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Abstract: This work consists to a development a new calculation method of rotating machines vibration limits. we will confirmed

norms. An evaluation of the absolute vibration parameters of these machines with a comparison of vibration limits of ISO 10816-1

will be also affected.
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1. Introduction

Rotating machines operate with limits vibrations, an
update of these limits maybe required.
From the following calculation we will try to

reformulate terms of vibrations machine parameters.

2. Model of the Machines Vibrations [1]:

The rotating machines vibrations will be modeled
by the system with one degree on Fig. 1. Rotating
machine can be compared with this system (Fig. 2):

* The base is replaced by the bearings.

* The Springs is replaced by the rotor.

* The mass is replaced by the body of the turbine
or the pump.

* Damping is ensured by the fluid passing in the
turbine or the pump.

3. Basic Equation[1]

The differential equation translating the behavior of
the system (displacement of mass x (t) compared to its
rest position after release) in a direction can be
written:

M X(t) + C x(t) + kx (t) = F (1) (2.1

With k is the rigidity of the spring which expresses
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that the force of recall is proportional to elongation x

and F the force applied on the basis.

A viscous damping (or fluid) of coefficient C
exerts on the movement of the mass m a force of
damping -c 9% proportional to the instantaneous

speed. The total response of the movement is:

X(0) = X (1) + X (1)
where, X, () is the response of the free movement,
solution of the equation:

M X(t)+ C x(t) + kx (t) = 0 (2.2)
where, Xg(t) is the response of the movement
forced, solution of the equation:

M Xx(t) + C x(t) + kx (t) = F (1) (2.3)
The response of the free movement [1] in the case
E<1 is:

X, (1) = X 67" sin( w,/1 - E°t + @)

C
where, ¢ = c and C . are critically damping.
C

The natural frequency of the free movement is

woz\/%. If £=1, then C=2VkM =2Ma, =C, .
These cases are rare, and when ¢&>1, the free
response is an exponential function. X (t) is
represented on the Fig. 3.

By holding account that F(t)=F,e'" the
response  of  the
X(t) = Xe ™ with:

forced movement is:
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Fig. 1 mechanical system with one degree.
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If ¢<1, then T =—_ With the natural pulsation
W

| K :
W, = M We can have the harmonic response
forced to one degree on Fig. 4.

4. Stiffness Calculation of Rotors

At passage of the critical speed [2]:

Réponse du mouvement amorti d'un systéme a un degré de liberté
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Fig. 3 Mechanical system with one degree.
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Fig. 4 Harmonic Forced response with one Degree.

k
Q=uw, —\/% (3.1
k=Ma; (3.2)

where, @, is the natural frequency corresponding to

the critical speed, k is rotor stiffness, M is rotor

mass. The equilibrium is realized. If F=F
(equality of centrifugal forces of unbalance and

unbalance correction force with masse m, then:
Mew, = MR}

With e the excentricity and R rotor radius (distance
from the position of the balancing mass to the rotor
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geometric center). We can write to this effect:

Me
m=—
R
On the other hand, the restoring force is given by:
F=k-x (3.3)

The expression of the stiffness (the restoring force
per unit elongation) is given by:
mR

k=—] (3.4)
e

We suppose that X, is vibrations amplitude at critical

speed and X, is at nominal speed. We pose

r=2 X (3.5)
X X
T>1

We suppose that 7 is vibration ratio of X, and X and
also the ratio of still admissible X, vibration and

admissible vibration X according norm 10816-1 (Cf.

[1]). We pose :
& =pa (3.6)

o >a

Here, @ and @, are nominal and critical speed.
5. Balancing Quality Vibrations Limits
Evaluation

5.1 Vibrations Expressions

The tolerated residual unbalance is defined by
norms from the balancing quality. Quality factor G
(mm/s) is defined by:

G=eq

where, e is excentricity. w; is maximal angular
speed. The stiffness is:
mR

kzg-wg-a)l 4.1)

_ K
G-p

With the centrifugal forces of the mass m given by:

k

o, (4.2)

F. =mRa/

Then:

Fig. 5 Disposition on a rotor unbalance [2].

k=Maj 4.5)

C, =M-g,

The factor C, depends to centrifugal force at

rotation nominal speed and to the naturalfrequency.
For low damping:(cf. [1]) if:

T = Xl = M— (4'6)
X k
With Eq. (3.2), we have:
k=C, o, M 4.7)
T
C M (4.8)
@,

Centrifugal force [3] is:

F. = mRa} = 2M (4.9)
@,

Unbalance with the mass m is given by:
b=mR
Then:

(4.10)
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Unbalance is function of ratio rotor mass and
rotating frequency. We have:

(4.11)

In case of a rotating machines:(case of excitation by
a static unbalance, rigid rotor) we have the liaison on
Fig. 6. With e like eccentricity, C center of gravity et
G is inertia center , z (t) and y(t) are the co-ordinates
of the center of gravity along two perpendicular
directions. The equations of the movement are:

3

m (y(t) + ecos( Qt)) = —ky (t) — c y(t)

dt ?

