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Machines Vibrations Limits  
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Abstract: This work consists to a development a new calculation method of rotating machines vibration limits. we will confirmed 
norms. An evaluation of the absolute vibration parameters of these machines with a comparison of vibration limits of ISO 10816-1 
will be also affected. 
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1. Introduction  

Rotating machines operate with limits vibrations, an 
update of these limits maybe required. 

From the following calculation we will try to 
reformulate terms of vibrations machine parameters.  

2. Model of the Machines Vibrations [1]:  

The rotating machines vibrations will be modeled 
by the system with one degree on Fig. 1. Rotating 
machine can be compared with this system (Fig. 2): 

 The base is replaced by the bearings.  
 The Springs is replaced by the rotor. 
 The mass is replaced by the body of the turbine 

or the pump.  
 Damping is ensured by the fluid passing in the 

turbine or the pump. 

3. Basic Equation[1]  

The differential equation translating the behavior of 
the system (displacement of mass x (t) compared to its 
rest position after release) in a direction can be 
written:  

)()()()(
...

tFtkxtxCtxM =++     (2.1) 
With k is the rigidity of the spring which expresses 
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that the force of recall is proportional to elongation x 
and F the force applied on the basis.  

A viscous damping (or fluid) of coefficient C
exerts on the movement of the mass m a force of 

damping dxC dt− proportional to the instantaneous 

speed. The total response of the movement is: 
)()()( txtxtx FL +=  

where, )(txL  is the response of the free movement, 
solution of the equation:  

0)()()(
...

=++ tkxtxCtxM      (2.2) 

where, )(txF  is the response of the movement 
forced, solution of the equation: 

)()()()(
...

tFtkxtxCtxM =++     (2.3) 

The response of the free movement [1] in the case 
1ξ <  is: 

)1sin()( 0
2

00
0 φξωξω +−= − teXtx t

L  

where, 
CC

C
=ξ  and CC are critically damping.  

The natural frequency of the free movement is

0
k

M
ω = . If 1ξ = , then 02 2 CC kM M Cω= = = . 

These cases are rare, and when 1ξ > , the free 
response is an exponential function. )(txL  is 
represented on the Fig. 3. 

By holding account that tjeFtF ω
0)( =  the 

response of the forced movement is: 
)()( φ−Ω= tjXetx , with: 
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geometric center).We can write to this effect: 
Mem
R

=  

On the other hand, the restoring force is given by:   
F k x= ⋅               (3.3) 

The expression of the stiffness (the restoring force 
per unit elongation) is given by: 

2
0

mRk
e

ω= ⋅              (3.4) 

We suppose that 1x is vibrations amplitude at critical 

speed and 2x is at nominal speed. We pose 

2 1

1 0

x x
x x

τ = =              (3.5) 

1τ >  

We suppose thatτ is vibration ratio of 2x and 1x and 

also the ratio of still admissible 1X vibration and 

admissible vibration 0X according norm 10816-1 (Cf. 

[1]). We pose : 

1 0ω ρ ω= ⋅              (3.6) 

1 0ω ω>  

Here, 1ω  and 0ω  are nominal and critical speed. 

5. Balancing Quality Vibrations Limits 
Evaluation 

5.1 Vibrations Expressions 

The tolerated residual unbalance is defined by 
norms from the balancing quality. Quality factor G 
(mm/s) is defined by: 

1G e ω= ⋅  

where, ݁  is excentricity.  ߱ଵ  is maximal angular 
speed. The stiffness is: 

2
0 1

mRk
G

ω ω= ⋅ ⋅           (4.1) 

0
CF

k
G

ω
ρ

= ⋅
⋅

            (4.2) 

With the centrifugal forces of the mass m given by: 

2
1CF mRω=  

Then: 

1 0k C ω= ⋅               (4.3) 

1
CF

C
G ρ

=
⋅

              (4.4) 

 
Fig. 5  Disposition on a rotor unbalance [2].  
 

