4]. The optimal 
lay-up design problem, a layer wise optimization (LO) 
method is applied to the orthotropic plates  
comprised of two different laminates, and an optimal 
fiber angles are determined to obtain the maximum 
loss factor in the first mode by Jinqiang Li [5]. 
Jean-Marie Berthelot [6] also predicted various 
damping parameters and are investigated using 
cantilever beam test specimens using an impulse 
hammer technique. Damping modeling is developed 
by a finite element analysis which evaluated the 
different energies dissipated in the material as a 
function of fiber directions of the layers is the work of 
Ni, R. G. and Adams, R. D [7]. Advanced FRP 
composites are prime candidates for several 
interesting applications where damping is a key 
parameter. Improvement of vibration damping 
characteristics of such materials makes them qualify 
even more attractive applications. Since most of 
composite structural elements in military, automotive 
and space applications are subject to severe   
dynamic loads an additional vibration control 
becomes necessary. This can be achieved by using 
different damping treatments. High degree of  
damping in a structure can often improve  
performance in a dynamic load environment. Various 
methods for predicting damping in a structure are 
proposed, the Ritz method is the most efficient 
method. 

In composite base structures, several factors 
influence its structural vibration response. For 
example, the constituents, the fiber orientation and 
stacking sequence in the host structure, and the 
position from midplane, amount and type of treatment 
of embedded layer, influence the response strongly. 
The effect of some of such parameters is presented 
here using Ritz method. 
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2. Modeling of FRP Plate Using Ritz Method 

Passive damping has been recognized as an 
important mechanism for controlling the 
elastodynamic performance of flexible structures. The 
arrangement of different layers in a PCLD plate is 
shown in Fig. 1. Among various passive damping 
techniques, it is known that the material damping can 
effectively improves the capabilities for suppressing 
vibration, sound, fatigue endurance and impact 
resistance, and can be easily implemented as 
viscoelastic layers in the laminated plate structures. 
The goal of an effective damping treatment is to add 
the viscoelastic material in such a way and in such 
location so as to ensure that the greatest possible 
cyclic deformation of the damping materials will 
occur as the structure vibrates in the modes of interest, 
to dissipate as much vibrational energy during each 
cycle as possible. This requires an understanding of 
the dynamic behavior of the structure or machine and 
an understanding of the deformation of the 
viscoelastic material which occurs during vibration of 
the structure, and by no means least, an understanding 
of the complex modulus properties of the candidate 
damping materials in order that a proper treatment can 
be developed. 

Two types of laminates with viscoelastic layers 
were considered. Laminates with a single viscoelastic 
layer of thickness e0 interleaved in the middle plane of 
laminates (Fig. 2) and laminates with two viscoelastic 
layers of thickness e0 interleaved away from the 
middle plane (Fig. 3). The layers of the initial 
laminates are constituted of unidirectional or 
orthotropic materials with material directions making 
an angle θ with the x direction oriented along the 
length of plates under consideration. The total 
thickness of the unidirectional or orthotropic layers is 
‘e’ and the interlaminar layers are assumed to have an 
isotropic behavior 

2.1 Interlaminar Viscoelastic Layer 

The laminate is constituted of a unidirectional or 

orthotropic material of thickness e in which a single 
viscoelastic layer of thickness e0 is interleaved (Fig. 2). 
Material directions make an angle θ with the plate 
directions. According to the results established in 
Berthelot, the total strain energy stored in the laminate 
with the viscoelastic layers can be expressed as 

 U = U11 +2U12 + U22 + U66 

 𝑈𝑝𝑞 = 𝑈𝑝𝑞𝑜𝑟𝑡 + 𝑈𝑝𝑞𝑣  𝑝𝑞 = 11,12,22,66 
 

(1) 

The energies U11 and U22 are the strain energies 
stored in tension-compression in the material 
directions, U12 is the coupling energy induced by the 
Poisson’s effect, and U66 is the strain energy stored in 
in-plane shear. The energy is separated as the strain 
energy 𝑈𝑝𝑞𝑜𝑟𝑡 stored in the orthotropic layer and the 
strain energy 𝑈𝑝𝑞𝑣  stored in the viscoelastic layer. 
Applying the results obtained by Berthelot and Sefrani 
et al and Berthelot, the energy stored in the orthotropic 
layers 1 and 3 (Fig. 2) can be written as 