6 —

—_— =01
|7l 47 —=02
-

2__
0 :
, Q

Fig. 7 Critical speed.

3

m (z(t) + esin( Qt)) = —kz (t) — ¢ z(t)

dt ?

With r(t) = y(t) +iz() , thus
mr(t)+cr(t)+kr(t)=meQ%®  We have the
solution:

e(2?
r(t) = = e (4.12)

-2+ e 2
@, @,
For Q=w,, that corresponds to critical speed
(Fig. 7). The expression of the vibrations in the case
of rotating machines and for nominal speed of rotation
Q,, we can write (cf. [1]):

Q)

)’

el

@,

1/2

[¢]

(- (222 4 (26 Py

0 0)0

Q
w

In the case of a constant speed €),, we will have:

n_»c¢ (4.13)
e, k
With low damping (¢ < 1):
h_M
e, k
With Eq. (4.11) and for one rotation:
b=M-e (4.14)
or
e:L-E-L2 (4.15)
2r T o

We have (cf. [1]) for rotating machines the ratio:

r=-L (4.16)
e
then:
1
. 4.17
r=— " (4.17)
with
r(t)=x(t) +iz(t)
We have:
G 1
)= 4.18
xt)=—- " (4.18)
and (Cf[1]):
M
% =By(@)-=By(@)z (419
X, =B, (®).r’ (4.20)
When we pose:
M
r=— (4.21)
k
the value of X is:
X, :EL2 4.22)
2r o,
then
B,(w) =l£% (4.23)
T 27 @
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G 1

X, =7— — (4.24)
2r @,

If we want to change x, we increases 7. These

values are constants and depends to critical speed. The

ratio of vibration at speed Q; = w;is :(cf. [1]):

X 1
Q
X, (2 (4.25)
oN)
We can write :
NUCIL B
2T @ 1_(%)2 (4.26)
If Q =aw,,then % tends to the infinite,
G 1
= 427
% 27z a - ( )

vibrations amplitudes is positive quantity. The

expressions obtained are for condition:

Q<aq, (4.28)
If
Q >, (4.29)
Then:
e (4.30)
2 @) +j
We have:
27[(“)3 + lez)'Xz =G
G
% 270, 1 ( )

Or x,=0, in case where (for example a generator or

gas turbine):

Q >, (4.31.a)

At nominal speed, we have: % =X, =——> and r=1
27,
5.2 Vibrations Limits

For a movement applied to the base of the spring
mass system (Fig. 1), with the form:

Y=Y, sin2rft) (4.32)
We have (Cf. [4]):
Y@ =é sin(27 ft + @) (4.33)

and with the differential equation of movement: (Cf.

[4D).

X (@)= 1 lw - (4.34)
1+ () () - (=)
Q a)(J a)O

where, Q:l\/m'k . The module is:

(4.35)
1 ) (—
+( Qz X f0)
the vibration (VGIOClty) is:
vit)=—=27z"f|— cos(27rf + @) (4.36)
and the transfer functions:(Cf. [4])
jo
—(a)) = (4.37)
Y 1 w w
I+ () )= ()
Q o @y
For low damping, the module is:
ot o
\/ L+ (5! =2
@, @,
where, f is vibration frequency and f,is natural
frequency.
We have:
v o
—=jo 4.39
) (4.39)

where, V is velocity vibration and X is vibration of

the mass of spring mass system. The module is:

V]=|X|@rf)=x @2z f) (4.40)
(7 71)
2
V= z_a (4.41)
\/1 + (71)4 - 2(4)2
@y @y
For our machine:
G . r
Vo (4.42)
1+ p*'=2p°

Vibration is function of frequency ratio.
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Table N°01 Admissibles vibrations according norm 1SO 10816-1.

Group Group N°01 Group N°02 Group N°03 Group N°04
Admissible vibration
( mm/s) 0.71 1.12 1.8 2.8
Still admissible Vibration 45 71 112 13
(' mm/s)
Coefficient T 6.33 6.33 6.33 6.33
6. Case of Multiple Degrees of Freedom RMS value is:
\Y
Free response is : Vawss :ﬁ =1.20mm/s (6.1.a)
M . . .
X =X, =B, (a’)‘r (5.1) According norm ISO 10816-1 the ratio T is for all
1 6 1 M groups machines :

where, X, =—-— —-—. We pose:

T 21 o K

4 2
r:l~E:Constantel+ & -2 &
T 27 @, ,

Xo=—5-[M]-[K]" (5.2)
for multiple degrees of freedom:

(X} =5 [M]-k]” (5:3)

7. Applications

The following application is concerning a generator
of IV group of machines which produces electrical
energy. The generator is driven by a gas turbine.