2
0k Mω=               (4.5) 

1 0C M ω= ⋅  

The factor 1C depends to centrifugal force at 

rotation nominal speed and to the naturalfrequency. 
For low damping:(cf. [1]) if: 

k
M

X
X

==
0

1τ             (4.6) 

With Eq. (3.2), we have: 

1 0
Mk C ω
τ

= ⋅ =            (4.7) 

1
0

MC
τω

=             (4.8) 

Centrifugal force [3] is: 
2
1

0
C

GMF mR ρω
τω

= =        (4.9) 

Unbalance with the mass m is given by: 
b mR=  

Then: 

2
10

1G Mb
τ ωω

= ⋅ ⋅           (4.10) 
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Unbalance is function of ratio rotor mass and 
rotating frequency. We have: 

2
0 2

G M Tb
τ πω

= ⋅ ⋅          (4.11) 

In case of a rotating machines:(case of excitation by 
a static unbalance, rigid rotor) we have the liaison on 
Fig. 6. With e like eccentricity, C center of gravity et 
G is inertia center , z (t) and y(t) are the co-ordinates 
of the center of gravity along two perpendicular 
directions. The equations of the movement are: 

)()())cos()((
.

2

3

tyctkytety
dt
dm −−=Ω+

 

 
Fig. 6  Rigid liaison.  
 

 
Fig. 7  Critical speed.  
 

)()())sin()((
.

2

3

tzctkztetz
dt
dm −−=Ω+  

With )()()( tiztytr += , thus 
tjemetkrtrctrm ΩΩ=++ 2

...
)()()( . We have the 

solution: 

)(

0

2

2

2

0

)2())(1(

)(
)( ϕ

ω
ε

ω

ω −Ω

Ω
+

Ω
−

Ω

= tje
j

e
tr (4.12) 

For 0ω=Ω , that corresponds to critical speed  
(Fig. 7). The expression of the vibrations in the case 
of rotating machines and for nominal speed of rotation

1Ω , we can write (cf. [1]): 

2/1
2

0

122

0

1

2

0

1

1

1

)2())(1(

)(

⎥
⎦

⎤
⎢
⎣

⎡ Ω
+

Ω
−

Ω

=

ω
ε

ω

ω
e
r  

In the case of a constant speed 1Ω , we will have: 

k
c

e
r

=
1

1               (4.13) 

With low damping ( 1ε ): 

k
M

e
r

=
1

1

 
With Eq. (4.11) and for one rotation: 

b M e= ⋅              (4.14) 
or  

2
0

1 1
2

Ge
π τ ω

= ⋅ ⋅            (4.15) 

We have (cf. [1]) for rotating machines the ratio: 

1r
e

τ =               (4.16) 

then: 

2
0

1
2
Gr
π ω

= ⋅            (4.17) 

with  
( ) ( ) ( )r t x t iz t= +  

We have: 

2
0

1( )
2
Gx t
π ω

= ⋅            (4.18) 

 

and (Cf.[1]):  

τωω ).().( 221 B
k
MBx ==

     
(4.19)

 
2

22 ).( τωBx =          (4.20) 
When we pose: 

k
M

=τ
            

(4.21) 

the value of 1x is: 

1 2
0

1
2
Gx
π ω

= ⋅            (4.22) 

then 

2 2
0

1 1( )
2
GB ω

τ π ω
= ⋅ ⋅          (4.23) 
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2 2
0

1
2
Gx τ
π ω

= ⋅ ⋅            (4.24) 

If we want to change ݔଶ we increases ߬. These 
values are constants and depends to critical speed. The 
ratio of vibration at speed Ωଵ ൌ ωଵis :(cf. [1]): 

2

0

11

2

)(1

1

ω
Ω

−
=

x
x

         (4.25)  

We can write : 

2 2
210

0

1 1
2 1 ( )

Gx
π ω

ω

= ⋅ ⋅
Ω

−       (4.26) 

If 1 0ωΩ = , then 2x  tends to the infinite, 

2 2 2
0 1

1
2
Gx
π ω

= ×
−Ω

          (4.27) 

vibrations amplitudes is positive quantity. The 
expressions obtained are for condition: 

1 0ωΩ <                (4.28) 
If 

1 0ωΩ >                (4.29) 
Then: 

2 2 2
0 1

1
2
Gx

jπ ω
= ⋅

+ Ω
          (4.30) 

We have: 