𝑈𝑝𝑞𝑜𝑟𝑡 = 𝑈𝑝𝑞1 + 𝑈𝑝𝑞3 =

1
2𝑅𝑎2

∑ ∑ ∑ ∑ 𝐴𝑚𝑛𝐴𝑖𝑗𝑓𝑝𝑞(𝜃)𝑄𝑝𝑞
𝑒3

12
��1 +𝑁

𝑗=1
𝑀
𝑖=1

𝑁
𝑛=1

𝑀
𝑚=1

𝑒0𝑒3−𝑒0𝑒3                              (2) 

where, a is the length and R the length-to-width ratio 
of the plate, 𝑈𝑝𝑞1 and 𝑈𝑝𝑞3  are the strain energies 
stored in layers 1 and 3, are the reduced stiffness 
constants of the materials, and 𝑓𝑝𝑞(𝜃)are functions of 
the material directions obtained by Berthelot et. al. In 
the same way, the strain energy stored in the 
viscoelastic layer is given by 
 

 
Fig. 1  Laminate with viscoelastic layer.  
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Fig. 2  Laminate with a single viscoelastic layer.  
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where, the reduced stiffness constants 𝑖𝑄𝑝𝑞𝑣  are 
expressed as 
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 (4) 

Introducing the Young’s modulus E and the 
Poisson’s ratio 𝜐 of the viscoelastic layer. This layer 
being considered as isotropic, the results are 
independent of the direction. Thus, the function 
𝑓𝑝𝑞𝑣 (𝜃𝑣) can be deduced by considering an orientation 
equal to zero, which leads to 

𝑓11𝑣 (𝜃𝑣) = 𝐶𝑚𝑖𝑛𝑗2200;  𝑓12𝑣 (𝜃𝑣) = 𝐶𝑚𝑖𝑛𝑗2002𝑅2;  

𝑓22𝑣 (𝜃𝑣) = 𝐶𝑚𝑖𝑛𝑗
0022𝑅4; 𝑓66𝑣 (𝜃𝑣) = 4𝐶𝑚𝑖𝑛𝑗1111𝑅2;  

(5) 

The energy dissipated by viscous damping is then 
expressed by 

∆𝑈 = �(𝜓𝑝𝑞𝑜𝑟𝑡𝑈𝑝𝑞𝑜𝑟𝑡 + 𝜓𝑝𝑞𝑣 𝑈𝑝𝑞𝑣 )
𝑛

𝑝𝑞

 (6) 

Introducing the specific damping coefficients of the 
orthotropic material considered and the coefficients of 
the viscoelastic layer. The damping coefficients are 
the in-plane damping coefficients of the orthotropic 
layer considered in Berthelot and Sefrani et al. They 

will be simply noted. The damping of the viscoelastic 
layer is related essentially to the Young’s modulus 
and it can be written as 

𝜓11𝑣 ≈ 𝜓22𝑣 ≈ 𝜓66𝑣 ≈ 𝜓𝑣; 𝜓12𝑣 = 0 (7) 
Next, the damping of laminated plate with a single 

viscoelastic layer is evaluated by 

𝜓𝑥 =
𝛥𝑈
𝑈

 (8a) 

Finally the loss factor is obtained as follows 

𝜂 =
𝜓𝑥
2𝜋

 (8b) 

2.2 Two Interlaminar Viscoelastic Layers 

This subsection considers the case of a 
unidirectional or orthotropic material of thickness e in 
which two viscoelastic layers of thicknesses e0 are 
interleaved in the initial material (Fig. 3). To obtain a 
general analysis, the viscoelastic layers are considered 
to be interleaved at distances d1 and d2 from the 
middle plane, respectively. These distances will be 
expressed as 

𝑑1 = 𝛼1
𝑒
2

,𝑑2 = 𝛼2
𝑒
2

 (9) 