Critical speed: at 50% of nominale speed.

Nominal speed: 3,000 rpm.

Speed ratio : p=2

For gas turbine: G =2.5 mm/s.

Maximale vibration is (see Eq. (4.42)):

i Vibrations
Admissibles vibrations

r=1; For still
For dangerous

where, for admissibles vibrations:
=633 ;
7>6.33 . Absolute vibrations (Cf. [1])
depend on .

admissibles vibrations:

vibrations:

The optimal choice of this coefficient can change the
thresholds and which takes into account machines

. X S o
design. If T=X—1, and considering that admissibles

0
vibrations correspond to the balance, so we add them
to the still admissible value. If V, correspond to the
norm and V, correspond to searched vibration, we

have:

v

1

V, =V,

2 1

(6.2)

. . V
We calculate the relative dlfferenceAVbetween the

value of the ISO 10816-1 norm and the calculated

V=169mm/s (6.1) value of the machines group No. 04:

Table N°02 1st Evaluation.

Group Group N°01 Group N°02 Group N°03 Group N°04
E\f‘:lsls)lbles vibrations 0.31 0.48 0.77 120
Stilladmissibles vibrations

(T = 6.33) 1.93 3.05 49 7.62
Inadmissibles vibrations ~1.93 =305 =49 =762
7> 6.33
Table N° 03 2nd Evaluation.

Groupe Group N°01 Group N°02 Group N°03 Group N°04
Admissibles vibrations 0.61 0.96 1.54 2.41
Stilladmissibles vibrations 2.54 4.12 6.45 10.03
Inadmissibles vibrations >2.54 >4.12 > 6.45 >10.03
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Table N° 04 3rd Evaluation.

Group Group N°01 Group N°02 Group N°03 Group N°04
Admissibles vibrations 0.61 0.96 1.54 2.41
Stilladmissibles vibrations 3.15 4.97 7.99 12.43
Inadmissibles vibrations >3.15 >4.97 >7.99 > 1243
Table N° 05 4 th Evaluation.
Group Group N°01 Group N°02 Group N°03 Group N°04
Admissibles vibrations 0.61 0.96 1.54 2.41
Stilladmissibles vibrations 3.76 5.94 9.54 14.85
Inadmissibles vibrations >3.76 >5.94 >9.54 > 14.85
Table N° 6 5th Evaluation (corresponding to norm ISO 10816-1).
Groupe Group N°01 Group N°02 Group N°03 Group N°04
Stilladmissibles vibrations 5.21 8.22 13 20.8
Table N° 07 6 th Evaluation.
Group Group N°01 Group N°02 Group N°03 Group N°04
Admissibles vibrations 0.61 0.96 1.54 2.41
Stilladmissibles vibrations 437 6.90 11.10 17.25
Inadmissibles vibrations >4.37 >6.90 >11.10 >17.25
Table N° 08 Vibrations limitsfromoptmization (Cf. [1]).
Group Group N°01 Group N°02 Group N°03 Group N°04
Admissibles vibrations 0.61 0.96 1.54 2.41
Stilladmissibles vibrations 4.98 7.86 12.63 19.66
Inadmissibles vibrations >4.98 >7.86 > 12.63 > 19.66

N 28-12 the evaluations number is:

. =057 (6.3) v v

\Y 2.8 EAn _ VEA-I

We construct the Table N°02. We suppose also

that admissibles vibrations corresponds to
equilibirium, they can be added to still admissibles
values. We have the five (05) evaluations to obtain
vibrations values of norms (Cf. [1]). We also do the
same operation on admissible and on still admissible
values (Cf. Annexe). Vibrations from optmization
(Cf.[1]) are identical to that calculated in the present

document.
7.1. Evaluations Number

is still admissible vibration after

—N

Considering Vg,
n evaluations, V., is still admissible vibrations of the
first evaluation and V, is admissibles vibrations, we

have:

VEA—n :VEA—I + I"'VA

n=
VA

18
n=(18-(—))/28~5
(18-(=3)

8. Conclusions

Our work is based on the optimization study of
rotating machines vibration limits (see [1]). Depending
on the coefficient as the ratio of vibrations and
admissible vibrations according norm ISO 10816-1,
absolutes vibrations limits origin is elaborated. We
hope that this document will be the object of scientific
research in the field of rotating machines.
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