2 2
0 1 22 ( )j x Gπ ω + Ω ⋅ =  

2 12
02

Gx x
πω

= =             (4.31) 

Or 2 0x = , in case where (for example a generator or 
gas turbine): 

1 0ωΩ >              (4.31.a) 

At nominal speed, we have: 2 2 2
02

Gx x
πω

= =  and 1τ =   

5.2 Vibrations Limits 

For a movement applied to the base of the spring 
mass system (Fig. 1), with the form: 

0( ) sin(2 )Y t Y ftπ=            (4.32) 
We have (Cf. [4]): 

( ) sin(2 )XY t ft
Y

π= + Φ         (4.33) 

and with the differential equation of movement: (Cf. 
[4]). 

2

0 0

1( )
11 ( ) ( ) ( )

X
Y j

Q

ω
ω ω
ω ω

=
+ ⋅ −

     (4.34) 

where, 1Q m k
c

= ⋅ . The module is: 

4 2
2

0 0

1
11 ( ) (2 )( )

X
Y f f

f Q f

=
+ − −

     (4.35) 

the vibration (velocity) is: 

( ) 2 cos(2 )dx Xv t f f
dt Y

π π= = + Φ  (4.36) 

and the transfer functions:(Cf. [4]) 

2

0 0

( )
11 ( ) ( ) ( )

V j
Y j

Q

ωω
ω ω
ω ω

=
+ ⋅ −

    (4.37) 

For low damping, the module is: 

1

4 21 1

0 0

1 ( ) 2( )

V
Y

ω ω

Ω
=

Ω Ω
+ −

     (4.38) 

where, f  is vibration frequency and 0f is natural 
frequency. 
We have:  

V j
X

ω=               (4.39) 

where, V

 

is velocity vibration and X  is vibration of 
the mass of spring mass system. The module is: 

1(2 ) (2 )V X f x fπ π= =       (4.40) 

1
2
0

4 21 1

0 0

( )
2

1 ( ) 2( )

G

V
π ω

ω ω

Ω
×

=
Ω Ω

+ −
       (4.41) 

For our machine: 

0

4 2

2

1 2

G

V

ρ
π ω

ρ ρ

⋅
=

+ −
         (4.42) 

Vibration is function of frequency ratio. 
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Table N°01  Admissibles vibrations according norm ISO 10816-1.  

Group Group N°01 Group N°02 Group N°03 Group N°04 
Admissible vibration 
( mm/s) 0.71 1.12 1.8 2.8 

Still admissible Vibration ( mm/s) 4.5 7.1 11.2 18 

Coefficient ࣎ 6.33 6.33 6.33 6.33 
 

6. Case of Multiple Degrees of Freedom 

Free response is : 

1 0 2 ( ) Mx X B
k

ω= = ⋅            (5.1) 

where, 0 2
0

1 1
2
G MX

kτ π ω
= ⋅ ⋅ ⋅ . We pose: 

4 2

1 1

0 0

1 1 2
2
Gr Constante

τ π ω ω
⎛ ⎞ ⎛ ⎞Ω Ω

= ⋅ = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

[ ] [ ] 1
0 2

0

rX M k
ω

−= ⋅ ⋅             (5.2) 

for multiple degrees of freedom: 

}{ [ ] [ ] 1
0 2

0

rX M k
ω

−= ⋅ ⋅            (5.3) 

7. Applications 

The following application is concerning a generator 
of IV group of machines which produces electrical 
energy. The generator is driven by a gas turbine. 

Critical speed: at 50% of nominale speed. 
Nominal speed: 3,000 rpm. 
Speed ratio : 2ρ =   
For gas turbine: G = 2.5 mm/s. 
Maximale vibration is (see Eq. (4.42)): 

1.69 /V mm s=            (6.1) 

RMS value is: 

1.20 /
2RMS

VV mm s= =       (6.1.a) 

According norm ISO 10816-1 the ratio τ is for all 
groups machines : 

τ =
Vibrations

Admissibles vibrations
 

where, for admissibles vibrations: 1τ = ; For still 
admissibles vibrations: 6.33τ = ; For dangerous 
vibrations: 6.33τ > . Absolute vibrations (Cf. [1]) 
depend on τ . 