As previously mentioned, the strain energy stored 
in the laminate with the two interleaved viscoelastic 
layers can be expressed by Eqn.1 where 𝑈𝑝𝑞𝑜𝑟𝑡 is the 
strain energy stored in the orthotropic layers and 𝑈𝑝𝑞𝑣  
is the strain energy stored in the two viscoelastic 
layers. The strain energy stored in the orthotropic 
layers 1, 3 and 5 can be expressed as 
 

 
Fig. 3  Laminate with two interleaved viscoelastic layer.  
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Plate Clamped at One End and Free at the Other 

 
Fig. 4  Clamped Free Beam condition.  
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(10) 

pq = 11,12,22,66 
With, 𝐷𝑝𝑞𝑜𝑟𝑡 = 
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(11) 

The strain energy stored in the two viscoelastic 
layers 2 and 4 can be written as 

𝑈𝑝𝑞𝑣 = 

1
2𝑅𝑎2
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With, 
𝐷𝑝𝑞𝑣 = 
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𝑒0
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𝑒0
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(13) 

where, the functions 𝑓𝑝𝑞𝑣 (𝜃𝑣) are given by Eq. (5). In 
the particular case of two viscoelastic layers which are 
interleaved at the same distance from the middle plane 

𝑑1 = 𝑑2 = 𝛼
𝑒
2

 (14) 

Hence the bending stiffness induced by the 
viscoelastic layers are simply written as 

𝐷𝑝𝑞𝑣 = ��𝛼 + 2
𝑒0
𝑒 �

3
− (𝛼)3� 𝑖𝑄𝑝𝑞𝑣

𝑒3

12
 

(15) 

3. Plate Boundary Condition 

In the case of a beam clamped at the end x = 0 and 
free at the other end x = L, its geometric representation 
is shown in Fig. 4 and the boundary conditions are 

At the end x = 0: 

𝑤0(x = 0) = 0,
𝑑𝑤0
𝑑𝑥

(x = 0) = 0 (16) 

At the end x = L: 
𝑤0(𝑥 = 𝐿) = 0,𝑀(𝑥 = 𝐿) = 0, (17) 

Also, 
𝑑2𝑤0
𝑑𝑥2

(𝑥 = 𝐿) = 0,
𝑑3𝑤0
𝑑𝑥3

(𝑥 = 𝐿) = 0, (18) 

The first eight solutions of Equation for clamped 
free beam are listed in Table 1 with the corresponding 
values of γm. For high enough values of γm the 
approximate values can be written in the form 

𝜆𝑚 = (𝑚 + 0.25)π (19) 
In the case of a beam that is free at both ends its 

geometric representation is shown in figure. 5 and the 
boundary conditions are: 

𝑑2𝑋m
𝑑𝑥2

(𝑥 = 0) = 0,
𝑑3𝑋m
𝑑𝑥3

(𝑥 = 0) = 0, 

𝑑2𝑋m
𝑑𝑥2

(𝑥 = 𝐿) = 0,
𝑑3𝑋m
𝑑𝑥3

(𝑥 = 𝐿) = 0, 
(20) 

With, 
𝑋1(𝑥) =  1, 

𝑋2(𝑥) = 2√3 �
𝑥
𝐿
− 1� 

(21) 

These functions correspond to the rigid modes of 
translation and rotation. The two roots λ1 = 0 and λ2= 
0 are associated with these functions. The other roots 
λm and the corresponding values γm are identical to 
those found in the case of two clamped ends. The 
values of λm and γm are given in Table 2 for m varying 
from 1 to 9. The first mode of free vibrations is 
obtained for m = 3. The free vibration frequencies are 
identical to those of a beam with clamped ends. 

4. Materials Selection 

Each of the composite plates was chosen to have 
the following physical and geometric configuration: 
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Table 1  Coefficients of a clamped-free beam function. 

m  1  2  3  4  5  6  7  8 
λm 1.87 4.69 7.85 10.99 14.13 17.27 20.42 23.56 
γm 0.73 1.01 0.99 1.000 1.000 1.000 1.000 1.000 
((m-0.5)π 1.57 4.71 7.85 10.99 10.99 17.27 20.42 23.56 
 

Plate with two free ends 

 
Fig. 5  Free- Free Beam condition.  
 