The optimal choice of this coefficient can change the 
thresholds and which takes into account machines 

design. If 1

0

X
X

τ = , and considering that admissibles 

vibrations correspond to the balance, so we add them 
to the still admissible value. If 1V  correspond to the 
norm and 2V correspond to searched vibration, we 
have: 

2 1 1
VV V V
V

= − ⋅              (6.2) 

We calculate the relative difference V
V

between the 

value of the ISO 10816-1 norm and the calculated 
value of the machines group No. 04: 

Table N°02  1st Evaluation.  

Group Group N°01 Group N°02 Group N°03 Group N°04 
Admissibles vibrations 
( ߬ ൌ 1ሻ 0.31 0.48 0.77 1.20 

Stilladmissibles vibrations 
 ሺ߬ ൌ 6.33ሻ 1.93 3.05 4.9 7.62 

Inadmissibles vibrations 
߬ ൐ 6.33 > 1.93 > 3.05 > 4.9 > 7.62 
 

Table N° 03  2nd Evaluation.  

Groupe Group N°01 Group N°02 Group N°03 Group N°04 
Admissibles vibrations 0.61 0.96 1.54 2.41 
Stilladmissibles vibrations 2.54 4.12 6.45 10.03 
Inadmissibles vibrations > 2.54 > 4.12 > 6.45 > 10.03 
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Table N° 04  3rd Evaluation.  

Group Group N°01 Group N°02 Group N°03 Group N°04 
Admissibles vibrations 0.61 0.96 1.54 2.41 
Stilladmissibles vibrations 3.15 4.97 7.99 12.43 
Inadmissibles vibrations > 3.15 > 4.97 > 7.99 > 12.43 

Table N° 05  4 th Evaluation.  

Group Group N°01 Group N°02 Group N°03 Group N°04 
Admissibles vibrations 0.61 0.96 1.54 2.41 
Stilladmissibles vibrations 3.76 5.94 9.54 14.85 
Inadmissibles vibrations > 3.76 > 5.94 > 9.54 > 14.85 
 

Table N° 6  5th Evaluation (corresponding to norm ISO 10816-1).  

Groupe Group N°01 Group N°02 Group N°03 Group N°04 
Stilladmissibles vibrations 5.21 8.22 13 20.8 
 

Table N° 07  6 th Evaluation.  

Group Group N°01 Group N°02 Group N°03 Group N°04 
Admissibles vibrations 0.61 0.96 1.54 2.41 
Stilladmissibles vibrations 4.37 6.90 11.10 17.25 
Inadmissibles vibrations > 4.37 > 6.90 > 11.10 > 17.25 
 

Table N° 08  Vibrations limitsfromoptmization (Cf. [1]).  

Group Group N°01 Group N°02 Group N°03 Group N°04 
Admissibles vibrations 0.61 0.96 1.54 2.41 
Stilladmissibles vibrations 4.98 7.86 12.63 19.66 
Inadmissibles vibrations > 4.98 > 7.86 > 12.63 > 19.66 
 

2.8 1.2 0.57
2.8

V
V

−
= =            (6.3) 

We construct the Table N°02. We suppose also 
that admissibles vibrations corresponds to 
equilibirium, they can be added to still admissibles 
values. We have the five (05) evaluations to obtain 
vibrations values of norms (Cf. [1]). We also do the 
same operation on admissible and on still admissible 
values (Cf. Annexe). Vibrations from optmization 
(Cf.[1]) are identical to that calculated in the present 
document. 

7.1. Evaluations Number 

Considering EA nV −  is still admissible vibration after 
n evaluations, 1EAV − is still admissible vibrations of the 
first evaluation and AV  is admissibles vibrations, we 
have: 

1EA n EA AV V nV− −= +  

the evaluations number is: 

1EA n EA

A

V V
n

V
− −−

=  

18(18 ( )) / 2.8 5
6.33

n = − ≈  

8. Conclusions 

Our work is based on the optimization study of 
rotating machines vibration limits (see [1]). Depending 
on the coefficient as the ratio of vibrations and 
admissible vibrations according norm ISO 10816-1, 
absolutes vibrations limits origin is elaborated. We 
hope that this document will be the object of scientific 
research in the field of rotating machines. 
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