Length (a) = 300 mm 
Breadth (b) = 200 mm 
No of plies (n) = 8  
Thickness of each ply (t) = 0.3 mm 
Force (q0) = 500 N 
Thickness of Viscoelastic material (e0) = 0.2 mm 
The materials properties of chosen materials listed 

in Table 3. 

5. Results and Discussion 

Loss factor (η) of unidirectional carbon fibre/epoxy 
laminate with different boundary conditions and at 
various fibre orientations for a single and multiple 
viscoelastic layer positions from the laminate mid plane. 

Case I: (CFFF) One edge clamped all other edges 
free.  

Case II: (CCCC) All edges clamped.  
Case III: (CFCF) Adjacent edges clamped. 
The loss factor (η) of Unidirectional Carbon 

Fibres/Epoxy with different boundary conditions and 
at various fibre orientations without and with 
Viscoelastic Layers is shown in Table 4. and Table 5 
respevtively. Figs 6 and 7 are the plot of results 
displayed in Tables 4 and 5 i.e loss factor as a 
function of fiber orientation.

 
Table 2  Coefficients of a free-free beam function.  

m  3  4  5  6  7  8  9 
λm 4.730 7.853 10.99 14.13 17.27 20.420 23.562 
γm 0.982 1.000 1.000 1.000 1.000 1.000 1.000 

 
Table 3  Materials properties of glass/epoxy and viscoelastic layer.  

Material EL 
(GPa) 

ET 
(GPa) GLT (GPa) υLT 𝜂11(%) 𝜂22(%) 𝜂66(%) 

Carbon/Epoxy 110 8.6 6.0 0.28 0.14 0.66 0.80 
Viscoelastic 50 (MPa) 50 (MPa) 50 (Mpa) 0.3 29.95 29.9 29.95 

 
Table 4  Loss factor (η) of unidirectional carbon fibres/epoxy with different boundary conditions and at various fibre 
orientations without viscoelastic layers.  

Angle 0 15 30 45 60 75 90 
CCCC 0.24 0.27 0.33 0.37 0.40 0.41 0.40 
CFFF 0.10 0.12 0.24 0.40 0.47 0.50 0.49 
CFCF 0.24 0.27 0.33 0.37 0.40 0.41 0.40 
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Table 5  Loss factor (η) of unidirectional carbon fibres/epoxy with CFCF boundary conditions and at various fibre 
orientations with viscoelastic layers.  

Angle 
Loss factor (η) of carbon/ epoxy laminate 

CFCF 
Mid Sym Asym Outer 

0 0.61 1.12 1.25 1.84 
15 0.47 0.74 0.80 1.11 
30 0.50 0.68 0.73 0.97 
45 0.68 0.87 0.95 1.28 
60 0.87 1.13 1.23 1.67 
75 0.81 1.21 1.32 1.86 
90 0.79 1.26 1.39 1.97 
 

 
Fig. 6  Variation of Loss factor (η) of unidirectional 
carbon fibres with fibre orientation without viscoelastic 
layers.  
 

 
Fig. 7  Loss factor (η) of unidirectional carbon fibres 
(CFCF) with viscoelastic material inserted at various 
positions with fibre orientation.  

6. Conclusions 

This study investigates the damping properties of 
unidirectional carbon reinforced laminates shows very 
poor damping values when compared with glass and 
Kevlar reinforced laminates [3]. But, when it is 
provided with interleaved constrain layer with a single 
or two its damping values obtain are considerably 
high. For a given laminate without constrain layer, 
the CFCF (Fig. 6) will have maximum value of loss 
factor at 600. Whereas the minimum value for the 
same boundary conditions recorded at 150 if a 
constrain layer is used at midplane position. For all 
other positions of constrain layer the loss factor is in 
between 0.5% at 300 single midplane to 1.97% at 900 
two outer position. It shows that damping nature of 
carbon laminates and 900 enhanced four folds. It is 
also realized that the provision of constrain layer in 
the FRP lamination process is highly compatible. It 
is noticed that a trend of increase in the damping of 
laminates significant as the viscoelastic layers are 
placed from the mid layer to outer layer. Also it 
showed that, the least value of loss factor found at 300 
when two layers are used irrespective of their 
locations.  
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